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Abstract— This paper reports results from a set of experiments 
that evaluate an insider threat detection prototype on its ability 
to detect scenarios that have not previously been seen or 
contemplated by the developers of the system. We show the 
ability to detect a large variety of insider threat scenario 
instances imbedded in real data with no prior knowledge of 
what scenarios are present or when they occur. We report 
results of an ensemble-based, unsupervised technique for 
detecting potential insider threat instances over eight months 
of real monitored computer usage activity augmented with 
independently developed, unknown but realistic, insider threat 
scenarios that robustly achieves results within 5% of the best 
individual detectors identified after the fact. We explore 
factors that contribute to the success of the ensemble method, 
such as the number and variety of unsupervised detectors and 
the use of prior knowledge encoded in scenario-based detectors 
designed for known activity patterns. We report results over 
the entire period of the ensemble approach and of ablation 
experiments that remove the scenario-based detectors. 

Keywords -- anomaly detection; insider threat; unsupervised 
ensembles; experimental case study 

I. INTRODUCTION 
Because of the adversarial nature of the insider threat 

domain, malicious insiders can be expected to attempt to 
hide their actions by employing techniques that they believe 
will evade detection, at least until after they have achieved 
their objective. As in other adversarial domains, a useful 
insider threat detection system must be able to detect not 
only instances of known, suspected, or hypothesized insider 
threat scenarios, but also instances of previously unseen and 
novel insider threat scenarios [9]. This paper reports the 
results of experiments to detect instances of insider threat 
scenarios inserted into a real database from monitored 
activity on users’ computers seeded with independently-
developed and inserted insider threat activities superposed 
on the activities of real users1. 

Insider threat detection is more difficult than detection in 
other adversarial domains such as money laundering, stock 
fraud, and counter-terrorism not only because of the 
possibility that insiders are more aware of an organization’s 
information protection policies and procedures than 
outsiders might be, but also, and far more important, 
because malicious insider activity is typically only a small 

                                                           
1 The database is from a large corporation whose identity 

is not allowed to be disclosed publicly. All data are used 
with permission in a closed facility subject to all necessary 
privacy protections. 

fraction of the overall activities performed by user(s) using 
their organization’s information systems. Insiders not only 
have authorized access to their organization’s information 
systems, but they also have legitimate functions to perform 
that require use of these information systems – and if they 
did not perform these required functions, they would be 
easily detected not because of their malicious activities but 
because of the absence of their legitimate activities, i.e., 
because they would not be doing their jobs. Insiders who 
gradually adopt malicious activities can create baselines of 
apparently normal activity that reduces their chances of 
being detected by anomaly detection methods. And insiders 
who wish to conduct long-term or repeated malicious 
activities must retain their positions in their organization for 
the duration of the time during which they will be 
conducting such malicious activities. 

This paper extends the state-of-the-art in validated results 
on real data for insider threat detection reported in references 
[9] and [12] by presenting: 
• an unsupervised ensemble-based anomaly-detection 

technique whose performance is close to that of the best 
of a large diverse set of anomaly detectors over many 
months of data and multiple scenario types 

• the same unsupervised ensemble-based anomaly 
detection technique outperforms detectors having 
features designed specifically for individual suspected 
scenarios 

• initial comparisons of the best performing anomaly 
detectors with those included in the ensembles over 
multiple months of data and multiple scenario types 

• composition of ensemble-based anomaly detectors with 
and without scenario-focused detectors 

• the ability to detect starting points for detection of 
complex insider threat scenarios involving unknown 
groups of actors collaborating over days or weeks. 

Experiments and results included in this paper cover eight 
months of data from September 2012 through April 2013. 

II. BACKGROUND: DATA, SCENARIOS, DETECTORS, AND 
EXPERIMENTAL METHODOLOGY 

A. Test Data and Red Team Scenarios 
Test data for experimentation consists of a database of 

5,500 users. The data collection system, SureView 
(reference [11]), records all user behaviors for specified 
activities, such as logon/logoff, email, file actions, instant 
message, printer, process, and URL events for a calendar 
month. On average, there are 1000 events per user per active 
day. Data are made available on a monthly basis. The data 
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provider anonymizes all user identification (ID) and other 
personally identifiable information (PII) in the data set and 
hashes all information related to user events to a randomly-

generated but internally-consistent designator.  
Separately from the data collection process, an 

independent evaluator acting as a Red Team develops 
scenarios that model known documented insider threats 
(reference [2]), which are text-based use cases that 
encapsulate specific insider threat actions. The scenarios 
reflect the Red Team’s field experience in the public and 
private sectors concerning various types of actual threat 
behaviors [2, 7]. The Red Team develops a distinct scenario 
description around a documented behavior type (e.g., a 
disgruntled employee who sells protected information). 
Having specified the scenario they identify real users whose 
behavior exhibits characteristics of the actors in the 
scenario. The Red Team then creates synthetic observables 
for these insiders in a given data month, and superposes the 
inserted observables on the corresponding, real observations 
of those users. The Red Team inserts up to five scenarios in 
a data month. The instantiation of a scenario in the test data 
is called an instance. The Red Team may modify the 
number of malicious actors and their online behaviors to 

create scenario variants and enable the production of 
multiple instances of a given scenario. There are 27 total 
instances of Red Team scenarios corresponding to the 13 

distinct scenarios listed in Table 1. In the context of a given 
scenario, and for that scenario only, the existing user 
becomes the “malicious insider”; once the scenario 
concludes (i.e., the user day of the last inserted observable), 
the existing user ID is no longer a potential Red Team actor 
[4] 

The Red Team, in an effort to avoid evaluation bias, 
designs its scenarios without in-depth, technical knowledge 
of our of detection methods. Likewise, we do not review 
scenario specifics nor train our detectors on the test data so 
as to avoid over-fitting to a particular signal. Further, note 
that Table 1 contains scenario descriptions provided by the 
Red Team after the fact for purposes of evaluating the 
performance of our methods; the Red Team is continually 
adding new scenarios as the research is ongoing. Neither the 
Red Team nor our team claims that the set of scenarios 
included in Table 1 are a complete set of real insider threat 
scenarios. 

Scenario Name (No. of 
Instances) 

Scenario Synopsis 
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B. Detectors 
Our approach builds on the techniques described in 

references [9] and [12]. We employ a large number of 
diverse detectors of three main types: (1) indicator-based, 
(2) anomaly-based, and (3) scenario-based. Indicator-based 
detectors use statistical outlier techniques based on single 
features. Anomaly detectors employ a set of complex 
algorithms which focus on different aspects of the data – 
e.g., structural features, semantic features, temporal features 
– and search through the feature space to identify potential 
anomalies. Features typically consist of observed actions, 
aggregates, and ratios, such as URLs accessed by a user, the 
number of print jobs by a user, the ratio of the number of 
print jobs by a user to his/her average over some time 
period, or the ratio of the number of files copied to 
removable media compared to the number of files copied to 
the hard drive. Graphical features such as the email and text-
message communication graphs are also employed. 
Scenario-based detectors are inspired by the scenarios 
described in reference [1], but are developed independently 
of the Red Team scenario descriptions and inserts. 

A particular detector specification incorporates, in 

addition to the algorithm, a set of features, a baseline 
population for comparison (i.e., a peer group), a time period 
for the baseline activity, a time granularity for potential 
detection, and other relevant aspects. Baselines for 
comparison may be cross-sectional (i.e., compare a user’s 
actions over a particular time period with that of other users 
in a “peer group” over some time comparable time period) 

or temporal (i.e., compare a user with his/her own behavior 
over different time periods), or both. 

Indicator and scenario-based detectors are described in 
references [9] and [12]; the remainder of this section 
provides more detail about additional scenario-based 
detectors that are not described in these references. 
Scenario-based detectors consist of a combination of 
indicator-based and anomaly-based detectors and classifiers 
in a specified workflow, structured to reflect a hypothesized 
sequence of real world actions that are likely to discriminate 
between the scenario of interest and other, mostly 
legitimate, actions. In addition to the textual description of 
these scenario-based detectors, we include their 
specification using the Anomaly Detection Language [ADL] 
that was introduced in these references. The ADL provides a 
construct by which an analyst may understand better what 
constitutes normal insider behavior for a given entity extent, 
peer group (i.e., baseline population), or temporal extent. 
Table 2 describes the scenario-based detectors used in this 
paper and maps each to RT scenarios to which we believe 
they best correspond. Note that there are no Red Team 
scenarios corresponding to some of our detectors; this is 

because we do not know what scenarios the Red Team will 
choose to model and insert, so we constructed and applied a 
broad set of detectors to cover as many envisioned scenarios 
as possible, while recognizing that this set will not cover all 
possible IT scenarios. 

Scenario-based detectors not described in references [9] 
and [12] include Fraudster and Saboteur. Distinguishing 
characteristics of the Fraudster scenario is that of insider in 
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(1) a non-technical role, (2) who is under a great deal of 
personal stress and commits nefarious actions but (4) wishes 
to minimize detectable signal and (4) does not intend to 
leave the organization immediately. These characteristics 
are important to the Fraudster because continued access to 
protected information, systems, or privileges are critical to 
the Fraudster’s ultimate goals; having his activities 
discovered or abruptly leave the organization would cease 
his fraudulent activity and source of secondary income. The 
initial scenario definition depicts the Fraudster as someone 
in a non-technical role, such a program management or 
support staff, but the scenario could be re-configured to 
identify individuals in more technical roles (i.e., scientists 
and engineers). Figure 1 below expresses the Fraudster 
scenario in the ADL.  

The Fraudster scenario uses 
login, instant message/text 
from the corporate instant 
message service, processes run 
by the user, file events, and 
URL events as the primary 
inputs. The detectors use 
process, file, and URL features 
to classify the user as someone 
in either a technical or non-
technical role, comparing the 
user to his LDAP group (for 
files and processes) and the 
user’s browsing patterns to his 
group by shared URL. The 
detector also establishes the 
baseline for the user’s general 
work computer activity using 
login/logout events and looks 
for increases in anxiousness in 

the user’s work day patterns 
(e.g., repeated early 
logins/late logouts in the 
same day) or messages. It 
then looks for anomalies in 
the user’s email and 
browsing patterns (to 
include webmail), unusual 
behavior with respect to file, 
and process events with 
respect to the user’s LDAP 
group and group with shared 
URLs.  

 The Saboteur scenario 
looks for a (1) user who 
performs a technical role 
and (2) displays either open 
hostility toward the 
organization or whose 
internal communication 
graph is increasingly and 
drastically shrinking (3) who 

abruptly destroys, disrupts, or denies access to protected 
information or systems.  

The Saboteur scenario looks for personnel who perform 
technical actions (e.g., a system administrator or someone 
who acts like a system administrator) whose behavior shows 
unusualness with respect to access to high-risk files (e.g., 
proprietary information, corporate human resources 
records), processes (e.g., attempting to disable the 
monitoring agent, altering log files), and whose 
communication graph fits with that of a system 
administrator. Figure 2 depicts the features, extents, and 
algorithm types included in this scenario.  

 
 

Figure 1: The Fraudster Scenario

Figure 2: The Saboteur Scenario 
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C. Experimental Methodology  
Section A describes the data environment in which our 

prototype operates. Instances of Red Team scenarios are 
limited to one month duration and inserted as targets each 
calendar month.  (CERT has found that 2/3 of known insider 
threat scenarios evolve over less than one month.) This 
allows for consistent, independent experiments. We have 
leveraged the variety of inserted scenarios within this 
uniform data environment to demonstrate robustness of our 
detection methods. From month to month, within a uniform 
data environment, very different inserted scenarios are 
detected with consistent accuracy. 

The experiments reported here measure detection 
performance on user-day entity extents – a data structure 
derived from the collection of activities of one user over one 
day. (We limit entity extents to this size for these 
experiments, although our prototype is capable of 
representing many others.) Each month, several instances of 
a few scenarios are inserted, each instance comprising 
several user-days containing inserted activities as well as 
actual activities by the selected users. We consider a hit to be 
the ranking of such a user-day above some threshold, and 

can measure the hit-false alarm tradeoffs using well known 
measures of sensitivity or recall and false positive rate or 
fall-out.  

Metrics were chosen to measure both detection accuracy 
of the individual algorithms and their contribution to the 
overall task of providing leads to an analyst. For the former, 
we compute the Receiver Operator Characteristic (ROC) 
curve and area under the curve (AUC) as well as the 
Approximate Lift Curve and Average Lift. ROCs are 
generally used to show detection/classification tradeoffs over 
a set of uniform, independent trials.  We reason that, while 
users and their activities may not fit this condition, our 
transformation to “entity extents” does. AUC estimates 
discrimination, or the probability that a randomly chosen 
positive entity extent will be ranked higher than a randomly 
chosen negative one. Cost estimates of a system utilizing 
these decisions can be readily made. Lift metrics, such as 
Average Lift estimate the improvement in target density 
delivered to later stages of a multi-stage detection process.  
In addition, we compute the number of positive hits ranked 
in the top k scored entity extents (for k = 5, 10, 50, 100, 500, 
etc.) and in the top p% of all scored entity extents  (for p = 

Month Ensemble 
AUC Best Detector 

Best 
Detector 

AUC 

Ratio 
(Ensemble/ 

Best 
Detector ) 

RT Scenario(s) 

Sep-12 0.8821 RPAD up feature 
normalization 0.9703 90.94% Insider Startup (3x) 

Circumventing Sureview 

Oct-12 0.8878 RPAD up feature 
normalization 0.9804 90.59% 

Insider Startup (2x)  
Anomalous Encryption 
Layoff Logic Bomb 

Nov-12 0.7212 
RDE alpha version; 
raw feature set; 10k 

training 
0.7469 96.56% 

Anomalous Encryption 
Masquerading 2 (2x) 
Layoff Logic Bomb 

Dec-12 0.8396 

GMM Density 
Estimation via 
unusualness of 

counts, vs company 

0.8676 96.77% 

Anomalous Encryption 
Layoff Logic Bomb 
Outsourcer's Apprentice 

Jan-13 0.9014 RIDE using Raw 
Counts 0.9014 100.00% 

Outsourcer's Apprentice 
Survivor's Burden 
Hiding Undue Affluence 

Feb-13 0.7637 
Ensemble GMM 

via unusualness of 
counts, vs company 

0.7792 98.01% 
Survivor's Burden 
Bona Fides 
Manning Up 

Mar-13 0.8734 

Ensemble GMM 
Density Estimation 
via unusualness of 

counts, vs company 

0.8903 98.10% 

Manning Up Redux 
Hiding Undue Affluence 
Survivor's Burden 

Apr-13 0.8862 RIDE using Raw 
Counts 0.8862 100.00% 

Survivor's Burden 
Circumventing Sureview  
Selling Login Credentials 
Indecent RFP 

Table 3: Ensemble and Best Detector Results by Month 
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.01, .05, .1, .5, 1, 5, etc.).  The latter allow us to estimate 
anticipated detection success for fixed analyst workloads. 

III. UNSUPERVISED ENSEMBLE-BASED ANOMALY 
DETECTION 

A. Methods 
Having multiple anomaly detection results for the same 

data naturally leads to the need to combine those results to 
take advantage of the distinct perspectives embodied in 
different detectors. Further, an analyst responsible for insider 
threat detection desires a single ranked list rather than many 
different result sets from different detectors whose detailed 
operation he/she may not fully understand. Anomaly detector 
ensembles combine the results (i.e., scores) from multiple 
detectors in a way that is analogous to how classifier 
ensembles combine predictions from multiple classifiers [3]. 

Because when building ensembles we assume that we do 
not have access to ground truth, it is not known whether one 
of the individual detectors always performs well; in fact, in 
our experiments where we have ground truth we found that 
the best detector varied across data sets. Therefore, one goal 
of ensemble building is to perform as well as the best 
detector. It is also possible for an ensemble to outperform all 
of the individual detectors, which is analogous to how some 
classifier ensembles are able to outperform their individual 
classifiers. 

Selecting an approach for building ensembles depends 
upon the types of detectors that are used. If all the detectors 
share an underlying model, then the ensemble approach can 
leverage that commonality to improve performance, e.g., the 
method reported in [6] varies the features used as input to a 
single anomaly detection model to build an ensemble. 
Another way of leveraging a common model is to use the 

same input features, but alter hyperparameters, which 
determine how the model is built in each detector [6, 3].  

If, however, the detectors do not share a common model 
then the ensemble-building approach may only assume that 
the scores from the detectors are given as input, i.e., the 
features used as input to detectors and the hyperparameters 
of the detectors are unknown. Because our individual 
detectors employ a variety of models, we chose an approach 
that is consistent with this setting [8]. The following 
paragraphs describe the approach.   

Some approaches for ensemble building, including the 
method we used, employ the following two high-level 
heuristics. First, if a consensus about which points are most 
anomalous can be drawn from the individual detectors, then 
that consensus should be preserved in the final ensemble. 
Second, because each individual detector is subject to 
unavoidable biases stemming from the choice of model, 
choice of input features, hyperparameter settings, etc., the 
ensemble should prefer combinations of results from 
detectors with uncorrelated biases.  

These heuristics are implemented in two distinct phases 
in this method. In the first phase they extract a consensus 
across all detectors from the union of the top k most-
anomalous points from each detector. All points in this union 
are given a score value of 1 and all others are given a score 
of 0. We chose a value for k for each dataset that included 
the top 1% of the points. The method then initializes the 
ensemble with scores from the detector that is most 
correlated with the consensus. The correlation between 
detectors and the consensus is found by viewing each as n-
length vectors of scores, where there are n points in the 
dataset, and then using a simple correlation metric to 
compare the vectors. We used the Pearson’s r correlation 
metric for this. 
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Table 4: Comparison of Scenario-Based Detectors Performance to Ensemble Performance, by Red Team Scenario 
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In the second phase, the method greedily selects 
candidate detectors to combine with the initial ensemble by 
preferring the detectors that are least correlated with the 
current ensemble. The same correlation metric used before is 
used again here. The candidate detector’s scores are 
combined with the current ensemble using a point-wise 
combination function. For this the method uses the average 
over scores for each point; we also experimented with other 
functions including the maximum of scores. The algorithm 
proceeds to accept a candidate detector if the resulting 
ensemble is no less correlated with the consensus than the 
previous ensemble; if it is, then the candidate detector is 
discarded. This phase continues until all detectors are either 
accepted or discarded.  

B. Results 
Our initial experiments evaluated our detection results 

based on our ability to detect user-days with red-team 
inserted activity. We used a wide variety of detectors, 
described in reference [9], and the ensemble technique 
described above. Results are summarized in Table 3. For 
each month, we report the area under the ROC curve for our 
best detectors, for the ensemble, and for the detectors that 
correspond most closely to the inserted scenarios. The AUCs 
reflect the ability of the detectors to find all of the user-days 
of the union of all scenarios present in the month. These 
results illustrate how the unsupervised ensemble-based 
anomaly-detection technique had performance that is close to 
that of the best of the individual anomaly detectors. The 
AUC for the ensemble technique was consistently above 
90% of the AUC of the best detector and frequently 
approached 100%. Interestingly, the ensemble-based 
technique appeared to have results that were similar across 
datasets, while the performance of the best detector varied 
widely on the same datasets. Figures 3 through 10 illustrate 
the differences in performance between the ensemble and the 
best-performing detector for each month.  

Additionally, we see that the ensemble generally out-
performed the scenario-focused detectors, including the 
scenario-focused detectors that we determined later to have 
been a likely fit to the red team scenario that was actually 

inserted. In table 4 we see that the ensemble consistently 
outperforms the most relevant scenario-focused detector; in 
two of the months, the ensemble exceeds the scenario-
focused detectors by 40%. The table reports results on 
months where the comparison was possible, not to select 
only months where the ensemble performed well. Figures 11 
through 14 depict the performance of the ensemble method 
compared to the corresponding scenario-focused detectors 
for these months.  

Table 5 identifies the sets of detectors selected by the 
ensemble each month and compares them to the best 
performing detectors for that month. The best-performing 
detector was included in the ensemble in only one of the 
eight months of data. And because in that month – Nov-2012 
– there are six detectors accepted in the ensemble, and all 
ensembles comprise equally-weighted detectors, the best 
detector is never given more than one sixth of the weight in 
this ensemble result. Therefore, the ensemble technique is 
able to achieve comparable performance to the best detector 
by combining detectors and with those detectors generally 
excluding the best-performing detector. Recall that the 
heuristics followed by the ensemble technique favor 
detectors that are either most close to the consensus or those 
that are able to add diversity to the ensemble (least 
correlation with the ensemble) without reducing correlation 
with the consensus. Thus in these data sets the best-
performing detector generally disagrees with the consensus 
from other detectors, yet a combination of those other 
detectors can be built automatically that performs nearly as 
well as that best detector. 

In five out of eight months at least one of the accepted 
detectors used an underlying model that was shared with the 
best-performing detector. For example, in Dec-12 the best 
performing algorithm is GMM Density Estimation via 
unusualness of counts vs company, which shares the same 
underlying model – Gaussian mixture models – as one of the 
accepted detectors, GMM Density Estimation using Raw 
Counts; the difference between the detectors is the input 
features used by the two detectors. 

 
Month Ensemble Selection Best detector 

Sep-12 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileCreationCnt distFilesCnt 0 
GFADD fixedEventCnt netEventCnt 0 
GFADD remEventCnt netEventCnt 8 
GMM Density Estimation using Raw Counts 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

RPAD up feature normalization 

278278283



Oct-12 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileCreationCnt distFilesCnt 0 
GFADD copiesToRem copiesFromRem 8 
GFADD fixedEventCnt netEventCnt 0 
GFADD fixedEventCnt netEventCnt 8 
GFADD remEventCnt netEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

RPAD up feature normalization 

Nov-12 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileCreationCnt distFilesCnt 0 
GFADD copiesToRem copiesFromRem 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

RDE alpha version; raw feature set; 
10k training 

Dec-12 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileEvents remEventCnt 8 
GFADD remEventCnt netEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

GMM Density Estimation via 
unusualness of counts, vs company

Jan-13 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileCreationCnt distFilesCnt 0 
GFADD copiesToRem copiesFromRem 8 
GFADD fixedEventCnt netEventCnt 0 
GFADD fixedEventCnt netEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

RIDE using Raw Counts 

Feb-13 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fileCreationCnt distFilesCnt 0 
GFADD copiesToRem copiesFromRem 8 
GFADD fixedEventCnt netEventCnt 0 
GFADD fixedEventCnt netEventCnt 8 
GFADD fixedEventCnt remEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

Ensemble GMM via unusualness of 
counts, vs company 

Mar-13 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD fixedEventCnt netEventCnt 8 
GFADD remEventCnt distRemDrivesCnt 8 
GFADD remEventCnt netEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company 

Ensemble GMM Density 
Estimation via unusualness of 

counts, vs company 

Apr-13 

RDE alpha version; raw feature set; 10k training
RDE alpha version; up feature set; 10k training 
GFADD copiesToRem copiesFromRem 8 
GFADD fixedEventCnt netEventCnt 0 
GFADD remEventCnt distRemDrivesCnt 8 
GFADD remEventCnt netEventCnt 8 
RIDE using Raw Counts 
RIDE via unusualness of counts vs. company

RIDE using Raw Counts 

Table 5: Ensemble Composition and Best-Performing Detector, by Month 
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Figure 3: ROC curves for the Ensemble and 
the Best Detector for September 2012 

Figure 4: ROC curves for the Ensemble and the 
Best Detector for October 2012  

Figure 5: ROC curves for the Ensemble 
and the Best Detector for November 2012 

Figure 6: ROC curves for the Ensemble 
and the Best Detector for December 2012

Figure 8: ROC curves for the Ensemble 
and the Best Detector for February 2013

Figure 7: ROC curves for the Ensemble 
and the Best Detector for January 2013 

280280285



 
 

Figure 9: ROC curves for the Ensemble 
and the Best Detector for March 2013 

Figure 10: ROC curves for the Ensemble 
and the Best Detector for April 2013

Figure 11: ROC curves for the Ensemble and the 
Scenario-Based Detectors for September 2012 

Figure 12: ROC curves for the Ensemble and the 
Scenario-Based Detector for October 2012  

Figure 14: ROC curves for the Ensemble and 
the Scenario-Based Detector for April 2013

Figure 13: ROC curves for the Ensemble and 
the Scenario-Based Detectors for March 2013
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IV. COMPLEX SCENARIO DETECTION 
Insider threat scenarios that form the subject of our work 

typically involve complex inter-related sets small numbers of 
actions by multiple individuals with diverse types of 
relationships occurring over multiple days to weeks. These 
actions are superposed on their “normal” activities. (These 
threat scenarios are contrasted with what is often described 
as “cyber threats” in so far as the latter tend to be executed 
by software at time scales of seconds or below. Network-
based monitoring is typically used to detect such cyber 
threats; by contrast, we rely on host-based monitoring of user 
actions.) The essential challenge to detect these actions is 
that the effective signal-to-noise ratio is dependent not only 
on the fraction of actions by the malicious individuals that 
are improper but also on the combinatorics of the grouping 
of individuals. The Insider Startup scenario and the Indecent 
RFP scenario inserted by the red team and described earlier 
in this paper illustrate the new detection capabilities. The 
insider startup scenario for the month of October 2012 
involved two separate instances each of three distinct users 
who engaged in malicious activity on 22 user-days on 12 
distinct calendar days in a calendar month. The first of these 
instances comprised 527 distinct observations of user 
activity, of which 151 involved file accesses, 19 involved 
text messages, 42 involved processes, and 12 involved URL 
accesses. The second of these instances involved 468 
inserted observations, of which one was an email event, 148 
were file events, 41 process events, 18 keyboard events, and 
278 URL events. These 527/468 inserted events correspond 
to roughly 0.5-0.5-0.6% of each user’s total activity over the 
course of a month, or about 0.0003% of the total 
observations in the database of about 5500 users each month. 
The scenario was designed with minimal communications 
between the three malicious users to make it realistically 
difficult to detect; the key challenge was to aggregate 
behavior to detect any of the conspirators. It was the surge in 
file events distributed roughly equally between the three 
users over five consecutive calendar days was detectable. 
The highest-ranked user-day from our best detector for the 
two instances of this scenario; i.e. the number of user-days 
that would have to be reviewed by an analyst to detect this 
malicious behavior, was 17 and 13 out of the approximately 
150,000 user-days analyzed that month. 

For a single instance of the Indecent RFP scenario 
inserted during the month of April 2013, there were two 
users whose malicious activities occurred on 15 distinct 
calendar days for 14 distinct user-days, with a total of 228 
inserted observations comprising 52 email events, 133 
process events, and 53 text messages. These activities 
consisted of less than 0.5% of the malicious users’ activities 
over the course of the month, or less than 0.0002% of the 
total monthly observations in the database. For this scenario, 
all red team inserted activity occurred in the communications 
between the two users. The highest-ranked inserted user-day 
for this month was the highest-ranked user-day overall by 
our best detector. 

V. ABLATION EXPERIMENTS 
Although the scenario-focused detectors are not accepted 

into the ensembles on the data sets we tested, it is still 
possible that the consensus formed in the first phase of the 
ensemble method is affected by the presence of the scenario-
focused detectors. We ran a separate set of experiments with 
the scenario-focused detectors disabled to test whether this 
would affect the resulting ensembles. We did this for all 
months of data and varied which detectors were disabled in 
each month based on which related red team scenarios had 
been inserted in the month. In these experiments we found 
that removing scenario-based detectors does affect the 
consensus as well as affecting which other detectors are 
accepted into the ensembles. For example, in data sets for 
several months, disabling scenario-focused detectors caused 
many of the GFADD algorithms to flip from being discarded 
by the ensemble to becoming accepted by ensemble, or vice 
versa. Interestingly, the GFADD algorithms, like the 
scenario-focused detectors, are focused on a narrow set of 
features compared to the other individual detectors. The 
GFADD algorithms also tend to assign zero scores to many 
data points as a result of the narrow range of features. This 
may begin to explain why these algorithms are sensitive to 
the presence of points added to the consensus by the 
scenario-focused detectors than the other detectors, and so be 
more likely to have their status in the ensemble affected. 
Removing scenario-focused detectors did not, however, 
substantially affect the AUCs of the resulting ensembles.  

VI. CONCLUSIONS AND FUTURE WORK 
Real insider threats are complex and adversarial, which 

leads us to conclude that an effective system for detecting 
these threats must detect scenarios that builders of the system 
never planned for or contemplated. Therefore, it is important 
to evaluate systems on their ability to detect previously-
unknown scenarios in real data. In this paper we evaluate our 
prototype in this setting and show that by using a variety of 
diverse individual detectors combined using an anomaly 
detection ensemble technique, we achieve a final detection 
result with performance that consistently approaches that of 
the unidentified detector among the set tested that was found 
to perform best on each dataset in after-the-fact analysis. 
This result holds on many data sets, including ones 
containing scenarios we had not contemplated when 
designing the detectors. The ensemble result also 
outperforms many anomaly detectors that are specifically 
focused on the scenarios that are known, on data sets 
containing those scenarios.  

Furthermore, we investigate the composition of the 
ensembles chosen by the technique we use and find that the 
ensemble achieves consistent performance without relying 
any single detector or the best unidentified detector for each 
dataset. We also disable scenario-focused detectors in the 
prototype and find that the ensemble continues to perform 
well on a variety of scenarios. These observations suggest 
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that our approach is robust to gaps between the scenarios 
contemplated during detector design time and unexpected 
scenarios that appear in real data, so long as the available 
detectors are still diverse and numerous as we have in our 
prototype. 

This result is one that we will continue to study in future 
work. Specifically, we are interested in developing more 
advanced ensemble techniques than the one we used that are 
able to incorporate scenario-focused detectors effectively to 
increase confidence in results when known scenarios do 
match with ones in the data. We will also begin 
incorporating explanation capabilities with the ensemble 
approach so that underlying reasons for detection from 
individual detectors can be combined in the final result 
presented to analysts.  
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