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Abstract—Machine learning models are vulnerable to adversar-
ial attacks, including attacks that leak information about the
model’s training data. There has recently been an increase in
interest about how to best address privacy concerns, especially
in the presence of data-removal requests. Machine unlearning
algorithms aim to efficiently update trained models to comply
with data deletion requests while maintaining performance and
without having to resort to retraining the model from scratch, a
costly endeavor. Several algorithms in the machine unlearning
literature demonstrate some level of privacy gains, but they
are often evaluated only on rudimentary membership inference
attacks, which do not represent realistic threats. In this paper
we describe and propose alternative evaluation methods for
three key shortcomings in the current evaluation of unlearning
algorithms. We show the utility of our alternative evaluations
via a series of experiments of state-of-the-art unlearning al-
gorithms on different computer vision datasets, presenting a
more detailed picture of the state of the field.

1. Introduction

While incorporating new data into established machine
learning models via fine-tuning is a well-studied problem,
the inverse problem of removing data from those models has
received less attention until recently. The field of machine
unlearning [1] [2] [3] has emerged over the last several years
in response to legal frameworks, such as the EU’s GDPR
[4], that give citizens the “right to be forgotten.” To comply
with such legal frameworks, companies may be required
not only to remove user data from data structures, but also
from machine learning models trained on that data. Machine
unlearning can be applied to many data domains including
images, videos, audio, and text – in this paper we focus on
computer vision (CV) in response to recent research efforts
to comply with legal requirements for user privacy.

The naı̈ve approach to unlearning would be to erase
the required data from a dataset and retrain a model from
scratch. The removed data will have no influence on the
model parameters or its output (ignoring indirect influences
such as hyper-parameters optimized prior to removal), so an
attacker would have no way of extracting information about
the removed data. The major downside of this approach -
and the main issue that the machine unlearning literature

seeks to address - is the computational burden and hence
the immense cost in terms of processes and technology.
Retraining a model from scratch on unlearning requests
that arrive in a stream may simply not be feasible at scale,
especially for large datasets and models with hundreds of
millions of parameters that require thousands of epochs
on tens or hundreds of GPUs to train. Ideal unlearning
algorithms would provide the privacy guarantees and per-
formance characteristics of a retrained-from-scratch model
and require far fewer compute resources. As such, machine
unlearning involves balancing privacy, cost, and long-term
performance.

To realistically represent conditions under practical at-
tacks when benchmarking machine unlearning algorithms,
we argue that researchers and practitioners should consider
the following three essential characteristics:

1) Emphasis of worst-case metrics over average-case
metrics and the use of strong adversarial attacks to
provide a high-quality upper-bound on privacy.

2) Consideration of model update-based attacks (e.g.
leakage), as in [5], which may cause unlearning to
provide additional information to attackers.

3) Analysis of unlearning algorithm performance over
repeated applications of unlearning (i.e. iterative
unlearning), especially in regards to degradation of
test accuracy performance of the unlearned models.

In response to these gaps, we propose a framework that
incorporates a suite of improved benchmarks for the testing
and evaluation of machine unlearning algorithms. To test
our framework and demonstrate the utility of the improved
benchmarks we conduct a benchmarking study of a vari-
ety of state-of-the-art (SoTA) unlearning algorithms with
the goal of presenting a holistic assessment of unlearning
algorithms. Our contributions are intended to demonstrate
the importance of using more comprehensive evaluations.

1.1. Unlearning Definition and Notation

We are primarily interested in approximate unlearning
where the influence of the forget set is practically removed,
as opposed to exact unlearning where the influence must
completely and provably removed. We define unlearning
as follows. We have a dataset D partitioned into forget,



retain, validation, and test sets Df , Dr, Dval, and Dtest,
respectively. A model M is trained on the training subset
Dtrain = Df∪Dr, where Df∩Dr = ∅. An unlearning algo-
rithm U : M × (Dr,Df ) → M ′ produces a new model M ′

which ideally has minimized the possibility of information
leakage from Df , maintained model performance, and done
so with minimal compute. Iterative unlearning requires an
extended definition (omitted here for brevity), but intuitively,
it is the repeated act of unlearning over time.

2. Evaluating Unlearning Algorithms

Prior works in unlearning [5], [6], [7], [8], [9], [10],
[11], [12], [13] take inspiration from the Differential Pri-
vacy (DP) literature, using membership inference attacks
(MIAs), which can determine whether a certain example was
part of the training set, to demonstrate an empirical upper
bound on privacy. Intuitively, such privacy auditing attacks
demonstrate what is possible by an adversary, and thus
high-confidence upper bounds are crucial for understanding
vulnerabilities in a system.

2.1. Privacy as a Worst-Case Metric

We argue that worst-case measures of privacy are crucial
for effective evaluations of unlearning algorithms. Users, in
the absence of a strict guarantee of their own privacy, will
care primarily about worst-case outcomes for themselves,
rather than average- or even best-case metrics. When ex-
amining privacy through the lens of DP, as many in the
unlearning field do, this becomes even more clear. Satisfy-
ing (ϵ, δ)-Differential Privacy requires a mathematical proof
showing an algorithm satisfies a strict worst-case upper-
bound on potential information leakage from Dtrain across
all possible training examples. Therefore, strong unlearning
evaluations will both use as effective MIAs as possible, and
present the results of the attacks with worst-case metrics.

Through our literature review we have found that the
most common MIA used to evaluate algorithms is a simple
Logistic Regression classifier trained to predict whether or
not a loss value comes from an example in Df [6], [14],
[15], [16], [17]. Furthermore, results are reported almost
exclusively through either accuracy or recall - both of
which are average case metrics. The study in [16] takes an
important step forward in using stronger MIAs, adapting
the online version of the SoTA Likelihood Ratio Attack
(LiRA) from [18] to the unlearning setting. The ‘online’
version refers to the need to train new models for every
membership query. Notably, they continue the precedent
set in [18] by showing Receiver Operating Characteristic
(ROC) curves with log-scales to show performance at very
low false-positive rates - better demonstrating worst-case
outcomes. The effectiveness of LiRA as an MIA makes it a
much more realistic estimate of privacy.

One downside of [16]’s online-LiRA implementation is
its computational complexity. The attack entails training 256
‘shadow’ models (each on a random half of the training set)
and then running an unlearning algorithm 10,000 times on

random forget sets for each of the 256 shadow models. This
amounts to over 2.5 million unlearning runs per algorithm.
For any fine-tuning based algorithm, or any algorithm deal-
ing with even moderately large models or data sets, this sort
of evaluation is impractical.

To remedy this gap, we adapt the offline version of
LiRA for unlearning in our benchmarking framework.
‘Offline’ means that no new shadow models need to be
trained for new membership queries. This setup only re-
quires a single unlearning run, making this attack much
more feasible - especially in the iterative unlearning setting
(Section 2.3). While it is not as strong an attack as online-
LiRA, and therefore worse for privacy estimation, it is much
stronger than the basic Logistic Regression MIA, so we
recommend its use in cases where the online-LiRA attack
is computationally infeasible.

While MIAs are often just used to rank unlearning algo-
rithms, some approaches have been made to more directly
estimate DP privacy parameters (ϵ, δ). The 2023 NeurIPS
Machine Unlearning Competition [19] based their metric on
group-level DP, a stricter formulation of DP which considers
datasets differing by up to k examples, which makes sense
for unlearning as requests are likely to be batched. In
fact, the competition metric used estimates of worst-case
MIA performance to estimate ϵ for each example in Df ,
producing an entire distribution of privacy levels. While
[19] averaged the per-example estimates of ϵ into a single
score, we re-implement the per-example ϵ estimation to
preserve the full distribution of privacy levels, which we
find to be a valuable point of comparison.

2.2. Update Leakage

While intuitively one may think that unlearning can
only result in positive outcomes with respect to the privacy
of forgotten data, [5] demonstrate that, in regards to an
attacker who already has the outputs of the base model,
the act of unlearning may result in worse privacy than not
unlearning at all. The idea of model update-leakage - where
an adversary uses the difference in behaviors of two models
as an attack vector - has been previously studied in iterative
learning scenarios [12], [20], and [5] demonstrate that the
issue is still relevant in the unlearning setting. [5] find that
update-leakages are often stronger than standard attacks for
both fully retrained and unlearned models, although the
effect is weaker for the latter. In this regard unlearning may
actually be preferential to retraining in terms of privacy, as it
could find an optimal middle ground between the two types
of attacks. We therefore evaluate unlearning algorithms on
update-leakage attacks to:

1) Demonstrate an additional benefit of unlearning
over retraining from scratch by showing less sus-
ceptibility to update-leakage attacks.

2) Ensure a ‘do no harm’ criteria is satisfied by show-
ing an update-leakage attack does no worse than an
attack on the base model.

To the best of our knowledge (through review of citations
of [5]), the only unlearning algorithm benchmarked on an



update-leakage attack, besides SISA in [5], is GraphEraser
[21], an unlearning algorithm for graph data. We implement
and run evaluations on the update-leak attack from [5],
which works very similarly to online-LiRA, except uses
outputs from both the base and the unlearned models.

2.3. Iterative Unlearning

The final piece of a comprehensive unlearning evaluation
is studying how unlearning affects a model after repeated
applications of an algorithm. If unlearning can truly be
a replacement for full retraining, and deployers of ML
models fully comply with data removal requests and destroy
the base model trained on Df , then unlearning must be
iteratively applied to unlearned models. Few papers consider
this set-up, and those that do are usually special cases where
unlearning can be performed in closed form or with convex
optimization [10] [11] [3]. Surprisingly, we were able to
locate only one unlearning paper that evaluates iterative test
accuracy [22]. We have not encountered an iterative test
accuracy evaluation in the vision domain.

In the iterative setting, it is required at each iteration
to both ensure effective forgetting and, crucially, maintain
model performance, as performance degradation tends to
accumulate over time. Single forget set evaluations sim-
ply do not capture this important dimension of real-world
performance. It should be noted that auditing privacy over
many iterations may be prohibitively expensive, especially
for attacks like online-LiRA that require hundreds of un-
learning runs per iteration - so in this setting, our offline-
LiRA implementation might be preferred. In either case,
test-set performance can be computed directly after each
unlearning iteration, so we advocate for its inclusion in
any unlearning evaluation. We implement an iterative un-
learning pipeline that handles the required dataset splitting
and model management to allow for extending existing
unlearning evaluations to the iterative setting – we focus
primarily on test-set accuracy.

2.3.1. Preliminary Results. We conduct a preliminary eval-
uation of various unlearning algorithms on the CIFAR10
dataset [23] with a ResNet18 architecture [24], which was
chosen due to its small computational footprint. We evaluate
the following baselines and unlearning algorithms: Identity
(baseline), Retrain (baseline), Finetune (baseline, finetune on
Dr), RandLabel [8], BadTeach [14], SCRUB+R [16], SSD
[6], and SSD+FT (SSD followed by Finetune).

For each unlearning iteration, Df is constructed by
sampling 1% of Dtrain, conditioned on samples that have
not already been forgotten in prior iterations. The sequence
of forget sets is identical across all experiments. The Identity
algorithm is a control where no unlearning is applied. The
base model used to test each unlearning algorithm is a
ResNet18 model trained for 30 epochs. The hyperparameters
for each unlearning algorithm were discovered by running
100 trials with the Optuna framework [25], optimized for
minimizing |0.5−MIA Accuracy| (aiming for the MIA to do
no better than random) and maximizing validation accuracy.
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Figure 1. Iterative unlearning results for ResNet18 on CIFAR10.

In this iterative setting we find notable discrepancies in
test accuracy amongst the various algorithms. As shown in
Figure 1, BadTeach rapidly degrades model performance
to random guessing, while other algorithms are able to
maintain or in some cases increase accuracy over time.
While these results only analyze test-set accuracy, and do
not characterize either privacy or runtime, they demonstrate
an important facet that we have observed to be considered
in only one other unlearning evaluation [22].

3. Discussion

Overall, our initial tests show mixed results across un-
learning algorithms, emphasizing the need for a holistic
evaluation across all three major requirements (test accuracy,
runtime, and privacy). For our privacy evaluations, we find
that success in defending the basic Logistic Regression MIA,
utilized in most unlearning evaluations, does not necessar-
ily translate to success under stronger MIAs. In terms of
update-leakage attacks, we find that only some of the tested
algorithms perform better than retraining, but none have yet
been found to leak extra information. As we saw in Section
2.3.1, there are considerable discrepancies in test accuracy
in the iterative setting. We also find that hyperparameter
tuning is a key aspect of algorithm performance, and dif-
ferent hyperparameters trade off performance and privacy
differently. If optimizing hyperparameters for privacy with
an expensive attack like online-LiRA the tuning process
can be extremely slow, potentially presenting a significant
barrier to real-world adoption.

4. Future Work

We will run evaluations on a variety of model architec-
tures and datasets to provide a rigorous presentation of the
state of the field. Our code base will be open sourced to
provide an easy-to-use toolkit for designing and evaluating
machine unlearning algorithms.
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