
Parsifal: a pragmatic solution to the binary parsing
problem

Olivier Levillain
Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)

https://github.com/ANSSI-FR

firstname.lastname@ssi.gouv.fr

Abstract—Parsers are pervasive software basic blocks: as soon
as a program needs to communicate with another program or
to read a file, a parser is involved. However, writing robust
parsers can be difficult, as is revealed by the amount of bugs
and vulnerabilities related to programming errors in parsers.
It is especially true for network analysis tools, which led the
network and protocols laboratory of the French Network and
Information Security Agency (ANSSI) to write custom tools. One
of them, Parsifal, is a generic framework to describe parsers
in OCaml, and gave us some insight into binary formats and
parsers. After describing our tool, this article presents some use
cases and lessons we learned about format complexity, parser
robustness and the role the language used played.

In 2010, the Electronic Frontier Foundation scanned the
Internet to find out how servers answered on the 443/TCP
port worldwide [EFF12], [EB10a], [EB10b]. We studied this
significant amount of data with custom tools, to gain thorough
insight of the data collected [LEDM12]. However, the data
contained legitimate TLS [DR08] messages, as well as invalid
messages or even messages related to other protocols (HTTP,
SSH). To face this challenge and extract relevant information,
we needed robust tools on which we could depend. Yet,
existing TLS stacks did not fit our needs: they can be limited
(some valid options are rejected), laxist (they silently accept
wrong parameters) or fragile (they crash on unexpected values,
even licit ones). Thus, we decided to write our own parsers.

Our first attempt to write a TLS parser was with the Python
language; it was quickly written and allowed us to extract
some information. However, this implementation was unac-
ceptedly slow. The second parser was in C++, using templates
and object-oriented programming; its goal was to be flexible
and fast. Yet, the code was hard to debug (memory leaks,
segmentation faults on flawed inputs), and lacked extensibility
since every evolution of the parsers required many lines of
code.

So a new version was written, in OCaml: it used a DSL
(Domain Specific Language) close to Python to describe the
structures to be studied. This third parser was as fast as the
previous one, less error-prone, but still needed a lot of lines
to code simple features. That is why we finally decided to
use a preprocessor to do most of the tedious work, letting
the programmer deal only with what’s important, structure de-
scription, while avoiding usual mistakes in low-level memory
management. This last implementation, Parsifal, has all the
properties we expected: efficient and robust parsers, written
using few lines of code.

Our work originally covered X.509 certificates and TLS
messages, but we soon tried Parsifal on other network proto-

cols (BGP/MRT, DNS, TCP/IP stack, Kerberos) and on some
file formats (TAR, PE, PCAP, PNG). Some of these parsers
are still at an early stage, but one of the strength of Parsifal
is that it is easy to describe part of a protocol, and focus only
on what really needs to be dissected.

Sec. I succinctly presents how Parsifal works. Then, we
describe how to write a PNG parser using Parsifal in Sec. II.
Next, Sec. III presents some difficulties related to binary
parsers through case studies, to emphasize the properties of
Parsifal-based parsers: robustness, conciseness, expressiveness.
Sec. IV presents some elements of comparison between stan-
dard tools and Parsifal for several formats described. Sec. V
presents the lessons learned by spending years writing parsers.
Finally, Sec. VI compares our work to existing tools.

I. PARSIFAL: A QUICK TOUR

A. PTypes

Parsifal relies on the idea that tedious code should not be
written by humans since it can be generated. The basic blocks
of a Parsifal parser are PTypes, that is OCaml types augmented
by the presence of some manipulation functions: a PType t is
composed of:

• the corresponding OCaml type t;

• a parse t function, to transform a binary represen-
tation of an object into the type t;

• a dump t function, that does the reverse operation,
that is dumping a binary representation out of a
constructed type t;

• a value of t function, to translate a constructed
type t into an abstract representation, which can
then be printed, exported as JSON, or analysed using
generic functions.

There are essentially three kinds of PTypes:

• basic PTypes, provided by the standard library, like
integers, strings, lists or ASN.1 DER basic objects;

• keyword-assisted PTypes, like structures, are descrip-
tions using a pseudo-DSL integrated to the language
thanks to a preprocessor (some of the offered construc-
tions are presented in the remaining of the section);

• custom PTypes: when the corresponding structure is
too complex to simply describe, you can always go
back to manually writing the type and the functions.

2014 IEEE Security and Privacy Workshops

© 2014, Olivier Levillain. Under license to IEEE.

DOI 10.1109/SPW.2014.35

191

2014 IEEE Security and Privacy Workshops

© 2014, Olivier Levillain. Under license to IEEE.

DOI 10.1109/SPW.2014.35

191

2014 IEEE Security and Privacy Workshops

© 2014, Olivier Levillain. Under license to IEEE.

DOI 10.1109/SPW.2014.35

191



B. Examples of construction

Among the TLS messages, TLS alerts are used to signal
a problem during the session. Such messages are simply
composed of an alert level (one byte with two possible values)
and an alert type (another byte). Here is the corresponding
extract of the specification [DR08]:

enum { warning(1), fatal(2), (255) } AlertLevel;

enum {
close_notify(0),
...
unsupported_extension(110),
(255)

} AlertDescription;

struct {
AlertLevel level;
AlertDescription description;

} Alert;

Code snippet 1.

It is possible to describe such messages in Parsifal with the
following code:

enum alert_level (8, UnknownVal AL_Unknown) =
| 1 -> AL_Warning
| 2 -> AL_Fatal

enum alert_type (8, UnknownVal AT_Unknown) =
| 0 -> AT_CloseNotify
...
| 110 -> AT_UnknownExtension

struct alert = {
alert_level : alert_level;
alert_type : alert_type

}

Code snippet 2.

As a result, the preprocessor will generate three OCaml types,
and some functions:

(* alert_level *)

type alert_level =
AL_Warning

| AL_Fatal
| AL_Unknown of int

(* parse/dump/value_of functions *)
val parse_alert_level : input -> alert_level
val dump_alert_level : output -> alert_level -> unit
val value_of_alert_level : alert_level -> value

(* alert_type *)

type alert_type =
AT_CloseNotify

...
| AT_Unknown of int

(* ... 3 functions, similar to those relative *)
(* to alert_level ... *)

(* alert *)

type alert = {
alert_level : alert_level;
alert_type : alert_type;

}
val parse_alert : input -> alert
val dump_alert : output -> alert -> unit
val value_of_alert : alert -> value

Code snippet 3.

The constructions available in Parsifal are enumerations
(enum keyword), records (struct), choices allowing for

types depending on a parameter (union), ASN.1 DER struc-
tures and choices (asn1 struct and asn1 union) and
aliases (alias and asn1 alias).

II. A COMPLETE EXAMPLE: A BASIC PNG PARSER

As an example of the conciseness of Parsifal code,
this section briefly describes how to write a simple PNG
parser. A PNG image is composed of a magic number
("\x89PNG\r\n\x1a\n") followed by a list of chunks,
which are described in Table I.

Offset Field Size Type
0 Chunk size sz 4 Big-endian integer
4 Chunk type 4 String
8 Chunk data sz Chunk-dependent
8 + sz CRC 4 CRC 32

TABLE I.

Using this first definition of the PNG format, it is easy to
write some code in Parsifal:

struct png_chunk = {
chunk_size : uint32;
chunk_type : string(4);
chunk_data : binstring(chunk_size);
chunk_crc : uint32;

}

struct png_file = {
png_magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
chunks : list of png_chunk;

}

Code snippet 4.

The first struct definition describes what a chunk is,
and the png file one what a PNG file is. Since Parsifal
automatically generates the associated parse, dump and
value of functions, a complete tool extracting PNG chunks
can be written by adding some lines:

let input = string_input_of_filename Sys.argv.(1) in
let png_file = parse_png_file input in
print_endline (print_value (value_of_png_file png_file))

Code snippet 5.

Here is the result of the compiled programs on a PNG file:

value {
png_magic: 89504e470d0a1a0a (8 bytes)
chunks {

chunks[0] {
chunk_size: 13 (0x0000000d)
chunk_type: "IHDR" (4 bytes)
chunk_data: 00000014000000160403000000 (13 bytes)
chunk_crc: 846176565 (0x326fa135)

}
chunks[1] {

chunk_size: 15 (0x0000000f)
chunk_type: "PLTE" (4 bytes)
chunk_data: ccffffffcc99996633333333000000 (15 bytes

)
chunk_crc: 1128124197 (0x433dcf25)

}
chunks[2] {

chunk_size: 1 (0x00000001)
chunk_type: "bKGD" (4 bytes)
chunk_data: 04 (1 bytes)
chunk_crc: 2406013265 (0x8f68d951)

}
chunks[3] {

chunk_size: 77 (0x0000004d)
chunk_type: "IDAT" (4 bytes)
chunk_data: 78da63602005b8000184c5220804... (77

bytes)

192192192



chunk_crc: 466798482 (0x1bd2c792)
}
chunks[4] {

chunk_size: 86 (0x00000056)
chunk_type: "tEXt" (4 bytes)
chunk_data: 436f6d6d656e7400546869732061... (86

bytes)
chunk_crc: 1290335428 (0x4ce8f4c4)

}
chunks[5] {

chunk_size: 0 (0x00000000)
chunk_type: "IEND" (4 bytes)
chunk_data: "" (0 byte)
chunk_crc: 2923585666 (0xae426082)

}
}

}

Code snippet 6.

Of course, this is only the beginning, and one would
likely want to improve the description by enriching the chunk
content. This is actually a strength of our methodology: it is
generally easy to describe the big picture and then to refine
the parser to take into account more details.

A. Union and progressive enrichment

To illustrate how to enrich the chunk data, let us start with
the image header, corresponding to the "IHDR" type. It is
supposed to contain the following structure:

struct image_header = {
width : uint32;
height : uint32;
bit_depth : uint8;
color_type : uint8;
compression_method : uint8;
filter_method : uint8;
interlace_method : uint8;

}

Code snippet 7.

To use this new structure when dealing with a "IHDR"
chunk, we have to create a union PType, depending on the
chunk type:

union chunk_content [enrich] (UnparsedChunkContent) =
| "IHDR" -> ImageHeader of image_header

Code snippet 8.

Finally, we have to rewrite the chunk data field in the
png chunk structure:

struct png_chunk = {
chunk_size : uint32;
chunk_type : string(4);
chunk_data : container(chunk_size) of

chunk_content(chunk_type);
chunk_crc : uint32;

}

Code snippet 9.

It should be clear how to enrich other chunk types from
now: write the PType corresponding to the chunk content,
and then add a line in the chunk content union. When
facing an unknown chunk type, parse chunk content
will produce an UnparsedChunkContent value containing
the unparsed string.

B. PContainers: a useful concept

As we began using Parsifal to describe various file formats
and network protocols, it dawned on us that it might be useful
to create another concept that could be reused: PContainers.

Initially, the only existing containers were lists, but the notion
of containers can be broader: the abstraction of a container
containing a PType makes it possible to automate some pro-
cessing that has to be done at parsing and/or dumping time.
Here are some examples:

• encoding: hexadecimal, base64;

• compression: DEFLATE, zLib or gzip containers;

• safe parsing: some containers provide a fall-back
strategy when the contained PType can not be parsed;

• miscellaneous checks: CRC containers are useful to
check a CRC at parsing time and to generate the CRC
value at dumping time.

There again, the idea is to reuse code to reduce the time
spent writing the same code time and again. Here is an example
of an ancillary PNG chunk called iCCP (Embedded Profile),
which contains a null-terminated string (called cstring) that
should not exceed 80 characters, a byte field and a compressed
string. Using standard Parsifal containers, the chunk can then
be described as follows:

struct embedded_profile = {
name : length_constrained_container(AtMost 80) of

cstring;
compression_method : uint8;
compress : ZLib.zlib_container of string;

}

Code snippet 10.

C. Custom PTypes

Finally, when it is not possible to describe a PType using
keywords like struct or union, it is always possible to
write a PType from scratch.

Assuming it does not exist already in the standard library,
here is how you could describe the null-terminated string
cstring as a custom PType. The intended type is a simple
string, but the corresponding parse and dump functions have
to be written manually:

type cstring = string

let rec parse_cstring input =
let next_char = parse_char input in
if next_char <> ’\x00’
then (String.make 1 next_char) ˆ (parse_cstring input)
else ""

let dump_cstring buf s =
POutput.add_string buf s;
POutput.add_char buf ’\x00’

Code snippet 11.

Another example of custom PType in the PNG description
is the chunk itself. With the struct definition presented
earlier, it is possible to create and dump inconsistent chunks
where the length or the CRC do not correspond to the data
contained. This might be useful for fuzzing purpose, but it
makes it harder to produce valid values:

let data_chunk = {
chunk_size = String.length png_data;
chunk_type = "IDAT";
chunk_data = UnparsedChunkContent png_data;
chunk_crc = Crc.crc32 ("IDAT" ˆ png_data);

}

Code snippet 12.

193193193



An assumed design choice in Parsifal is to simplify the ma-
nipulation (parsing and dumping) of valid files when possible,
even if it makes other use cases (like fuzzing) less accessible.
The following snippets present a custom PType to replace
png chunk (only the parse function is detailed) and how
the new, simpler, way to create a chunk:

type png_chunk = {
chunk_type : string;
chunk_data : chunk_content;

}

let parse_png_chunk input =
let size = parse_uint32 input in
let raw_data = peek_string (size + 4) input in
let chunk_type = parse_string 4 input in
let data = parse_container size

(parse_chunk_content chunk_type) input in
let crc = parse_string 4 input in
let computed_crc = Crc.crc32 raw_data in
if computed_crc <> crc then failwith "Invalid CRC";
{ chunk_type = chunk_type; chunk_data = data }

Code snippet 13.

let data_chunk = {
chunk_type = "IDAT";
chunk_data = UnparsedChunkContent png_data;

}

Code snippet 14.

The resulting variable can then be easily integrated in a chunk
list to produce a PNG file.

III. CASE STUDIES

For the moment, our main goal has been to write robust
parsers to analysing data but, most importantly, to understand
how some protocols or file formats really work. The initial
parsers covered TLS messages and X.509 certificates, but
we have been describing more and more formats, sometimes
to study new areas, sometimes as a challenge to test Parsi-
fal’s expressivity. At the beginning, these challenges required
changes in Parsifal preprocessor or standard library, but such
modifications have become rare lately, which means we have
reached a balance between language expressivity and imple-
mentation complexity. Here are some examples of encountered
difficulties, as well as how we handled them in Parsifal.

A. ASN.1 RSA key

ASN.1 is usually considered complex to parse. However,
it is important to remember that ASN.1 is an abstract syntax
notation, that can be encoded using different rules. The Basic
Encoding Rules (BER) allow variable length data structures,
whereas the Distinguished Encoding Rules (DER) are more
restrictive and require data are in canonical forms. For our
needs, we only considered the latter, which uses a rather simple
TLV (Tag/Length/Value) header.

To simplify the development of ASN.1 DER types, header
and scalar value parsing is automated by Parsifal, through basic
DER types implemented in Parsifal standard library, and thanks
to new helper keywords to build ASN.1 sequences. For exam-
ple, PKCS #1 [JK03] describes an ASN.1 structure for RSA
private keys. The following code implements this type and is
a complete program to parse a PEM1 file named key.pem
containing an RSA private key and print the corresponding
modulus:

1PEM is the name given to Base64-encoded DER data.

asn1_struct rsa_key = {
version : der_smallint;
modulus : der_integer;
publicExponent : der_integer;
privateExponent : der_integer;
prime1 : der_integer;
prime2 : der_integer;
exponent1 : der_integer;
exponent2 : der_integer;
coefficient : der_integer

}

let input = string_input_of_filename "key.pem" in
let key = parse_base64_container parse_rsa_key input in
print_endline (hexdump key.modulus)

Code snippet 15.

B. DNS

At first, analysing DNS messages was a challenge to
better understand the notion of parsing context. DNS resource
records can indeed be compressed by referencing to previously
read domain names. This form of compression requires a con-
text retaining the domain names encountered during parsing.
DNS parsing thus relies on the following data structure:

type dns_pcontext = {
base_offset : int;
direct_resolver : (int, domain) Hashtbl.t;

}

Code snippet 16.

The hash table is updated every time a new domain is parsed in
the message, and can be used when encountering compressed
domains. Offsets are computed relatively to the beginning of
the message. The same effort must be done when dumping a
message: record the offsets of the names produced and reuse
them to compress the result.

C. DVI: an old format

More recently, we happen to look at the DVI file format,
which proved to be an interesting anti-pattern, as far as binary
formats are concerned. Indeed, a file can simply described by
the following structures:

struct dvi_command = {
opcode : opcode;
command : dvi_command_detail (opcode);

}

alias dvi_file = list of dvi_command

Code snippet 17.

This means that a DVI file is a list of commands. Yet, command
details (and in particular the details length) depend on the
opcode. It is thus necessary, to parse a given file, to at least
know the lengths of the DVI commands it contains. This
clearly is not a desirable property, since it prevents a format
from being extensible: adding new commands would probably
break command alignment in older implementations, even if
these commands are optional.

D. PE

To better understand UEFI, some co-workers had to study
Portable Executable programs2. To this aim, they tried Parsifal,
and had to deal with what strikes us as a bad idea: non-linear
parsing. To analyse a PE, you have to walk through the file

2Indeed, the format of Windows executables is used in UEFI.

194194194



using offsets, forwards and sometimes backwards. This is now
possible in Parsifal, but it is very hard to check properties on
such file formats.

IV. PERFORMANCE COMPARISON

This section proposes very partial comparisons between
parser implementations. The criteria used are the number of
lines needed to code the parser, and the time needed to parse
a typical input.

A. Extracting certificates from TLS answers

First, let us compare several of our TLS parsers described
in the introduction: the C++ parser, the OCaml one (using a
DSL) and the Parsifal one. One typical tasks for those parsers
was to extract the server certificates from an answer, when it
was possible. The results on a typical input (containing both
valid TLS messages and other random responses) are presented
in Table II.

C++ OCaml Parsifal
LOC 8,5000 4,000 1,000

Processing time 100 s 40 s 8 s

TABLE II.

B. PNG parsers: the intern’s choice

Two years ago, an intern studied some image file formats.
Among the chosen formats, PNG was the first one to be
developed. We instructed our intern to write two PNG parsers:
one in C (a language he already knew) and one in OCaml
using Parsifal3. Table III gives some elements to compare both
implementations, tested against a set of 63,000 PNG images.

C Parsifal
LOC 4,000 350

Processing time 1,5 h 4 h

TABLE III.

C. MRT/BGP: the need for an efficient robust parser

To better understand the structure of internet and its
resilience, we studied the BGP protocol (Border Gateway
Protocol [RLH06]), through which networks are connected
to form the internet. The RIPE4 provides daily archives of
BGP messages collected at different points of the internet,
the collectors. This data, contained in MRT archives (Multi-
Threaded Routing [BKL11]), amounts to about 2 GB per day.

At first, we used existing tools to extract the BGP route
declarations. libbgpdump5, a program written in C was the
right tool, except when the program crashed due to complex
memory bugs. Since we could not easily understand the
reasons of the errors, we quickly rewrote a tool to parse

3As a side note, when the intern had to implement the JPEG format, he did
not have enough time for two developments, and he chose Parsifal over C.

4The RIPE is one of five Region Internet Registries providing Internet
resource allocations that support the operation of the Internet globally.

5http://www.ris.ripe.net/source/bgpdump

MRT files and match the output of libbgpdump. This was
done using Parsifal in three days. Table IV compares different
implementations: the libbgpdump C version, an independent
OCaml implementation, and the Parsifal-powered tool.

libbgpdump OCaml Parsifal
LOC 4,000 1,200 550

Processing time 23 s 180 s 35 s

TABLE IV.

Both TLS and PNG cases compare different versions of
the same code, written by the same person using different
development methods. On the contrary, the MRT case shows
results for implementations written by different people. Ob-
viously the results only cover few use cases, but on these
examples, Parsifal parsers are much shorter than the other ones.
It is even harder to conclude anything about the relative speed
of the compared tools; however, from our point of view, it is
sometimes acceptable to pay the price for robustness, as in the
MRT case.

V. LESSONS LEARNED

Parsifal has been developed at ANSSI for more than 3 years
and its interface is becoming rather stable. In this section, we
discuss several lessons we learned while writing binary parsers.

On formats

There exists such thing as a good or a bad format. Formats
relying on simple TLV (Tag/Length/Value) structures are very
easy to parse. Moreover, they allow for partial parsing (for
example when considering unknown extensions). A concrete
example of such a good format, according to our experience,
is PNG: chunks respect the TLV logic and the corresponding
structures are rather simple. However, as was shown with the
png chunk structure, a strict encapsulation of containers
(length, CRC) could further simplify the parsing.

On the contrary, several properties leads to error-prone
parsers and should be avoided. For example, non-linear pars-
ing makes it unnatural to check whether the data we parse
are in a licit location; this is the case in PE and JFIF formats,
the latter actually being similar to a filesystem with directories
and entries. Another undesirable property is when parsers are
required to know every option to correctly interpret the file,
such as the DVI format.

On the language

Parsifal was written in OCaml, a strongly-typed functional
language. Here are the advantages of this language, regarding
our goal to write parsers:

• the language is naturally expressive, which helps to
write concise code;

• higher order functions allows to write containers easily
(e.g. parse base64 container naturally takes
as an argument a parse function);

195195195



• as the memory is handled automatically by the garbage
collector, several classes of attacks (double frees,
buffer overflows) are impossible6;

• pattern matching exhaustiveness check is a very help-
ful feature when dealing with complex structures or
algorithms, since the compiler will remind you of
unhandled cases.

On the process

In the end, our choice to automatically generate the tedious
parts of the code paid: Parsifal allows to quickly write binary
parsers, even for complex formats. What’s more, the descrip-
tion process turned out to be accessible, even for persons with
no initial OCaml (or functional programming) background.

However, you should not try to add everything in your
DSL or in your constructions. Some parts of a parser are so
complicated that they should remain manually written. That is
the reason why we kept the possibility to fall back to manual
PTypes when needed.

VI. RELATED WORK

Parsifal is not the first generic framework allowing for
writing binary parsers. Popular alternatives are Scapy [BtSc12]
and Hachoir [Sti12], two Python projects aiming respectively
at dissecting network protocols and file formats. As our first
target was TLS messages, we naturally tried to implement the
protocol in Scapy. However, even if Scapy offers an expressive
language to describe network packets, there were two major
obstacles for our purpose: Python (and Scapy) is very slow,
compared to other languages, which was not compatible with
the amount of data to dissect; Python does not offer as
many guarantees as OCaml (strong typing, exhaustive pattern-
matching)7. As a side note, it is interesting to notice that
Scapy’s goal was not only to parse network packets, but also
to forge such packets, even invalid ones. As was shown earlier,
we chose a different path while developing Parsifal: robust and
concise code instead of fuzzing features.

Another solution similar to Parsifal is the binpac lan-
guage [RPRS06], developed within the Bro project. The idea
is to describe network layers in a DSL, which is then compiled
to produce C code. Here again, the C language does not offer
the same guarantees as OCaml. What is more, some parsers we
later wrote proved us that it was sometimes easier to manually
write some parts of the parsers, which is not always simple
with an external preprocessor, especially from the debugging
point of view.

We also considered existing libraries in functional lan-
guages. For example, OCaml Bitstring library [Jon12]
allows to parse bit fields by extending the pattern-matching,
which can be very useful to parse binary protocols and
formats. Moreover, Bitstring is also implemented through
a camlp4 preprocessor, like Parsifal. Yet, parsing bitstring
is only a small part of what we needed, and Parsifal is able

6However, this alone is far from perfect, since we may avoid arbitrary
execution but not a fatal exception.

7ANSSI has led several works on the contribution of different programming
languages to software security (see [JL14] in particular).

to automate many more cases, which could not really be
implemented as Bitstring extensions.

Finally, another promissing functional language we consid-
ered is Haskell. Using typeclasses seemed to be a good way to
automate code generation for parsing functions. As a matter,
there exists a popular Haskell library, Parsec [Lei14]. Yet
this library seemed essentially used to parse LL[1] grammars,
which does not always fit binary formats. Furthermore, the
automating process we really need is not easily available in
Haskell: there is no standard way to automatically derive a
function in Haskell for an arbitrary typeclass, which is exactly
what Parsifal does.

VII. CONCLUSION

Parsifal is a generic framework to describe parsers in
OCaml which has been used to describe several file formats
and network protocols. From our point of view, this tool has all
the expected properties: expressive language, code conciseness,
efficient and robust programs. Moreover, Parsifal allows for an
incremental description, which is useful to progressively learn
the internals of a new format. The contribution of Parsifal to
security is twofold. First it can help provide sound tools to
analyse complex file formats or network protocols. Secondly
we can implement robust detection/sanitization systems.

However, our tool has has several limits. First, due to some
design choices, Parsifal is not meant to write fuzzers, but to
simplify the parsing of valid inputs. Moreover, we currently
only used Parsifal to analyse data and to build standalone
sanitizing tools. One logical next step would be to use it in
more real-world contexts, possibly with other programming
languages, e.g. IDS software including our robust parsers.
Future work also include writing libraries to completely handle
file formats and network protocols, beyond the mere parsing
step, e.g. a reference TLS stack or PNG tools.

Parsifal is publicly available under an open source license
since June 2013 (https://github.com/ANSSI-FR/parsifal) and
has been the subject of a tutorial during a conference last
year [LDM13]. The git repository contains examples of step-
by-step code description concerning TAR archives, the DNS
protocol, PNG images and PKCS#10 CSR (Certificate Signing
Request).

REFERENCES

[BKL11] L. Blunk, M. Karir, and C. Labovitz. Multi-Threaded Routing
Toolkit (MRT) Routing Information Export Format. RFC 6396
(Proposed Standard), October 2011.

[BtSc12] P. Biondi and the Scapy community. Scapy. http://www.secdev.
org/projects/scapy/, 2003-2012.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August
2008. Updated by RFCs 5746, 5878, 6176.

[EB10a] P. Eckersley and J. Burns. An Observatory for the SSLiverse,
Talk at Defcon 18, 2010.

[EB10b] P. Eckersley and J. Burns. Is the SSLiverse a safe place?, Talk
at 27C3, 2010.

[EFF12] Electronic Frontier Foundation. The EFF SSL Observatory.
https://www.eff.org/observatory, 2010-2012.

[JK03] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1. RFC
3447 (Informational), February 2003.

196196196



[JL14] É. Jaeger and O. Levillain. Mind your languages: A discussion
about languages and security. In IEEE Security and Privacy
LangSec workshop, 2014.

[Jon12] R. Jones. bitstring. http://code.google.com/p/bitstring/, 2003-
2012.

[LDM13] O. Levillain, H. Debar, and B. Morin. Parsifal: writing efficient
and robust binary parsers, quickly. In 8th International Confer-
ence on Risks and Security of Internet and Systems (CRISIS),
2013.

[LEDM12] O. Levillain, A. Ebalard, H. Debar, and B. Morin. One Year of
SSL Measurement. In ACSAC, 2012.

[Lei14] D. Leijen. Parsec, a fast combinator parser. http://hackage.
haskell.org/package/parsec, 2001-2014.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271 (Draft Standard), January 2006. Updated
by RFC 6286.

[RPRS06] Ruoming Pang and Robin Sommer. binpac: A yacc for Writing
Application Protocol Parsers. In Internet Measurement Confer-
ence, 2006.

[Sti12] V. Stinner. Hachoir. https://bitbucket.org/haypo/hachoir/wiki/
Home, 2009-2012.

APPENDIX

The current appendix describes Parsifal grammar, that is the
rules corresponding to the constructions added to the OCaml
language by our camlp4 preprocessor.

A. Common tokens

To describe Parsifal constructions, we will use the following standard
tokens:

• 〈ident〉 for a variable identifier;

• 〈constr〉 for a type constructor;

• 〈exception〉 for an exception constructor;

• 〈expr〉 for an arbitrary expression;

• 〈int expr〉 for an expression representing an integer value;

• 〈int〉 for an integer literal.

Moreover, all Parsifal constructions can take options, which are defined
by the following rules, where LittleEndian only relates to enumerations, while
EnrichByDefault and ExhaustiveChoices are specific to unions. It is also
possible to specify parameters to pass to parse and dump functions:

〈option〉 ::= LittleEndian
| EnrichByDefault
| ExhaustiveChoices
| ParseParam 〈ident〉
| DumpParam 〈ident〉

Another pervasive token in this grammar is 〈PType〉, which can either be
an OCaml type, provided that the corresponding parse and dump functions
exist, or a PContainer encapsulating a PType:

〈PType〉 ::= 〈ident〉 [(〈params〉)]
| 〈ident〉 [(〈params〉)] of 〈PType〉

Finally, for the sake of simplicity, a token named 〈foos〉 should be
interpreted as a list of 〈foo〉 tokens. The corresponding rules have been
omitted.

B. Enumerations

An enumeration is characterized by the size in bits of the underlying
integers, the way to behave when facing an unknown value (throw an exception
or use a fallback constructor), and a list of values (the enumeration cases):

〈enum def 〉 ::= enum 〈ident〉 [〈options〉] (〈int〉, 〈e undef 〉) = 〈e cases〉

〈e case〉 ::= 〈int expr〉 → 〈constr〉
| 〈int expr〉 .. 〈int expr〉 → 〈constr〉

〈enum undef 〉 ::= Exception 〈exception〉
| UnknownVal 〈constr〉

C. Structures
A structure is essentially a sequence of fields, some of which can be

optional, temporary fields (checkpoints) or made-up fields (parse field, which
do not relate to something in the binary input):

〈struct def 〉 ::= struct 〈ident〉 [〈options〉] = 〈s fields〉
〈s field〉 ::= [〈decorator〉] 〈ident〉 : PType

〈decorator〉 ::= optional
| parse checkpoint
| parse field
| dump checkpoint

D. Unions

Unions is a list of union cases associating a discriminating value with
a constructor, which usually contains a PType (in the absence of a PType,
the constructed value is empty). In case the union can not be parsed, a
default constructor is used. If no PType is specified for the default constructor,
binstring is used:

〈union def 〉 ::= union 〈ident〉 [〈options〉] (〈constr〉 [of PType]) = 〈u cases〉
〈u case〉 ::= 〈expr〉 → 〈constr〉 [of PType]

E. Aliases
Some other constructions allow to describe PTypes: aliases to rename a

PType, ASN.1 structures and aliases are syntactic sugar to describe an ASN.1
DER type (header and content):

〈alias def 〉 ::= alias 〈ident〉 [〈options〉] = PType

〈asn1 alias def 〉 ::= asn1 alias 〈ident〉 [〈options〉]
| asn1 alias 〈ident〉 [〈options〉] = 〈asn1 header〉 〈PType〉

〈asn1 struct def 〉 ::= asn1 struct 〈ident〉 [〈options〉] = 〈s fields〉

F. Parsifal standard PTypes
Here is a list of standard PTypes provided by the standard library:

• uintX: unsigned integers on X bits;

• string / binstring: character strings, which can span across a
given number of bytes or the remaining of the input. The distinction
between string and binstring is the way to represent the value
once parsed;

• bitbool and bitint to describe bit fields;

• magic to handle magic values (expected markers);

• ipv4 / ipv6;

• cstring for null-terminated strings

• der boolean, der integer, der bitstring, der oid
and other basic ASN.1 types.

and here is a list of PContainers that are available in Parsifal:

• list / array: a list or an array of a given number of element. A
list can also cover the remaining input;

• base64 container and hex container to handle automat-
ically these encoding;

• zlib container to uncompress the input during parsing;

• length constraint, for additional length checks;

• safe union, to handle a failsafe mode in case a parse function
fails with a union.

197197197


