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Abstract—This paper investigates one type of social engineering
scam, where unsuspecting users inadvertently consent to hid-
den financial obligations by performing routine online actions,
such as making a purchase. Terms and conditions, often dense
and overlooked, can be a vehicle for these scams, embedding
deceptive or confusing terms to manipulate users. This paper
highlights the suitability of a deep learning approach to address
the wordplay and nuanced language used in these terms.
We propose the design of TermLens, a browser plugin that
leverages Large Language Models (LLMs) to detect obscured
financial terms hidden within the fine print, a task that
traditional security checks often miss. We show the feasibility
of Termlens detecting obscured financial terms through a case
study. We also discuss challenges and future plans.

1. Introduction and Background

In the United States alone, the Federal Trade Commis-
sion (FTC) reported a $5.8 billion financial loss due to
fraud in 2021 [15]. Online scams and fraud can take many
forms. One new form of social engineering scam that is
increasingly pervasive relies on the typical behavior of users
on the Internet: agreeing to a website’s terms and conditions
as a result of some action on a website, such as clicking a
button to purchase an item.

Figure 1 shows a concrete real-world example—a web-
site that claims to sell smartwatches for fitness (product
name redacted to maintain neutrality and avoid potential
bias). However, the catch comes when the user actually
makes a purchase. Making a purchase causes the unwitting
user to also agree to a subscription to a fitness app that
charges the user a recurring monthly fee of $70, which
per the website’s terms and conditions, will be charged to
the user 6 days later as shown in Figure 1. The screenshot
in Figure 2 demonstrates a complaint by a victim of such a
website.

Such scams exist both as fly-by-night websites that ad-
vertise themselves through social media and then disappear
after scamming users and as more persistent websites on
the Internet. Typically, the user is not even required to
read the terms and conditions prior to the purchase of
an item but is implicitly agreeing to additional unexpected

financial obligations by simply completing the purchase. A
user may have difficulty recovering the money lost, even
upon disputing the additional charges with a credit card
company [1], [2], because the website operator can simply
state that the user agreed to the website’s terms and con-
ditions by making the purchase—not reading the terms and
conditions was user’s fault. These websites present not only
financial dangers but also risks to privacy, as users expose
sensitive personal information, including credit card details
and contact information.

In addition to what we term “hidden charges scams,”
which involve undisclosed subscription terms leading to fi-
nancial detriment for users, there are other concerning cases
of obscured financial terms. For example, in the terms of
use of Celsius [10], a now-bankrupt cryptocurrency lending
company, it is stated:

“In the event that you, Celsius or any Third
Party Custodian becomes subject to an insolvency
proceeding, it is unclear how your Digital As-
sets would be treated and what rights you would
have to such Digital Assets [...] You explicitly
understand and acknowledge that the treatment of
Digital Assets in the event of such an insolvency
proceeding is unsettled, not guaranteed, and may
result in [...] you being treated as an unsecured
creditor and/or the total loss of any and all Digital
Assets reflected in your Celsius Account, including
those in a Custody Wallet.”

These terms imply that, in the event of bankruptcy,
users could be treated as unsecured creditors of Celsius,
meaning that they might not recover their digital invest-
ments. Later in court, a judge ruled that Celsius owned their
users’ money [29] based on these terms, highlighting the
significant financial risks of not fully understanding terms
and conditions.

As in any good scam, these agreements with obscured
financial terms leverage dark patterns [8], [13], [24], [25],
manipulating users for profit. Existing approaches to detect
scams and dark patterns leverage word occurrences or use
website features that potentially indicate a scam such as
indicative images, link length, certificates, website structure,
and redirection mechanism [5], [6], [14], [18], [31], [42].



Nevertheless, these approaches fall short as they typically
overlook the terms and conditions, which are not covered
by the standard features selected. For the examples we
found for hidden charges scams, the websites often resemble
legitimate small business websites, except that their terms
and conditions obligate users to financial terms that are not
disclosed explicitly otherwise. Moreover, the nuanced word-
play nature of obscured terms necessitates a comprehensive
understanding of the implications behind each term, further
complicating detection efforts.

The prevalence of such deceptive practices and the po-
tential harm they can inflict underlines the importance of our
research. In this extended abstract, we introduce an obscured
financial term detection system leveraging Large Language
Models (LLMs).

Figure 1. Hidden Charges Websites Example: (1)-(3): Example of hidden
charges from a real-world website selling smartwatches; (4): Its terms and
conditions contain a description of charges of an automatic subscription to
the fitness app, but the website’s purchase screens do not require the user
to have reviewed those future subscription charges prior to the purchase of
the smartwatch.

2. Method

We envisage TermLens to be deployed as a browser
plugin that evaluates terms and conditions when a user is
on a payment page for a purchase or a service. Designing

Figure 2. A victim complaint of a potential hidden charges website [4].
The hidden charges occur days after the purchase.
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Figure 3. TermLens pipeline— 1⃝ The user interface (chrome plugin) that
sends back the URL to the backend; 2⃝ the server-side components that
process data, including the crawling of terms pages, classification of
financial terms, and the generation of alerts based on the analysis; 3⃝ The
warning displayed on the frontend, warning the user of potentially unfair
financial terms detected on a website.

TermLens presents challenges since the terms and conditions
need to be analyzed in the context of the payment page
that the user is visiting to reduce false positives, e.g., terms
already disclosed during the purchase process. We describe
our prototype design and early results.

2.1. Prototype Plugin Design

When a user turns on TermLens on a webpage, the
frontend sends the current URL to its backend to find
potential terms and conditions associated with transactions
on that page. As shown in Figure 3, the backend does a
depth-first search to collect the website’s term page(s). A
financial term classifier then identifies terms with financial
implications.

Concurrently, a payment page classifier assesses if the
user is currently on a payment page. Analyzing the context
presented by the payment page is important to determine
whether the financial terms in the terms and conditions
are disclosed or obscured. Therefore, when a user is on a
payment page, TermLens also extracts product and financial
information directly from that page. The alert generator
compares the extracted information with that from the terms
and conditions pages and identifies any financial obligations
that are not clearly stated on the main website. The alert
generator reports any obscured obligations to the user (see
the last box on Figure 3).

The advent of Language Models (LMs) such as GPT-
4 [3], BERT [12], RoBERTa [22], and LLaMa [35] has
transformed text analysis in tools like TermLens. TermLens
employs the GPT-4 API for tasks such as payment page
classification, financial term identification, and alert gener-
ation. We plan to expand the range of LMs available to
users, allowing customization based on accuracy, speed, and
privacy considerations. As GPT-4 excels in most natural lan-
guage processing tasks [3], providing a variety of LMs will
require creating specific datasets for fine-tuning, particularly
for analyzing terms and conditions (see §4).
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2.2. Case Studies

Using the website depicted in Figure 1 as a case study,
we extract the following product information from the
payment page (context) and financial terms from T&Cs:

Extracted Product and Financial Terms
"Product": [{

"Name": "[Redacted] Smartwatch",
"Type": "Wearable Technology",
"Category": "Electronics",
"Price": "$0",
"Shipping Charge":"$7.85",
...

}]
"Financial Terms":
[{
"Shipping Charge:": "You will be charged $7.85

for the shipping and handling of your free
smartwatch.",

↪→

↪→

"Subscription Fee": "Also, as part of the
promotion, you will receive a subscription
to the [Redacted] Fitness App for only
$70.",

↪→

↪→

↪→

"Flexpay Option Enrollment": "Automatic
enrollment in Flexpay, splitting the
monthly payment into two installments of
$49.99 and $19.99, charged 7 days apart.",

↪→

↪→

↪→

"Refund Policy": "Customers may request a
refund within 60 days of purchase if not
content with the product.",

↪→

↪→

"Restocking and Refurbishing Fee": "There is a
$24 restocking and refurbishing fee per
unit for returned merchandise."

↪→

↪→

...
}]

The alert generator detects obscured terms, such as ”Sub-
scription Fee” and ”Restocking and Refurbishing Fee”, as
shown in Figure 3. These terms are displayed via a popup
from the TermLens plugin, effectively alerting them to these
obscured financial obligations including the subscription to
a fitness app that is not shown on the original website.

In another case study involving Celsius’ [29] terms
and conditions, TermLens identified 15 terms, including the
dubious term discussed in §1, all characterized by complex
legal language, with 13 presented in all caps.

3. Related Work

Dark patterns. Dark patterns, intentionally deceptive
user interface designs, are widespread in websites, apps,
and products, as detailed by Mathur et al. who found 1,818
instances across 11K shopping sites, encompassing 15 types
of such patterns [24]. Recent research delves into the psy-
chological, ethical, and cognitive impacts of dark patterns on
user decision-making [25], [27], [28], [37], along with their
legal implications and potential regulation and prevention
strategies [16], [23]. Our research contributes to this field by
identifying a novel category of dark pattern: the concealment
of obscured terms with significant financial consequences
within terms and conditions.

(Social engineering) scam detection. Scam website
detection methodology largely relies on two categories of

features: external features (URLs, certificates, and website
logos) [7], [14], [26], [30], [31], [36], [43] and website
content features (page content e.g. visual structures, HTML
structures, scripts, and hyperlinks) [17], [18], [40], [41].
These features, chosen based on domain knowledge and
used to build rule-based or machine learning classifiers, have
limitations—attackers can evade detection by altering these
features. As the Figure 1 case shows, traditional detection
methods can miss scams, so we suggest using NLP to better
understand website services to detect social engineering
scam that resides in terms and conditions.

Legal analysis of terms and conditions. Research on
using NLP for analyzing legal documents such as online
contracts is limited [9], [19], [20], [21]. Braun et al. [9]
applied the HuggingFace transformers model [39] to study
terms of service of German online stores under EU law,
creating a dataset of 50 annotated documents. This task is
challenging due to the legal expertise required, making the
development of such datasets time-intensive and complex.

4. Future Plans and Conclusion

4.1. Open Issues

Tackling the detection of obscured financial terms in-
volves the following key challenges: (1) Generalizability:
While our case study shows promising results, scaling the
detection system to a variety of obscured terms remains a
significant challenge. (2) Robustness: Enhancing the effec-
tive against adversarial attacks is important as attackers can
modify their terms to evade detection systems. (3) Readabil-
ity: In the Celsius case study, some obscured financial terms
are long paragraphs with legal jargon written in all caps.
Enhancing the readability of terms and conditions to make
them understandable by non-specialists is also an important
challenge. Furthermore, a metric to rank the importance of
obscured financial terms is needed since alerting 100 such
terms defeats the purpose of TermLens. Future efforts could
explore methods to simplify and summarize legal language
without losing its original meaning and address the potential
hallucination and explainability issue that arises with it.

In the future, additional security measures on online
agreements can be included to alert users about potential
scams. For example, employing Named Entity Recognition
(NER) techniques to extract company contact details and
cross-referencing them with auxiliary datasets could verify
the legitimacy of the business, providing a more comprehen-
sive defense against scams by analyzing online agreements
with deep learning.

5. Future Plans

To the best of our knowledge, there is not an open-
source dataset available that specifically covers terms and
conditions in English. To address this gap, we have so
far gathered a dataset of 96 websites from varied sources.
We sourced legitimate e-commerce and shopping sites from
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SimilarWeb [34] and cryptocurrency sites from Coinmar-
ket [11]. Malicious sites were manually collected from
scam-reporting platforms like ScammerInfo [33], ScamAd-
visor [32], and ScamWatcher [38] over three months. For
future work, we will expand this dataset and create a
comprehensive annotation scheme for identifying obscured
obligation terms. We aim to fine-tune language models such
as BERT to provide alternatives for users who want to opt
out of commercial APIs for privacy or other concerns. We
will evaluate the system on a separate evaluation dataset,
as well as evaluate the effectiveness of TermLens through a
user study.
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