
  
Abstract—  
The paper is divided into two sections. First, we describe our 
experiments in using hardware-based metrics such as those 
collected by the BPU and MMU for detection of malware 
activity at runtime. Second, we sketch a defense-in-depth 
security model that combines such detection with hardware-
aided proof-carrying code and input validation.
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I. EXPERIMENTAL SETUP AND RESULTS 
 
This section describes the experimental setup of malware 
activity detection based on Branch Prediction analysis and 
memory mapping.  
 

A. Branch Prediction analysis-based filters 
 
1) OS, platforms, and applications used 
 
In this study, we use the modified Win32/Renos malware for 
contaminating our systems [1]. The original malware has been 
further modified to add buffer overruns, for experimental use 
by our internal teams. Vtune [2] is used to monitor the Branch 
Prediction Unit (BPU). For this experiment we use Intel HSW 
CPU T245 up to 2.67GHz. For this experiment we developed 
a special C++ checker (Active and Passive safety net, APSN). 
APSN acts as a wrapper around Vtune. The primary function 
of APSN is to automate data analysis. APSN is pre-loaded 
with a cache of BPU data across multiple flavors of 
applications, drivers, software etc. APSN is re-loaded with 
new BPU data before making any changes to the hardware or 
software stack. 
 
2) Training and calculating thresholds 
 
We run the systems with baseline applications and use Vtune 
to report BPU data. All application, driver, and system 
information is kept constant throughout the training. APSN 
performs statistical analysis on the BPU data and determines a 
tripping point for the clean systems. The tripping point is the 
maximum percentage of errors made by the BPU over the 

 
 

 
 

entire dataset. Figure 1 reflects BPU data from systems that 
are unaffected with malware, aka clean systems. Our clean 
systems are running with standard v2.3.4 BIOS, firmware, 
Windows Vista and have been scanned for known malware 
[3]. 

 
Figure 1: BPU data from clean system runs 

For the list of applications used in our experiments, APSN 
calculated a max value of 34% (10% guard-band to minimize 
false failures). In our further field experiment, any process 
generating BPU value over the max value of 34% is 
determined as malware by APSN. 
 
3) Collecting data on malware-affected systems 
 

In this part of the experiment, we use “dirty systems”, 
which are the clean systems above affected with 
Win32/Renos. The usage patterns are kept similar to the 
patterns used in the “clean systems”. We re-collect the BPU 
data by executing similar load experiments. Figure 2 below 
reflects the data from the dirty system runs. 
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Figure 2: BPU data from dirty systems (malware a
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Figure 3: Overlay of data from malware affecte
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devices require appropriate authorization to use functions 
available during manufacturing, which it locks down before 
shipping the products. Specialized software and hardware is 
required to authenticate this level of unlock, commonly known 
red-unlock.  

The DMME model measures 4 parameters for each 
application:  
Memory locations (ML): the number of memory locations a 
specific application accesses.  
Number_of_reads + variance f(Rn): the number of reads done 
by the application plus a pre-calculated guard band to 
account for variations.  
Number_of_writes + variance f(Wn): the number of writes 
done by the application plus a pre-calculated guard band to 
account for variations.  
Max Memory size (MS): memory size that each of these 
applications is reserving or requesting. 
 
f(Rn), f(Wn), f(MS) are computed using controlled software 
runs. Figure 5 describes the major blocks and interaction of 
the memory spoofer. In our system, applications request 
memory transactions via the memory manager (MM). The 
main purpose of the MM is to act as a bridge between the 
application layer and the CPU. As its secondary role, the MM 
also feed-forwards the application type and its memory 
request data to the Dynamic Memory Monitoring Engine 
(DMME). The DMME tallies this constant feed of data to the 
pre-calculated values of f(Rn), f(Wn), F(MS) and checks to 
make sure the data from the MM is lower than values present 
in the behavioral model. If an application violates thresholds, 
the DMME produces a report for the APSN. The report 
contains application id and memory details. The APSN uses 
this signal to tag its application as high risk and requests BPU 
data to be re-scrutinized.   

 
Figure 5: APSN system with DMME + BPU 

We model the above blocks by re-running our clean_system 
and dirty_system and collect data on how many times our 
DMME generates a report for the APSN. Figure 6 shows an 
overlay of our BPU results with memory analysis data. It is 

evident from the graph that combining memory analysis data 
and BPU results would detect a large percentage of malware 
calls. There is a chance of obtaining some false positives. For 
example, in our case 1 run out of X was a false positive. 
However, there is a promise of being able to have a low false 
negative rate as opposed to using BPU alone.  

 : DMME generated the trigger.  
: DMME did not generate the trigger. 

 
Figure 6: DMME data overlaid on BPU 

 
This approach of using BPU and memory mapping data be 
reliably used for malware detection.  
 

High level pseudo-code APSN+DMME:   

 
 

Although our study provides a compelling solution for 
malware detection, a few points are relevant before closing the 
discussion. 

1. Malware is evolving. The malware used in our study 
was very potent and created a noticeable difference 
between clean and dirty systems. It is likely that 
malware loaded applications can be developed to 
have very subtle variations in memory and BPU 
usage. It is necessary to continue further research on 
the implications of many degrees of malware on BPU 
data. 
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2. Interpreted languages are challenging. Though 
overlapping memory spoofing data over BPU creates 
a very clean filter for malware detection, more data 
collection needs to be done using applications 
developed on interpreted languages (like Java). 
Interpreted languages have a tendency to follow 
random patterns of memory fetches and can throw off 
our model behavior. 

The above reasons make a case for us to explore defense in 
depth and understand the benefits of combining malware 
detection with defense in depth. In the following section of our 
paper, we propose a hardware based eco-system built around 
our APSN system.  

II. SECURITY MODELLING BY COMBINING MULTIPLE 
SOLUTIONS 

A. Proof-carrying code 
Proof-carrying code, or simply PCC is a mechanism that 

allows code consumer to check the validity of the code 
without using cryptographic techniques [6]. PCC increases 
security, with very little or no performance overhead during 
run-time [7]. PCC allows the code consumer to define a safety 
policy and then validate pre-run time that this policy has been 
satisfied [8]. Adding proof-carry checkers to our APSN gives 
us additional security against malware coded in interpreted 
languages. The idea is to have software vendors attest their 
software/applications with embedded signatures. Also, any 
new software, driver, applications need to pre-populate the 
APSN with its BPU data predictions [9].  
 

B. Hardware-based input validation 
Several attacks can be run against a web application, 

inserting crafted data — often, too much at once — which can 
confuse, crash, or make the web application divulge too much 
information to the attacker. Buffer overflow attacks are the 
best examples to prove the importance of input validation. In 
this last section of our paper we propose a hardware-based 
input validation technique, the idea is similar to a few 
academia proposals on input parsing [10].  

Network intrusion detection systems (NIDS) [11] are an 
efficient mechanism for passively examining network traffic 
to determine whether a packet contains an attack payload or 
not. Our proposal is to add input parsing as a by-product of 
this packet examination. 

Traditional NIDS systems are designed to match a specific 
known string. One or more string matches are combined into a 
single rule used to define a signature. However, static and 
loose signatures can increase the number of false positives. 

The answer to static pattern matching has been to use 
hardware based regular expressions (B-FSM) [12]. A single 
regular expression can cover a large number of static matches, 
and thus regular expressions have become essential for 
combining many types of detected patterns. Our approach is to 
simplify the input to well-defined chunks of data that is linked 
together with known constraints. For example, when a user 
inputs login details, hardware will perform the following 
steps. (1) Parse the input, and tabulate the data into a simple 

format. (2) Run specific pattern matching on each field of the 
tabulated data, in this case [a-z][0-9][len_max:12]. 

This tabulation of inputs into known fields will remove any 
ambiguity before the code is executed, thus reducing the risk 
of attack. Unfortunately, today’s regular expression matching 
schemes that are implemented in software pose a very high 
performance overhead. One solution for bypassing the 
performance overhead is to implement the regex matching in 
hardware. 

A few previous solutions have used hardware to perform 
this complex computation [13]. Some previous solutions were 
to implement the regex matching logic on programmable 
devices like FPGAs. Though they are efficient, they have a 
few drawbacks. 

1. They are complex to modify and program.  
2. FPGA process size is different from current 

mainstream process (14nm, or 22nm). This process 
difference forces the regex logic and main CPU to be 
on different pieces of silicon, thus leading to 
complicated power flows and clock management, 
eventually adding to the cost of manufacturing and 
testing.  

To overcome the above drawbacks, our solution is to move 
the regex matching logic inside the CPU/SoC silicon. We 
propose developing an input parsing and regex matching 
(IPRM) module inside the CPU/SoC. This module would be 
made up of an input parser, and a malware regex matcher.  

Input Parser (IP) has two main duties. The primary duty is 
authentication of the PCC. The IP needs to authenticate the 
proof of the code, by running it against the LF theorem 
checker [14]. Once the proof is authenticated, the IP parses the 
data and tabulates it into pre-determined fields for a given 
application.  

Malware Regex Matcher (MRM) will monitor the parsed 
code for any malware strings. The MRM can be run in two 
modes. In mode 1, it analyzes the network packets and 
displays them on the console. In mode 2 (default) the MRM 
will analyze the packets and check them against a pre-defined 
regex defined by the hardware. Broadly, it is responsible for 
acting like a network intrusion detection system [15].  

Incoming raw data is first processed by the IP. If the PCC 
and tabulation are successful, the IP passes the processed 
information to the MRM. The MRM will then analyze the 
packets for any malware. Any failures in either MRM or the 
IP add the application/software to the quarantine report. The 
system communicates these reports back to application 
vendors. IPRM is designed so that MRM and IP order can be 
interchanged in the pipeline.   

 

 
Figure 7: IP feeding tabulated data into the MRM 
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III. SUMMARY 
Our paper presents two important layers of security, one 

during runtime at the system level via our APSN, and second 
layer of security via our IPRM. We prove the benefits of 
overlaying the BPU data over memory mapping data from the 
DMME and argue that using this combination provides us 
with a viable solution for detecting malware. We further 
enhance the level of security by using efficient support of the 
state-of-the-art regex and input handling implemented in 
hardware. We show the benefits of integrating the IPRM into 
SoC and main CPU silicon. 

IV. FUTURE WORK 
Our study in this paper was performed under very tight 

conditions on high-speed performance machines using a single 
flavor of malware. The BPU and DMME data needs to be 
characterized in-depth by using many different flavors of 
malware. We foresee changes to the thresholds as more and 
more flavors of malware and system combinations are 
introduced, and as data is analyzed. We also recognize the 
need for future work in the area of performance analysis 
around LF proof checks implemented in hardware and side-
channel attacks using BPU data [16]. DMME currently is 
implemented at a restricted privilege level, this puts a lot of 
constraints on sharing performance-overhead and 
implementation details with external entities. We need to plan 
the abstraction of the API’s needed for implementing DMME 
to a user-level privilege. 

 

V. RELATED WORK 
Some previous work has been performed in the area of 

using performance metrics for detecting and identifying 
security attacks [17] [18], however they fail to study the 
performance counter variations introduced due to inherited 
hardware un-maskable interrupts and system flaws and how 
their system responds to legit processes. 

 

ACKNOWLEDGMENT 
The author would like to thank David Grawrock and Dr. 

Sergey Bratus for their help with the preparation of this 
research paper. 

 

REFERENCES 
 
[1]  "Win32/Renos," Microsoft Corp., [Online]. Available: 

http://www.microsoft.com/security/portal/threat/encyclopedia/e
ntry.aspx?Name=Win32%2fRenos. [Accessed 21 March 2014].

[2]  "Intel® 64 and IA-32 Architectures Optimization Reference 
Manual," Intel Corporation, 2012. 

[3]  "McAfee Labs Threats Report," Intel Corporation, [Online]. 
Available: http://www.mcafee.com/us/resources/reports/rp-
quarterly-threat-q4-2013.pdf. [Accessed March 13 2014]. 

[4]  R. Junghwan, R. Ryan and D. X, "Defeating Dynamic Data 
Kernel Rootkit Attacks via VMM-based Guest-Transparent 
Monitoring," in Availability, Reliability and Security 
International Conference, 2009.  

[5]  "Software Concerns of Implementing a Resident Flash Disk," 
Intel Corporation, 1995. 

[6]  "Proof-carrying code - Wikipedia," Wikipedia, [Online]. 
Available: http://en.wikipedia.org/wiki/Proof-carrying_code. 
[Accessed 21 March 2014]. 

[7]  The University of Texas at Dallas, [Online]. Available: 
http://www.utdallas.edu/~hamlen/Papers/necula96.pdf. 
[Accessed 31 March 2014]. 

[8]  Carnegie Mellon University, [Online]. Available: 
http://users.ece.cmu.edu/~dbrumley/courses/18732-
s12/slides/23-proof-carrying-code.pdf. [Accessed 31 March 
2014]. 

[9]  Z. Ramzan, V. Seshadri and C. Nachenberg, "Reputation-based 
security: An analysis of real world effectiveness," in VB, 
Geneva, 2009.  

[10] B. Sergey and S. Sean W, Computational approach to 
trustworthy, programmer-friendly SoC architectures, 
unpublished, 2013.  

[11] F. Yu, Y. Chen, T. Diao, T. V. Lakshman and R. H. Katz, "Fast 
and memory-efficient regular expression matching for deep 
packet inspection," in Architecture for Networking and 
Communications Systems, 2006.  

[12] "IBM Research," IBM Corp, [Online]. Available: 
http://www.zurich.ibm.com/sys/accelerators/bfsm.html. 
[Accessed 21 March 2014]. 

[13] v. L. Jan, R. Jon, A. Kubilay and H. Christoph, "Hardware-
Accelerated Regular Expression Matching at Multiple Tens of 
Gb/s," in IEEE INFOCOM, 2012.  

[14] "PRL Seminar," Cornell University, [Online]. Available: 
http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar01_
02/Nogin/PRLseminar7b.pdf. [Accessed 1 January 2014]. 

[15] J. v. Lunteren, "High-performance pattern-matching for 
intrusion detection," in IEEE INFOCOM, 2006.  

[16] A. Onur and S. Jean-Pierre, "Predicting Secret Keys via Branch 
Prediction," in The Cryptographers' Track at the RSA 
Conference, San Francisco, 2007.  

[17] Y. Liwei, X. Weichao, C. Haibo and Z. Binyu, "Security 
Breaches as PMU Deviation: Detecting and Identifying 
Security Attacks Using Performance Counters," in Second 
Asia-Pacific Workshop, 2011.  

[18] W. Georg, sysscan.org, [Online]. Available: 
http://syscan.org/index.php/download/get/3c6891f2e90e661ea2
3224cd8f419262/SyScan2013_DAY1_SPEAKER05_Georg_
WIcherski_Taming_ROP_ON_SANDY_BRIDGE_syscan.zip. 
[Accessed 31 March 2014]. 

 
 

 

208


