
Phantom Boundaries and Cross-layer Illusions in 802.15.4 Digital Radio
(Research Report)

Travis Goodspeed

Straw Hat Security
travis@radiantmachines.com

Abstract—The classic design of protocol stacks, where each
layer of the stack receives and unwraps the payload of the
next layer, implies that each layer has a parser that accepts
Protocol Data Units and extracts the intended Service Data
Units from them. The PHY layer plays a special role, because
it must create frames, i.e., original PDUs, from a stream of bits
or symbols. An important property implicitly expected from
these parsers is that SDUs are passed to the next layer only if
the encapsulating PDUs from all previous layers were received
exactly as transmitted by the sender and were syntactically
correct.

The Packet-in-packet attack (WOOT 2011) showed that this
false assumption could be easily violated and exploited on
IEEE 802.15.4 and similar PHY layers; however, it did not
challenge the assumption that symbols and bytes recognized by
the receiver were as transmitted by the sender. This work shows
that even that assumption is wrong: in fact, a valid received
frame may share no symbols with the sent one! This property is
due to a particular choice of low-level chip encoding of 802.15.4,
which enables the attacker to co-opt the receiver’s error
correction. This case study demonstrates that PHY layer logic
is as susceptible to the input language manipulation attacks
as other layers, or perhaps more so. Consequently, when
designing protocol stacks, language-theoretic considerations
must be taken into account from the very bottom of the PHY
layer; no layer is too low to be considered “mere engineering.”

Keywords-LangSec, 802.15.4, Packet-in-packet

I. BACKGROUND

Key property of network stacks: The key property of

network stacks is that the objects constructed by the receiv-

ing stack at any layer are equivalent to those transmitted by

the sending stack. Platform differences like endianness and

message loss due to noise notwithstanding, the assumption

that the contents of successfully received messages are

exactly the same as of those transmitted is so fundamental

that it hardly ever gets explicitly specified as a security

requirement. Yet this implicitly assumed property deserves

a closer look.

Each layer of the OSI stack model deals with its par-

ticular kind of object: Physical layer (PHY) with encoded

continuous signals, Link layer (LNK) with frames, Network

layer with packets, and so on for Transport, and, where

A short version of this paper, describing a practical, hands-on bypass
of the protection technique in [1], appeared in [2]. This paper gives a
theoretical LangSec perspective on the original attack, the bypass, and the
challenges of designing defensible PHY layers.

implemented, for Session and Presentation layers. Thus the

primary function of a receiving layer is to produce respective
objects for the next layer, in a manner faithful to the intent

and content of the sender’s transmissions.

Functioning of layers is commonly understood and de-

scribed in terms of addressing: e.g., LNK frames are ad-

dressed to specific nodes or broadcast to groups of nodes

on a local link, Network packets are uniquely addressable

to nodes in a global network, Transport layer specifies

receiving applications on a (globally addressed) node, and

so on. Formats and fields of these layers’ data structures are

explained in terms of such addressing. However, this view

obscures the key fact that each layer in the receiving stack

serves as first and foremost a constructor of specific data

objects from a serialized form in which they exist in the

SDU.

Layers as transducers: The key fact of the OSI stack

and similar network stack designs is that each layer is actu-

ally a transducer for received data, consisting of a recognizer
for the intended objects’ serial presentation (which may be

a stream of encoded bits, symbols, bytes, or tokens) and a

constructor of the resulting objects to pass to the next layer

(provided that recognition succeeded). As is common with

input-handling code at communication boundaries, recog-

nizer false positives lead to constructor code being handed

data it doesn’t expect, which in turn leads to computation

driven by such data taking unexpected paths, that is to say,

exploitation. This paper, however, focuses on code never

leaving expected paths, but we still achieve those delightfully

counter-intuitive results that make security worth studying.

The recognizer’s first task is to detect the boundaries of

such representations in the stream and to accumulate them

for parsing. The PHY layer handles this problem in its most

pure form, being tasked with distinguishing between the out-

of-frame state in which it judges received bits or symbols to

be line/ether noise and the in-frame state in which it judges

and records the incoming data as contents of a frame.

Unlike PHY, the higher layers aren’t tasked with discard-

ing “noise” or “garbage” bytes, but must still find boundaries

of their respective objects such as protocol headers in their

PDUs. The key—though often implicit—security property

of the stack implementation is that these boundaries must

be matched exactly as meant and encoded by the sender. In

presence of noise, this is a non-trivial computational task,

2014 IEEE Security and Privacy Workshops

© 2014, Travis Goodspeed. Under license to IEEE.

DOI 10.1109/SPW.2014.33

181

2014 IEEE Security and Privacy Workshops

© 2014, Travis Goodspeed. Under license to IEEE.

DOI 10.1109/SPW.2014.33

181

2014 IEEE Security and Privacy Workshops

© 2014, Travis Goodspeed. Under license to IEEE.

DOI 10.1109/SPW.2014.33

181

which requires an appropriate automaton with that specific

property.

We previously ([3]) demonstrated a non-obvious failure of

802.15.4 PHY recognizer: the simple form of the Packet-in-
packet attack that works by including the symbols that make

up a Physical layer frame in the payload of Application layer.

Normally, the interior bytes of a packet are escaped by the

outer frame’s header, but collisions sometimes destroy that

header. However, these collisions tend to be short and often

leave the interior of the packet intact, damaging only the

beginning or the end. On a busy band like 2.4GHz, this

happens often enough that it can be used reliably to inject

frames into a remote network, without owning a radio.

Our description of the Packet-in-packet attack prompted

mitigations such as [1]. However, these transmitter-side

mitigations took for granted that the symbols recognized by

the receiver—i.e., nybbles of bytes passed from the PHY to

the LNK layer—were exactly as transmitted by the sender.

In this paper we show that this assumption is incorrect, and

that the design of 802.15.4 PHY actually allows a received

frame to share no symbols at all with the transmitted one.

In this paper we undertake a case study of one digital

radio stack, 802.15.4. Let the reader not mistake the specific

character of this case study for a lack of breadth: many

other PHY layers follow the same design and are therefore

susceptible to the surprises we describe. We argue that stack

security and correctness is a formal language recognition

problem even at the lowest layers of PHY, and that no layer

or sublayer design can hope to escape them and remain

defensible.

II. THE LAYER CAKE IS A PHY!

The PHY layer is often described as dealing with “raw

bits”, which it makes into frames. This presumes at least one

recognizer automaton that decides which raw bits belong in

a frame and which don’t. However, even a cursory look

at PHY shows that there are in fact several layers and

representations of bits, and therefore not one but many

automata.

In particular, the 802.15.4 PHY layer encodes its sym-

bols, corresponding to the nybbles of the PHY frame, as

sequences of 32 chips, the “native” ones and zeros of the

protocol’s modulation. Thus “raw bits” of the frame are

certainly not raw; rather, they are extracted from a stream

of chips by an appropriate automaton.

Are “raw bit” boundaries real?: All object boundaries

in higher protocol layers ultimately depend on the symbol

boundaries as constructed on the PHY layer. When even the

bits of a frame are themselves so constructed, correctness of

all the other layer’s interpretation of a message hinges on

the constructing automaton—including the above-mentioned

fundamental property that any successfully received object

was transmitted just so by the sender.

0 −− 11011001110000110101001000101110
1 −− 11101101100111000011010100100010
2 −− 00101110110110011100001101010010
3 −− 00100010111011011001110000110101
4 −− 01010010001011101101100111000011
5 −− 00110101001000101110110110011100
6 −− 11000011010100100010111011011001
7 −− 10011100001101010010001011101101

8 −− 10001100100101100000011101111011
9 −− 10111000110010010110000001110111
A −− 01111011100011001001011000000111
B −− 01110111101110001100100101100000
C −− 00000111011110111000110010010110
D −− 01100000011101111011100011001001
E −− 10010110000001110111101110001100
F −− 11001001011000000111011110111000

Figure 1. 802.15.4 symbols, encoded in chips.

Everything about how we represent frames and packets

in writing—or even in coding—seems to reinforce the idea

that nybble boundaries are “natural” and “hard.” We think

of noise-induced receiver errors as flipping bits, but we

implicitly assume that it’s the bits, not their boundaries, that

get corrupted. Even this corruption is conveniently swept

under the rug, due to checksums.

In fact, all such boundaries are imaginary, and even frame

boundaries detection (SFD matching) is dependent on a

lower layer of chip-level error correction.

Error correction: The chip sequences specified by the

802.15.4 standard to represent symbols (as in Fig. 1) are an

error connecting code that gets processed transparently to

the rest of the stack. This processing happens in a layer of

its own, before SFD matching and frame construction, and

is not normally a part of security modeling.

Thus the standard four zero-byte preamble of an 802.15.4

frame is actually eight repetitions of the zero-symbol

11011001110000110101001000101110 or any suffi-
ciently similar sequence of chips, and similarly with the A7
Start-of-Frame-Delimiter and the rest of the frame. Thus any

received frame has many potential chip-level representations

that will be received equivalently. Not only that, but these

representations also need to be extracted from the continuous
stream of chips received by the PHY radio.

Crucially, this stream does not honor any hard boundaries

between the contiguous chip groups that would be matched

as nybbles. Such boundaries are merely an abstraction, a

product of interpretation by the receiver—performed, at this

level, by error correcting logic. Can this logic be manip-

ulated by the sender to produce an unexpected, boundary

abstraction-busting result in the receiver?

The eighth-of-a-nybble misalignment trick: Consider

the chip code listings in Fig. 1 and apply a rotation by 1
8

of their length to each. This rotation brings each valid code

182182182

into another valid code, and the codes form two “rings”

under such rotation. In other words, this rotation maps the

set of codes into itself, and its repeated action separates it

into two orbits (formally speaking, these are the two orbits

of the cyclic group’s Z8 action on the set of codes, but we

won’t be using this formalism).

Thinking geometrically, this property is merely a symme-

try of the set of 802.15.4’s chosen code points in the hy-

percube {0, 1}32. Such symmetries are expected of optimal

error correcting codes that place their points at the largest

possible Hamming distance from each other. Assuming that

errors randomly flip the chips of a transmitted code, which

is then mapped to the closest code point, largest-distance

placement helps the code survive the largest number of chip-

flip errors without actually producing a wrong symbol.

However, code chips are received as a stream rather than

as separate words with enforced boundaries; the boundaries

are merely an abstraction. This, shifting the chip stream by

“an eighth of a nybble”—that is, changing the receiver’s

idea of the stream’s start or timing—will produce a valid

sequence of symbols! For example, a zero shifted once will

produce 1 (or 7 if the shift is in the opposite direction),

while the same zero shifted twice will produce 2 (or 6), and

so on.

0 11011001110000110101001000101110

1 11101101100111000011010100100010

2 00101110110110011100001101010010

3 00100010111011011001110000110101

4 01010010001011101101100111000011

5 00110101001000101110110110011100

6 11000011010100100010111011011001

7 10011100001101010010001011101101

8 10001100100101100000011101111011

9 10111000110010010110000001110111

A 01111011100011001001011000000111

B 01110111101110001100100101100000

C 00000111011110111000110010010110

D 01100000011101111011100011001001

E 10010110000001110111101110001100

F 11001001011000000111011110111000

In the more convenient hexadecimal notation (but remem-

bering that each nybble is actually a 32-bit chip sequence):

0 D9C3522E
1 ED9C3522
2 2ED9C352
3 22ED9C35
4 522ED9C3
5 3522ED9C
6 C3522ED9
7 9C3522ED

8 8C96077B
9 B8C96077
A 7B8C9607
B 77B8C960
C 077B8C96
D 6077B8C9
E 96077B8C
F C96077B8

Receiving a frame that was never transmitted: The

stream misalignment trick described above allows a sender

to craft a frame that would cause a different frame to

be received by a standard-compliant receiver. The received

frame would, in fact, share no symbols at all with the

transmitted one.

Furthermore, such transmission can be accomplished on

an fully standards-compliant sender. Access to the trans-

mitting digital radio’s configuration registers to change the

transmitted SFD (such as is provided by the CC2420 digital

radio IC) would simplify matters, but is not required, since

the sender can at worst use the Packet-in-packet technique

and rely on noise for successful injection, as detailed in [3].

Let us now send a frame using nothing but misaligned

symbols. The frame needs to start with the standard pream-

ble and SFD; by the time we figure out how to represent

them, the principle for crafting the rest of the frame will be

clear.

First, consider sending a preamble of eight 0 symbols. At

the chip sublayer of PHY, we have, in the shorthand notation

above:
0 0 0 0 0 0 0 0

D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

Instead of 0-symbols, we will send 1-symbols, as follows.

In this new crafted sequence, the central part is exactly

correct, with sub-symbol errors occurring only at the edges.

Note that these errors never exceed 1
8 of a symbol.

0 0 0 0 0 0 0 0

D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

1 1 1 1 1 1 1 1

ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

Similarly, considering the opposite rotation, we can send

77777777, incurring just as much error as above: at most

4 chips.

Next, we must follow up the preamble with the Start of

Frame Delimiter, (A7). Instead of sending 00000000A7,

we can send 11111111B0 or 7777777796.

Would the receiver be fooled? Dealing in actuality with

the stream of chips and having no idea where the actual

intended symbol boundaries are, the receiver must match

arriving chip sequences with the standard code points; it

cannot produce any other output than a defined symbol

(based on matching against the Hamming-closest code-

point)—no matter what the input sample!

So when the “in-frame” recognizer expects A7 and re-

ceives B0, the first chip sequence 7B8C960D instead of

the 7B8C9607 is only off by the last four chips, with a

Hamming distance of merely 2:

BO −− 77B8C960D9C3522E

| | | | | | | |
A7 −− 7B8C96079C3522ED

Continuing into the frame body, we can keep the Ham-

ming distance between the misaligned crafted frame and the

receiver’s idea of it modulo error correction at or below 4.

This Hamming distance is obviously less than that of the

intended error correction distance of the 802.15.4 code.

Thus we can craft entire sender frames, complete with

183183183

their preambles and SFDs, that have no symbols in common

with the received frame!

III. CONCLUSIONS AND FUTURE DIRECTIONS

Our 802.15.4 case study shows that the lowest layers of

PHY are susceptible to unintended interpretations of data.

By now we are used to such unintended interpretations

in higher layers, such as various kinds of SQL injection

(SQLi), command injection, and, more generally, “in-band

signaling” vulnerabilities in application protocols. However,

on the byte level there is little conceptual difference between

Packet-in-packet and SQLi, as they are caused by similar

mismatches between the downstream code’s expectations of

input-processing logic and the algorithmic reality of this

logic (cf. [4], which applied language-theoretic insights to

input validation, using SQLi as an example). Computation-

ally simple recognizers cannot discern the intent of bytes or

symbols in the input stream, yet subsequent code is written

as if they could.

Why We Need LangSec Stacks: We see this case study

as evidence that no part of the stack that transforms inputs

can be left to “mere engineering,” be it ever so classic and

venerable. Wherever there is recognition and interpretation

of data, formal language-theoretic principles of recognizing

input must underlie that layer’s or sublayer’s design.[5]

Specifically, any structures in the input must be extracted

and the validity of the entire input decided only by a

well-defined computation model, such as a finite state or

pushdown automaton, and the validity of input data must

be specified in terms of a formal language matching that

model, such as a regular grammar or a context-free grammar,

with simplest possible language preferred. The alternative is

confusion between convenient higher layer abstractions such

as intended meanings or even boundaries of input bytes,

symbols or bits, and the actual properties of the recognizers

that are expected to faithfully recreate these abstractions

while altogether lacking the computational power to do so.

Since data recognition and transforming action is central

to network stacks no matter what other functions (such as

encapsulation, addressing, or routing) guide their design,

we envision secure stacks designed around strict language

recognition disciplines: LangSec Stacks.

A New Hope?: A promising new direction to avoid the

confusion between data and signaling from the PHY layer up

has been presented by Michael Ossmann and Dominic Spill

in [6], [7]. They present an Isolated Complementary Binary

Linear Block Code (ICBLBC) encoding scheme that uses

two distinct, separated error correcting codes for data and

signaling info, and spaces the points of these codes to avoid

confusion due to error. While designed explicitly to avoid

traditional packet-in-packet attacks, these codes also resist

our new variant of that technique for receiver manipulation,

and may provide a way forward for lower sublayers of PHY.

Not only digital radio: Finally, we note that just as

Packet-in-packet attacks aren’t limited to digital radio—as

demonstrated by Barisani et al. in [8]—the above PHY

manipulation technique is likely not so limited either.

ACKNOWLEDGMENTS

We would like to thank Julien Vanegue for pointing out

the role of transducers in unexpected computation models

(weird machines) and Felix ‘FX’ Lindner for the discussion

of a LangSec Stack as a principle for future networking

architectures. Thanks are also due to Sergey Bratus for

his stubborn—and valuable!—refusal to stop harping about

fingerprinting.

REFERENCES

[1] A. Biswas, A. Alkhalid, T. Kunz, and C.-H. Lung, “A
Lightweight Defence against the Packet in Packet Attack in
ZigBee Networks,” Wireless Days (WD), IFIP, November
2012.

[2] T. Goodspeed, “An Advanced Mitigation Bypass for Packet-
in-Packet; or, I’m burning 0day to use the phrase ‘eighth of
a nybble’ in print,” International Journal of PoC——GTFO,
vol. 3, no. 5, March 2014.

[3] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and
R. Speers, “Packets in Packets: Orson Welles’ In-Band Sig-
naling Attacks for Modern Radios,” in 5th USENIX Workshop
on Offensive Technologies, D. Brumley and M. Zalewski, Eds.
USENIX, August 2011.

[4] R. J. Hansen and M. L. Patterson, “Guns and Butter: Towards
Formal Axioms of Input Validation,” Black Hat USA, Au-
gust 2005, http://www.blackhat.com/presentations/bh-usa-05/
BH US 05-Hansen-Patterson/HP2005.pdf.

[5] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Lo-
casto, “Security Applications of Formal Language Theory,”
IEEE Systems Journal, vol. 7, no. 3, pp. 489–500, 2013,
http://langsec.org/.

[6] M. Ossmann and D. Spill, “Unambiguous Encapsulation -
Separating Data and Signaling,” Great Scott Gadgets Technical
Report 2014-03-1, March 2014, http://greatscottgadgets.com/
tr/gsg-tr-2014-1.txt.

[7] D. Spill and M. Ossmann, “Unambiguous Encapsulation:
Separating Data and Signaling,” ShmooCon 2014,
January 2014, https://archive.org/details/ShmooCon2014
Unambiguous Encapsulation.

[8] A. Barisani and D. Bianco, “Fully Arbitrary 802.3 Packet
Injection: Maximizing the Ethernet Attack Surface,” BlackHat
USA, August 2013, https://media.blackhat.com/us-13/
US-13-Barisani-Fully-Arbitrary-802-3-Packet-Injection-WP.
pdf.

184184184

