

Abstract—
The paper is divided into two sections. First, we describe our
experiments in using hardware-based metrics such as those
collected by the BPU and MMU for detection of malware
activity at runtime. Second, we sketch a defense-in-depth
security model that combines such detection with hardware-
aided proof-carrying code and input validation.

Keywords—malware, security in hardware, data security

I. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup of malware
activity detection based on Branch Prediction analysis and
memory mapping.

A. Branch Prediction analysis-based filters

1) OS, platforms, and applications used

In this study, we use the modified Win32/Renos malware for
contaminating our systems [1]. The original malware has been
further modified to add buffer overruns, for experimental use
by our internal teams. Vtune [2] is used to monitor the Branch
Prediction Unit (BPU). For this experiment we use Intel HSW
CPU T245 up to 2.67GHz. For this experiment we developed
a special C++ checker (Active and Passive safety net, APSN).
APSN acts as a wrapper around Vtune. The primary function
of APSN is to automate data analysis. APSN is pre-loaded
with a cache of BPU data across multiple flavors of
applications, drivers, software etc. APSN is re-loaded with
new BPU data before making any changes to the hardware or
software stack.

2) Training and calculating thresholds

We run the systems with baseline applications and use Vtune
to report BPU data. All application, driver, and system
information is kept constant throughout the training. APSN
performs statistical analysis on the BPU data and determines a
tripping point for the clean systems. The tripping point is the
maximum percentage of errors made by the BPU over the

entire dataset. Figure 1 reflects BPU data from systems that
are unaffected with malware, aka clean systems. Our clean
systems are running with standard v2.3.4 BIOS, firmware,
Windows Vista and have been scanned for known malware
[3].

Figure 1: BPU data from clean system runs

For the list of applications used in our experiments, APSN
calculated a max value of 34% (10% guard-band to minimize
false failures). In our further field experiment, any process
generating BPU value over the max value of 34% is
determined as malware by APSN.

3) Collecting data on malware-affected systems

In this part of the experiment, we use “dirty systems”,
which are the clean systems above affected with
Win32/Renos. The usage patterns are kept similar to the
patterns used in the “clean systems”. We re-collect the BPU
data by executing similar load experiments. Figure 2 below
reflects the data from the dirty system runs.

0

5

10

15

20

25

30

Y axis: Probability of misprediction (%)
X axis: Clean system runs

Using Existing Hardware Services for Malware
Detection.

Sarat Kompalli, Intel Corporation

2014 IEEE Security and Privacy Workshops

© 2014, Sarat Kompalli. Under license to IEEE.

DOI 10.1109/SPW.2014.49

204

Figure 2: BPU data from dirty systems (malware a

4) Overlaying data from clean systems onto

Figure 3: Overlay of data from malware affecte
systems

As we can see from the above chart (figu

prediction miss rates are below threshold for
i.e. the Branch Prediction Unit (BPU) is
predicting the next branches. However, in t
(infected with malware), the BPU produc
prediction misses. APSN system is designe

0

10

20

30

40

50

60

70

80

90

100

Y axis: %probability of miss predict
X axis: dirty system runs

affected)

dirty systems:

d and non-affected

ure 3), the branch
r a clean system,
very accurate in
the dirty systems
ces high rate of
ed to generate a

malware detect signal when a proce
limit.

High level pseudo-code of the AP

The above data indicates that BP
be used to detect malware. Howev
are concerning. Of the Y number of
X went undetected by the thresh
shown in Figure 4, red box. These o
malware affected system generated
threshold limit. We believe that usi
as the indicator is not sufficient.

Figure 4: Highlighting outliers that APS

In the subsequent section we d
BPU, which will help detect the ou
4.

B. Memory mapping based filter
Memory monitoring has been us
detection [4]. We are applying
malware detection. To the best of
first such attempt.

1) Runtime Memory spoofer: Dyna
Engine (DMME)

Our next checker is based on th
runtime memory allocation and usag
we first run many cycles on our
behavioral model. The data is colle
validation tools using debug API’s
privileges. SoC/Processor compa
capabilities to protect their arch

tion
ess goes over the threshold

PSN filtering:

PU readings can potentially
ver, the outlier data points
f runs on the dirty systems,
hold, forming the outliers
outliers are cases where the
d BPU data under the 30%
ing a BPU threshold alone

SN does not catch

describe a system around
utliers highlighted in figure

ed previously for rootkit
these concepts towards

our knowledge, this is the

amic Memory Monitoring

he principle of monitoring
ge [5]. Experimental setup:
clean system and build a
ected using special system
running under red unlock

anies lock their debug
hitectures. Semiconductor

205

devices require appropriate authorization to use functions
available during manufacturing, which it locks down before
shipping the products. Specialized software and hardware is
required to authenticate this level of unlock, commonly known
red-unlock.

The DMME model measures 4 parameters for each
application:
Memory locations (ML): the number of memory locations a
specific application accesses.
Number_of_reads + variance f(Rn): the number of reads done
by the application plus a pre-calculated guard band to
account for variations.
Number_of_writes + variance f(Wn): the number of writes
done by the application plus a pre-calculated guard band to
account for variations.
Max Memory size (MS): memory size that each of these
applications is reserving or requesting.

f(Rn), f(Wn), f(MS) are computed using controlled software
runs. Figure 5 describes the major blocks and interaction of
the memory spoofer. In our system, applications request
memory transactions via the memory manager (MM). The
main purpose of the MM is to act as a bridge between the
application layer and the CPU. As its secondary role, the MM
also feed-forwards the application type and its memory
request data to the Dynamic Memory Monitoring Engine
(DMME). The DMME tallies this constant feed of data to the
pre-calculated values of f(Rn), f(Wn), F(MS) and checks to
make sure the data from the MM is lower than values present
in the behavioral model. If an application violates thresholds,
the DMME produces a report for the APSN. The report
contains application id and memory details. The APSN uses
this signal to tag its application as high risk and requests BPU
data to be re-scrutinized.

Figure 5: APSN system with DMME + BPU

We model the above blocks by re-running our clean_system
and dirty_system and collect data on how many times our
DMME generates a report for the APSN. Figure 6 shows an
overlay of our BPU results with memory analysis data. It is

evident from the graph that combining memory analysis data
and BPU results would detect a large percentage of malware
calls. There is a chance of obtaining some false positives. For
example, in our case 1 run out of X was a false positive.
However, there is a promise of being able to have a low false
negative rate as opposed to using BPU alone.

 : DMME generated the trigger.
: DMME did not generate the trigger.

Figure 6: DMME data overlaid on BPU

This approach of using BPU and memory mapping data be
reliably used for malware detection.

High level pseudo-code APSN+DMME:

Although our study provides a compelling solution for
malware detection, a few points are relevant before closing the
discussion.

1. Malware is evolving. The malware used in our study
was very potent and created a noticeable difference
between clean and dirty systems. It is likely that
malware loaded applications can be developed to
have very subtle variations in memory and BPU
usage. It is necessary to continue further research on
the implications of many degrees of malware on BPU
data.

206

2. Interpreted languages are challenging. Though
overlapping memory spoofing data over BPU creates
a very clean filter for malware detection, more data
collection needs to be done using applications
developed on interpreted languages (like Java).
Interpreted languages have a tendency to follow
random patterns of memory fetches and can throw off
our model behavior.

The above reasons make a case for us to explore defense in
depth and understand the benefits of combining malware
detection with defense in depth. In the following section of our
paper, we propose a hardware based eco-system built around
our APSN system.

II. SECURITY MODELLING BY COMBINING MULTIPLE
SOLUTIONS

A. Proof-carrying code
Proof-carrying code, or simply PCC is a mechanism that

allows code consumer to check the validity of the code
without using cryptographic techniques [6]. PCC increases
security, with very little or no performance overhead during
run-time [7]. PCC allows the code consumer to define a safety
policy and then validate pre-run time that this policy has been
satisfied [8]. Adding proof-carry checkers to our APSN gives
us additional security against malware coded in interpreted
languages. The idea is to have software vendors attest their
software/applications with embedded signatures. Also, any
new software, driver, applications need to pre-populate the
APSN with its BPU data predictions [9].

B. Hardware-based input validation
Several attacks can be run against a web application,

inserting crafted data — often, too much at once — which can
confuse, crash, or make the web application divulge too much
information to the attacker. Buffer overflow attacks are the
best examples to prove the importance of input validation. In
this last section of our paper we propose a hardware-based
input validation technique, the idea is similar to a few
academia proposals on input parsing [10].

Network intrusion detection systems (NIDS) [11] are an
efficient mechanism for passively examining network traffic
to determine whether a packet contains an attack payload or
not. Our proposal is to add input parsing as a by-product of
this packet examination.

Traditional NIDS systems are designed to match a specific
known string. One or more string matches are combined into a
single rule used to define a signature. However, static and
loose signatures can increase the number of false positives.

The answer to static pattern matching has been to use
hardware based regular expressions (B-FSM) [12]. A single
regular expression can cover a large number of static matches,
and thus regular expressions have become essential for
combining many types of detected patterns. Our approach is to
simplify the input to well-defined chunks of data that is linked
together with known constraints. For example, when a user
inputs login details, hardware will perform the following
steps. (1) Parse the input, and tabulate the data into a simple

format. (2) Run specific pattern matching on each field of the
tabulated data, in this case [a-z][0-9][len_max:12].

This tabulation of inputs into known fields will remove any
ambiguity before the code is executed, thus reducing the risk
of attack. Unfortunately, today’s regular expression matching
schemes that are implemented in software pose a very high
performance overhead. One solution for bypassing the
performance overhead is to implement the regex matching in
hardware.

A few previous solutions have used hardware to perform
this complex computation [13]. Some previous solutions were
to implement the regex matching logic on programmable
devices like FPGAs. Though they are efficient, they have a
few drawbacks.

1. They are complex to modify and program.
2. FPGA process size is different from current

mainstream process (14nm, or 22nm). This process
difference forces the regex logic and main CPU to be
on different pieces of silicon, thus leading to
complicated power flows and clock management,
eventually adding to the cost of manufacturing and
testing.

To overcome the above drawbacks, our solution is to move
the regex matching logic inside the CPU/SoC silicon. We
propose developing an input parsing and regex matching
(IPRM) module inside the CPU/SoC. This module would be
made up of an input parser, and a malware regex matcher.

Input Parser (IP) has two main duties. The primary duty is
authentication of the PCC. The IP needs to authenticate the
proof of the code, by running it against the LF theorem
checker [14]. Once the proof is authenticated, the IP parses the
data and tabulates it into pre-determined fields for a given
application.

Malware Regex Matcher (MRM) will monitor the parsed
code for any malware strings. The MRM can be run in two
modes. In mode 1, it analyzes the network packets and
displays them on the console. In mode 2 (default) the MRM
will analyze the packets and check them against a pre-defined
regex defined by the hardware. Broadly, it is responsible for
acting like a network intrusion detection system [15].

Incoming raw data is first processed by the IP. If the PCC
and tabulation are successful, the IP passes the processed
information to the MRM. The MRM will then analyze the
packets for any malware. Any failures in either MRM or the
IP add the application/software to the quarantine report. The
system communicates these reports back to application
vendors. IPRM is designed so that MRM and IP order can be
interchanged in the pipeline.

Figure 7: IP feeding tabulated data into the MRM

207

III. SUMMARY
Our paper presents two important layers of security, one

during runtime at the system level via our APSN, and second
layer of security via our IPRM. We prove the benefits of
overlaying the BPU data over memory mapping data from the
DMME and argue that using this combination provides us
with a viable solution for detecting malware. We further
enhance the level of security by using efficient support of the
state-of-the-art regex and input handling implemented in
hardware. We show the benefits of integrating the IPRM into
SoC and main CPU silicon.

IV. FUTURE WORK
Our study in this paper was performed under very tight

conditions on high-speed performance machines using a single
flavor of malware. The BPU and DMME data needs to be
characterized in-depth by using many different flavors of
malware. We foresee changes to the thresholds as more and
more flavors of malware and system combinations are
introduced, and as data is analyzed. We also recognize the
need for future work in the area of performance analysis
around LF proof checks implemented in hardware and side-
channel attacks using BPU data [16]. DMME currently is
implemented at a restricted privilege level, this puts a lot of
constraints on sharing performance-overhead and
implementation details with external entities. We need to plan
the abstraction of the API’s needed for implementing DMME
to a user-level privilege.

V. RELATED WORK
Some previous work has been performed in the area of

using performance metrics for detecting and identifying
security attacks [17] [18], however they fail to study the
performance counter variations introduced due to inherited
hardware un-maskable interrupts and system flaws and how
their system responds to legit processes.

ACKNOWLEDGMENT
The author would like to thank David Grawrock and Dr.

Sergey Bratus for their help with the preparation of this
research paper.

REFERENCES

[1] "Win32/Renos," Microsoft Corp., [Online]. Available:

http://www.microsoft.com/security/portal/threat/encyclopedia/e
ntry.aspx?Name=Win32%2fRenos. [Accessed 21 March 2014].

[2] "Intel® 64 and IA-32 Architectures Optimization Reference
Manual," Intel Corporation, 2012.

[3] "McAfee Labs Threats Report," Intel Corporation, [Online].
Available: http://www.mcafee.com/us/resources/reports/rp-
quarterly-threat-q4-2013.pdf. [Accessed March 13 2014].

[4] R. Junghwan, R. Ryan and D. X, "Defeating Dynamic Data
Kernel Rootkit Attacks via VMM-based Guest-Transparent
Monitoring," in Availability, Reliability and Security
International Conference, 2009.

[5] "Software Concerns of Implementing a Resident Flash Disk,"
Intel Corporation, 1995.

[6] "Proof-carrying code - Wikipedia," Wikipedia, [Online].
Available: http://en.wikipedia.org/wiki/Proof-carrying_code.
[Accessed 21 March 2014].

[7] The University of Texas at Dallas, [Online]. Available:
http://www.utdallas.edu/~hamlen/Papers/necula96.pdf.
[Accessed 31 March 2014].

[8] Carnegie Mellon University, [Online]. Available:
http://users.ece.cmu.edu/~dbrumley/courses/18732-
s12/slides/23-proof-carrying-code.pdf. [Accessed 31 March
2014].

[9] Z. Ramzan, V. Seshadri and C. Nachenberg, "Reputation-based
security: An analysis of real world effectiveness," in VB,
Geneva, 2009.

[10] B. Sergey and S. Sean W, Computational approach to
trustworthy, programmer-friendly SoC architectures,
unpublished, 2013.

[11] F. Yu, Y. Chen, T. Diao, T. V. Lakshman and R. H. Katz, "Fast
and memory-efficient regular expression matching for deep
packet inspection," in Architecture for Networking and
Communications Systems, 2006.

[12] "IBM Research," IBM Corp, [Online]. Available:
http://www.zurich.ibm.com/sys/accelerators/bfsm.html.
[Accessed 21 March 2014].

[13] v. L. Jan, R. Jon, A. Kubilay and H. Christoph, "Hardware-
Accelerated Regular Expression Matching at Multiple Tens of
Gb/s," in IEEE INFOCOM, 2012.

[14] "PRL Seminar," Cornell University, [Online]. Available:
http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar01_
02/Nogin/PRLseminar7b.pdf. [Accessed 1 January 2014].

[15] J. v. Lunteren, "High-performance pattern-matching for
intrusion detection," in IEEE INFOCOM, 2006.

[16] A. Onur and S. Jean-Pierre, "Predicting Secret Keys via Branch
Prediction," in The Cryptographers' Track at the RSA
Conference, San Francisco, 2007.

[17] Y. Liwei, X. Weichao, C. Haibo and Z. Binyu, "Security
Breaches as PMU Deviation: Detecting and Identifying
Security Attacks Using Performance Counters," in Second
Asia-Pacific Workshop, 2011.

[18] W. Georg, sysscan.org, [Online]. Available:
http://syscan.org/index.php/download/get/3c6891f2e90e661ea2
3224cd8f419262/SyScan2013_DAY1_SPEAKER05_Georg_
WIcherski_Taming_ROP_ON_SANDY_BRIDGE_syscan.zip.
[Accessed 31 March 2014].

208

