2014 IEEE Security and Privacy Workshops

Combining Generated Data Models with Formal Invalidation for Insider Threat
Analysis

Florian Kammiiller
Middlesex University London
fkammueller@mdx.ac.uk

Abstract—In this paper we revisit the advances made on
invalidation policies to explore attack possibilities in organi-
zational models. One aspect that has so far eloped systematic
analysis of insider threat is the integration of data into attack
scenarios and its exploitation for analyzing the models. We
draw from recent insights into generation of insider data to
complement a logic based mechanical approach. We show
how insider analysis can be traced back to the early days
of security verification and the Lowe-attack on NSPK. The
invalidation of policies allows modelchecking organizational
structures to detect insider attacks. Integration of higher order
logic specification techniques allows the use of data refinement
to explore attack possibilities beyond the initial system spec-
ification. We illustrate this combined invalidation technique
on the classical example of the naughty lottery fairy. Data
generation techniques support the automatic generation of
insider attack data for research. The data generation is however
always based on human generated insider attack scenarios
that have to be designed based on domain knowledge of
counter-intelligence experts. Introducing data refinement and
invalidation techniques here allows the systematic exploration
of such scenarios and exploit data centric views into insider
threat analysis.

Keywords-Insider threats, policies, formal methods

I. INTRODUCTION

This work basically combines two approaches presented
first at last year’s Workshop on Research in Insider
Threats [1]: the first paper by Glasser and Lindauer [3]
provides generated, i.e., synthetic, data to use as input
to scientific analysis, the second work by us [2] invali-
dates policies to analyze physical and workflow specifi-
cations of organizations to detect insider attacks. While
the former approach uses modelchecking and interactive
theorem proving techniques for automated support of the
insider threat analysis, the latter approach implements ad
hoc data generation mechanisms based on scientific results
from human behaviour research, psychology, and counter-
intelligence experience.

The current attempt now combines these two approaches
by offering a way how the data centric approach of Glasser
and Lindauer’s generic data [3] can add more information
to the invalidation approach of Kammiiller and Probst [2]
by adding generic data and thereby allowing refinement to
unravel the schizophrenic world of the insider. As a homage

© 2014, Florian Kammiiller. Under license to IEEE.
DOI 10.1109/SPW.2014.45

229

Christian W. Probst
Technical University of Denmark
cwpr@dtu.dk

to the pioneers of machine based analysis in communication
security and as the source of inspiration to the synthesis
presented in this paper, we begin by retracing the steps of the
classical attack by Gavin Lowe on the Needham-Schroeder
Public Key protocol (NSPK) [4] that coincidentally was
also discovered by modelchecking [5]. We elaborate that
the insider’s attack in the NSPK attack becomes in fact
discoverable by adding a refined view on the principals’
data (Section II). Having thus established a key idea how
refinement of principals’ data could be used for insider
threat analysis, we retrace the steps taken by Kammiiller
and Probst and show how model checking in combination
with simple data refinement can be applied on a real insider
attack case study — the Lottery Fairy that fakes a winning
lottery ticket and dates it back after the draw (Section III).
Data refinement acts as a lever to boost the rigorous qualities
of state exploration with modelchecking to insider threat
analysis. A progress that can now be applied as a hook-in to
exploiting generation of data to investigate new ways how
insider attacks can be discovered (Section IV). We close the
paper with a critical discussion (Section VI).

II. THE FIRST INSIDER: NEEDHAM-SCHROEDER’S
INTRUDER

The attack on the Needham-Schroeder Public Key proto-
col has often been used as an example to show the superi-
ority of formal techniques over good engineering practice.
The attack is a result of a change of security assumptions
about the communication context. Needham and Schroeder
designed this protocol as one of the first cryptographic
protocols a few years after the invention of public key
cryptography. This was the time when the first email systems
were installed, and the Internet was still in its infancy. It
was safe to assume that the principals that participated in
network communication protocols were part of some group
of honest people who did not act as attackers simultaneously.
Therefore, it is understandable that even in 1990 when the
BAN logic [6] was conceived and logical analysis was for
the first time applied to security protocols, the flaw in the
Needham-Schroeder Public Key protocol (NSPK) still was
not discovered. It was only five years later, in a world
that already saw the advent of the Internet as a public and

@) CO‘ pute
1(!) I
& SOCIety

anonymous communication space, that Lowe identified a
seemingly obvious but crucial attack on NSPK. The attack
does not need to break any cryptography and still allows
the attacker to impersonate a member of the network. This
attack is at the same time the first insider attack since it is
based on the fact that a seemingly trustworthy participant of
the group of principals acts simultaneously as attacker. To
the best of our knowledge, this basic fact about the attack has
been overlooked till now. Usually the attack is characterized
as a classical man-in-the-middle attack — which is only half-
true. We first briefly recapitulate the NSPK protocol and its
attack to show that it is an insider attack. Moreover, we use
the attack to illustrate that a refinement on the data can be
used to make the attack discoverable and that this remedy
also secures the protocol.

We use the short form of the Needham Schroeder Public
Key Protocol (NSPK) originally published by [7]. The pro-
tocol is usually written as follows using public keys K 4, Kp
known globally and their secret counterparts K A_l, K §1
establishing nonces N 4, N in the process of authentication.

A— B {NA7A}KB
B— A {NAvNB}KA
A— B {NB}KB

The originally published protocol gives rise to the well-
known attack of [4].

The attack goes as follows. The insider I is a normal
member of the network. Therefore, he has like any A and
B also an address and his public key K; — for which only
he has the corresponding private key K I_l is known in the
communication network. What is more is that I is a peer,
i.e., principals do actually communicate with I. This fact is
the main clue for the attack and also the reason why this is an
insider attack. I must wait for A to request a communication
with I, i.e. A sends a message according to step one of the
protocol to I. Now, I sets up a parallel session, pretends to
be A towards B initiating a second “Step One” this time
from I(A) to B, i.e. from I using B’s sender address. We
show the attack next using these notations but numbering
the protocol steps according as «.i and S.i for ¢ € {1..3}
for each of the parallel sessions.

al A—1T {NA,A}KI
Bl I(A)»B : {NaA}x,
82 B—A {Na,Np}k,
a2 IT— A {Na,Np}k,
a3 A—=1 {NB}k,

83 I(A) =B : {No}x,

Looking at the steps, we can see that I switches between
the roles of I and I(A) at his leisure. The attack appears
to be some kind of man-in-the-middle attack but it is really
only successful as such towards B. While A quite rightly

230

believes that he speaks with I — as he intended to — B
believes he speaks to A while he really speaks with I.! The
NSPK attack is easily fixed by introducing the sender B in
step 2.

A— B {NA7A}’KB
B— A {NAaNBvB}KA
A— B {NB}KB

This fix of the attack has been also discovered by Lowe
who found the attack in the first place a year later using
modelchecking with CSP/FDR [5].

As discussed, the attack is an insider attack since it only
works if A addresses I as a legal member of the network.
The switch between the two roles I and I(A) could be
considered as acting schizophrenically if it would not be
intentional directed to the purpose of impersonation. The fact
that this switch is possible is another necessary and sufficient
condition for the success. Translated into practical terms, the
notion of I(A) could be implemented by IP packets with a
fake sender IP address (which is perfectly possible in the
Internet protocol IP and is also known as spoofing).

The point that we want to make here is that a refinement of
the actor data can reveal the attack. If we add the address to
the protocol by refining the date, the attack becomes obvious.
This is exactly what the remedy presented above does and
it is this observation that we take as starting point for the
suggested exploration of insider attacks in this paper.

ITI. CATCHING NAUGHTY LOTTERY FAIRIES

Lottery scams are an interesting domain for the study of
insider attacks. The probably most notorious lottery fraud is
the 1980 Pennsylvania lottery scandal commonly known as
the triple six fix [8]. A group of employees including the
announcer of the daily number Nick Perry rigged a three
digit game known as the Daily Number by weighting all the
balls except the four and the six. The effect was that the
outcome was almost certainly to be made of three digits out
of 4 and 6. On 4. April 1980, the scheme succeeded when
666 was drawn but the unusual betting patterns alerted the
officials. The scheme was uncovered, all chief insiders were
sent to prison and most of the illegal winning money was
never paid out. Other classical lottery frauds are ones where
the lottery shop workers cheat clients who bring in a winning
ticket and claim the prize themselves. These are also insider
attacks, e.g., [9].

Another insider attack is the case of the lottery agent who
used the access to the lottery ticket machine to produce a
ticket with the winning number combination after the draw
and dated it back to a time before the draw [10]. We analyze
the workflow based invalidation process [2] based on this last

'Even though the attack seems only half way successful, it can be
exploited. Assume B is a bank and I sends a message “transfer 1000
$ from my account to that of I” after the attack using A’s credentials.

attack. This case study suffices to recapitulate the working
of the workflow based invalidation.

The workflow based approach to invalidation [2] uses a
formal description of the security policy for invalidation
by either (a) direct logical negation or (b) applying data
refinement of the workflow data to the policy before negating
it.

For the lottery example, a simple description of a security
policy is described by the following conditions.

o A lottery ticket [wins if and only if the chosen number

sequence c(l) matches the draw d, i.e., 2

winning_ticket | = (¢(1) = d)
o The ticket’s time stamp ¢; must be strictly smaller than
the time of draw t4, i.e.,
valid_ticket | = (¢; < tq)

Finally, the policy can be expressed simply as the con-
junction of these two predicates mandatory for all cashable
lottery tickets.

policy x = winning_ticket = A valid_ticket x

As the global policy we assume a concrete set of “winners”
and then quantify the policy over all lottery tickets in this
set. The operator P(.S) denotes the powerset of a set .S.

P(ticket)

Va € winners. policy x

winners
Policy =

The policy formalization above in terms of logic allows to
invalidate them by direct logical negation. Since we want
to analyze ways how a fake ticket can pass the policy we
simply assume such a fake lottery ticket.

fake : ticket

Then the following two simple properties express two ways
of invalidating the policy.

1. policy fake = winning_ticket fake

2. policy fake = valid_ticket fake

The first of these trivial invalidation properties can be
interpreted as faking a ticket that has a number matching
the draw; the second can be in fact considered as a very
abstract expression of the actual attack we want to illustrate.
The fake ticket is “valid”, i.e., has a timestamp that is before
the time of drawing: ¢; < t4. As further elaborated in [2], the
interactive theorem prover Isabelle/HOL [11] can be used in
formalizing the above policy definition and proving lemmas
that ascertain the above reasoning on the policy violation
of a fake ticket (see Appendix VII-1). Despite the formal
provability and a possible interpretation to the actual insider

2For simplicity of the exposition, we omit statements ¢ C d for a partial
order relation to express partial lottery wins.

attack we investigate, we would like to explore the attack a
little deeper.

Therefore, we consider the simple data refinement on
the workflow data (the lottery ticket) to be applied to the
policy: instead of simply considering an added on timestamp
we additionally introduce a sequence number on lottery
tickets. The coupling invariant for the refinement introduces
a consistency condition that enforces that tickets in the
draw must have sequence numbers below last-ticket which
represents the last issued one.

winners sequence(ticket)

backdatede = index ¢ < index last-ticket

Now, the invalidation of the refined policy Policy_seq (see
Appendix) for sequences of tickets shows the attack more
clearly in its antecedent:

3 x mem 1. backdated 1 —> — (Policy_seq 1)

IV. USING DATA REFINEMENT TO FIND DROPBOX
LEAKAGE

Glasser and Lindauer consider the generation of insider
threat data using a synthetic data generation framework.
They can avoid any confidentiality and privacy concerns
related to real data. The realism of the data is an arguable
point but to some extent it is achievable and the data can
be economically generated, tuned to desired characteristics,
and is fully intact. We use the data on the one hand side
to validate our invalidation approach and simultaneously
investigate the mutual benefits to the exploration of insider
threat scenarios that may result. As Glasser and Lindauer
exhibit [3, Section IV] a remaining challenge is the Insider
Threat construction.

Although the input to the data generation process is
largely autonomous and produces intelligent near realistic
data an important ingredient are the basic insider scenarios
that are manually inserted into the process. These insider
scenarios are constructed using counter-intelligence expert
knowledge. An example from [3] is the following: “A
member of a group decimated by layoffs suffers a drop
in job satisfaction. Angry at the company, the employee
uploads documents to Dropbox, planning to use them for
personal gain.” The data generation process [3] derives so-
called “observables” from this scenario. For the example,
the observables are given in the following list [3] .

o Data streams end for laid-off co-workers, and they
disappear from the LDAP directory.

o As evidenced by logon and logoff times, subject be-
comes less punctual because of a drop in job satisfac-
tion.

o HTTP logs show document uploads by subject to
Dropbox.

We illustrate first how invalidating policies based on
system models serves to unravel insider attacks based on

the example. For the formalization of the system models,
we use ExASyM [12] a formalism dedicated to insider
threat analysis. The analysis is performed with the MCMAS
modelchecker [13] because this tool is specialized for multi
agent systems. A systematic translation transforms ExASyM
models to the input language of MCMAS. For the invalida-
tion, we specify the goal as the negated policy and then apply
modelchecking to find a path of ExXASyM actions leading to
a state that violates the policy.

In our model we have an actor User that has access to
proprietary company data and behaves within the boundaries
of the company policy and we have an actor Insider
that corresponds to a malicious insider but with reduced
access rights. We construct this model now intentionally so
simple that it will not show any vulnerability to an attack
of the insider. But the refined model produces the attack by
invalidation. The User handles confidential and unclassified
files and can put both of them on a server. The Insider can
also handle files on the server but only unclassified one. In
addition, the Insider can take files outside. In this simple
model the invalidation attempt to show that confidential files
get outside is never reached. The following formula checks
true for the simple model in MCMAS.

AG! (Intruder.has_secretfile);

This formula reads “for all paths in all states the for-
mula Intruder.has_secretfile is not true” (exclamation
mark denotes negation).

However, the system model based approach only tests
for attacks that have already been anticipated in the model,
i.e., is confirmatory according to Glasser and Lindauer’s
terminology [3]. They observe that most generation methods
for insider attacks suffer from that weakness and admit that
their otherwise very successful approach does so as well.
They use prefabricated human-master-minded scenarios as
kernels for their generation process.

To examine this issue, we combine the strength of mod-
elchecking with the expressivity of the generated data. In
fact, introducing additionally refinement as in the lottery
example above enables insertion of analytic data into the
model to reveal the insider. The refinement of the model
uses the observation from Section II that insiders act like
having double personalities.

To illustrate the advantages of the combination of the
generated data with invalidation, we use the Dropbox sce-
nario showing how it can be produced as a refinement from
the above system model based attempt. We additionally
assume that there is a Dropbox to which the Insider and
the User have access. The attack is now possible because
the User actually copies a confidential file into the Dropbox.
Now, the Insider can take the confidential file outside, i.e.,
access it at home for future exploitation. The sudden change
of behaviour of the User is a consequence of his divided
personality. To model this formally, and enable the attack, we

232

introduce a special variable UasI that enables the coupling
of the behaviours between User and Intruder. Given this
refinement of the actor behaviour we can now verify the
formula

EF(UasI -> Intruder.has_secretfile);

stating that there are states in which confidential data is put
outside.

Summarizing, we achieve thus certainly that our analysis
can be refined to the point where the model corresponds to
the generic data as produced in the approach by Glasser and
Lindauer [3]. Critically reflecting, we see that the refinement
has been strongly directed towards the existing scenario.
Nevertheless, the insertion of the double personality has been
a schematic procedure learned by example from the NSPK
attack. In other words, the exploration of model refinements
is a good way of acquiring a realm of typical data or action
refinements that can be applied on generated data thereby
moving a bit closer to actually finding attacks.

V. RELATED WORK

Santen [14] examines preservation of security under re-
finement. In general, security is not preserved by refinement,
a property often referred to as the security refinement
paradox. Invalidation actually exploits this restriction of
refinement. Nevertheless, considering certain types of prob-
abilistic information flow security allows security preserving
refinement relations.

Security protocol analysis with modelchecking tools is a
well explored area of security research. AVISPA [15] and
ProVerif [16] are just two examples of recent successful
tools. The modelchecking approach implements a complete
state exploration of a property on a model. Thus a successful
check of a (positive) security property over a protocol corre-
sponds to a mathematical proof of that property with respect
to the used model. Usually, it is the goal of modelchecking
to positively prove a (security) property but the approach is
equally useful for detection of flaws. This fault detection is
often used, for example, in the early application by Lowe [5]
we discussed in Section II and it is also this second use we
mainly consider useful for invalidation. The CTL temporal
logic quantifier EF p (“there exists a path such that eventually
p”) is particularly suited as it produces a path leading to a
state in which property p is violated. This path then allows
the construction of an attack path.

Edmonds [17] addresses simulation models that are sim-
ilar to the generated data model we use for our analysis.
He observes that it is in general very difficult — if not
hopeless — to develop reliable models for social phenomena
that could be useful for simulation. However, he argues
that simulation modeling can be used to “boot-strap” useful
knowledge about social phenomena. His line of argument is
very similar to our approach: * If each bit of simulation work
can result in the rejection of some of the possible processes

in observed social phenomena [...] then this can be used as
part of a process of gradually refining our knowledge about
such processes in the form of simulation models.”

VI. CONCLUSIONS

In this short paper, we have summarized previous work
on insider threat analysis and generation of insider data,
recapitulated its workings and shown that analysis results
can help to refine the insider attack scenarios that are at
the core of the generation method. We have contributed
thereby to a broader understanding of insider threats in
general. We have further illustrated that the NSPK attack
is an insider attack and how to use this insight to facilitate
the construction of the analysis model for the system model
based invalidation approach.

The invalidation technique has proved again a useful
method for analysis of system models, workflow models,
and combinations thereof. The additional use of refinement
techniques is beneficial. Data refinement has long been iden-
tified as a central method for developing specifications into
implementations [18]. In the lottery example we have used
a standard data refinement macro: “sets to sequences” to
discover the backdating. In the combination with generated
data, we use a mix of data and action refinement to exhibit
the insider attack in the second model. The construction of
this second refinement did use the general idea of the double
personality of the insider. The way we wove this idea into
the model to achieve the refined model, is rather ad hoc. It is
an open question, whether we can extract a more schematic
way for constructing a “double personality” refinement for
random applications. It is worth investigating this particular
refinement — maybe more than others — as it is characteristic
for insider attacks.

VII. ACKNOWLEDGMENTS

Part of the research leading to these results has received
funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement #318003
(TREsPASS). This publication reflects only the author’s
views and the Union is not liable for any use that may be
made of the information contained herein.

REFERENCES

[1] Proceedings of the second IEEE Workshop on Research in
Insider Threats, WRIT’13. 1EEE, 2013.

[2] F. Kammiiller and C. W. Probst, “Invalidating policies using

structural information,” in WRIT’13. 1EEE, 2013.

[3] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic

approach to generating insider threat data,” in WRIT’I3.

IEEE, 2013.

[4] G. Lowe, “An attack on the needham-schroeder public-
key authentication protocol,” Information Processing
Letters, vol. 56, no. 3, pp. 131-133, 1995. [Online].

Available: http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/
Security/Papers/NSPKP.ps

233

[5] ——, “Breaking and fixing the needham-schroeder public-
key protocol using fdr,” in Tools and Algorithms for the
Construction and Analysis of Systems. Springer-Verlag,
1996, pp. 147-166.

[6] M. Burrows, M. Abadi, and R. Needham, “A logic of authen-
tication,” ACM Transactions on Computer Systems, vol. 8, pp.

18-36, 1990.

[71 R. M. Needham and M. D. Schroeder, “Using encryption for
authentication in large networks of computers,” Communica-

tions of the ACM, no. 21, 1978.

[8] “1980 pennsylvania lottery scandal,” Available from http://en.
wikipedia.org/wiki/1980_Pennsylvania_Lottery_scandal, last

visited February 5, 2014.
[9]

“Shop workers con customer out of 1 million winning
lottery ticket,” Available from http://www.mirror.co.uk/news/
world-news/1million-lottery-scam-father-son-2848818 last

visited February 5, 2014.

[10] P. G. Neumann, Combating Insider Threats.

ch. in [19].

Springer, 2010,

[11] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle’/HOL
— A Proof Assistant for Higher-Order Logic, ser. LNCS.

Springer-Verlag, 2002, vol. 2283.

[12] C. W. Probst and R. R. Hansen, “An extensible analysable sys-
tem model,” Information Security Technical Report, vol. 13,

no. 4, pp. 235-246, Nov. 2008.

[13] A. Lomuscio, H. Qu, and F. Raimondi, “Mcmas: A model
checker for the verification of multi-agent systems,” in CAV,
ser. Lecture Notes in Computer Science, A. Bouajjani and

O. Maler, Eds., vol. 5643. Springer, 2009, pp. 682—-688.

[14] T. Santen, “Preservation of probabilistic information flow
under refinement,” Inf. Comput., vol. 206, no. 2-4, pp. 213—

249, 2008.

[15] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuellar, P. Hankes Drielsma, P.-C. Hedm, J. Man-
tovani, S. Modersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigano, and L. Vigneron, “The
AVISPA Tool for the Automated Validation of Internet Secu-
rity Protocols and Applications,” in Proceedings of the 17th
International Conference on Computer Aided Verification
(CAV’05), ser. LNCS, K. Etessami and S. K. Rajamani,
Eds. Springer, 2005, vol. 3576, available at http://www.
avispa-project.org/publications.html.

[16] B. Blanchet and B. Smyth, ProVerif 1.85: Automatic Crypto-

graphic Protocol Verifier, User Manual and Tutorial, 2011.

[17] B. Edmonds, “Bootstrapping knowledge about social
phenomena using simulation models,” Journal of Artificial
Societies and Social Simulation, vol. 13, no. 1, p. 8, 2010.

[Online]. Available: http://jasss.soc.surrey.ac.uk/13/1/8.html

[18] J. He, C. A. R. Hoare, and J. W. Sanders, “Data refinement
refined,” in ESOP, ser. Lecture Notes in Computer Science,
B. Robinet and R. Wilhelm, Eds., vol. 213. Springer, 1986,

pp. 187-196.

[19] C. W. Probst, J. Hunker, D. Gollmann, and M. Bishop, Eds.,

Insider Threats in Cybersecurity. Springer, 2010.

APPENDIX

Appendix VII-1, gives the Isabelle/HOL formalization
for the lottery insider attack and the used refinement. Ap-
pendix VII-2 and VII-3 provide the MCMAS specifications
for the Dropbox example: the simple model and the refined
one that exhibits the attack.

1) Lottery Fraud in Isabelle:

theory LotteryScam

imports Main

begin

datatype number = Number nat
datatype time = Time nat

datatype ticket = Ticket time number

consts d, t_d :: nat
consts winners ticket set
consts fake :: ticket

primrec get_time :: time = nat ("t_")
where t(Time t) =t

primrec get_number :: number = nat
where #(Number n) = n

(n#(_) u)

definition valid_ticket :: ticket = bool where
valid_ticket x = t(ticket) < t_d

definition winning_ticket :: ticket = bool where
winning_ticket x = #(t) = d

definition policy :: ticket = bool where

policy x = wining_ticket x A valid_ticket x

lemma invalidate_one: policy fake — winning_ticket fake
by (simp add: policy_def)

lemma invalidate_two: policy fake — valid_ticket fake
by (simp add: policy_def)

definition Policy :: ticket set = bool where
Policy 1 = V x € 1. policy x

lemma Policy_empty: Policy {}
by (simp add: Policy_def)

(* Refinement for Invalidation *)

consts winners_seq:: ticket list

definition backdated :: ticket => bool where
backdated x = t(ticket) < t_d

definition Policy_seq :: ticket list =- bool where

Policy_seq 1 = V x. x mem 1 — (- backdated x A policy x)

lemma no_backdated_in_seq_model: J x mem 1. backdated x
= - (Policy_seq 1)
by (simp add: Policy_seq_def)

definition policy_refinement:: check list = bool where
policy_refinement 1 = Policy(set 1) = Policy_seq 1

lemma invalidation_by_refinement_gen:
"V s. finite s A's # {} — (3 1. set (1) = s A Policy s
— —(policy_refinement 1))"

apply (rule allI, rule impI)

apply (erule conjE)

apply (drule Finite_set_list)

apply (erule exE)

apply (rule_tac x = "hd (1) # 1" in exI)

apply (rule impI)

apply (simp add: policy_refinement_def)

apply (rule_tac ¢ = "hd 1" in no_backdated_in_seq_model)

by (simp add: hd_lem)
end

2) Simple Generated Data in MCMAS:

Agent User
Vars:
initialposition : { office };
currentposition : { office, server };
work_confidential: boolean;
end Vars
Actions = { work, pause, save_secret, save_public };
Protocol:
currentposition = office : {work, pause, save_secret};
currentposition = server : { save_public};
end Protocol
Evolution:
currentposition = office if (currentposition = server
and (Action = pause or work_confidential = true));
currentposition = server if (currentposition = office

and (Action =
end Evolution
end Agent

Agent Insider
Vars:
initialposition
currentposition
has_secretfile:
end Vars

work and work_confidential = false));

: { outside };
: { server, outside };
boolean;

Actions = { access_server, copy, logout 1};

Protocol:

currentposition =

currentposition

currentposition
end Protocol
Evolution:

currentposition

currentposition
currentposition
has_secretfile

end Evolution
end Agent

outside: access_server;
= server : {copy};
= server : { logout};

= server if (currentposition = outside
and Action = access_server);
= server if (currentposition = server
and Action = copy);
= outside if (currentposition = server
and Action=logout) ;
true if (currentposition = server and
User.Action = save_public);

3) Refined Generated Data in MCMAS:

Agent User
Vars:

initialposition :

currentposition

{ office };
: { office, server };

work_confidential: boolean;

UasI: boolean;
end Vars

Actions = {work,

pause, save_secret,

save_public, save_dropboxl};

Protocol:

currentposition =

currentposition
end Protocol
Evolution:

currentposition =

and (Action
currentposition

end Evolution
end Agent

save_secret};
save_dropbox};

office {work, pause,
= server : {save_public,

office if (currentposition = server
= pause or work_confidential true));
= server if (currentposition = office
and (Action = work and

(work_confidential = false or UasI)));

Agent Insider

Vars:
initialposition : { outside };
currentposition : { server, outside };
has_secretfile: boolean;

end Vars
Actions = {access_server, copy, logout};

Protocol:
currentposition = outside: {access_server};
currentposition = server : {copyl};
currentposition = server : {logout};

end Protocol

Evolution:

currentposition = server if (currentposition

= outside

and Action = access_server);

currentposition = server if (currentposition

= server

and Action = copy);
currentposition = outside if (currentposition = server
and Action=logout) ;

has_secretfile = true if (currentposition =

server and

(User.Action = save_public or
User.Action = save_dropbox);

end Evolution
end Agent

235

