
LEGO R© Bricks for Reactive Programming

Dennis Volpano
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Email: volpano@nps.edu

Abstract—A fundamental unit of computation is introduced
for reactive programming called the LEGO R© brick. It is targeted
for domains in which JavaScript runs in an attempt to allow
a user to build a trustworthy reactive program on demand
rather than try to analyze JavaScript. A formal definition is
given for snapping bricks together based on the standard product
construction for deterministic finite automata.

I. INTRODUCTION

As the trend for software as a service continues, more
functionality is expected of the code running within web
browsers, specifically, HTML5, Flash and JavaScript. Com-
plex JavaScript programs are behind many applications, for
instance, Google’s gmail, maps and drive. It is well known that
such script has tracked information about users. Much attention
continues to be given to analyzing source code or executables
for certain properties. With the expressiveness of JavaScript,
automating this analysis is no easier than automating it for a
general-purpose programming language. At best, we can semi-
decide unsafe programs, not safe ones. In other words, it is
impossible to merely confirm that a given safe program is safe.
With respect to information flow, the situation is just as bad.
We can semi-decide programs that leak sensitive data but not
those that don’t.

Anyone who wants us to use their software at our own
risk should bear the burden of convincing us the code does
what we expect and no more. Shipping only JavaScript, or
worse, binaries, is certainly not in this spirit as it places the
burden squarely on the user. An early attempt to shift this
burden from the user to the programmer is Necula’s work in
proof-carrying code [1]. It requires programmers to develop
safety proofs for their code. But why accept code in the first
place? It’s typically too low level and inscrutable. Is there a
way to supply instead easily-understood building blocks and a
blueprint that describes how they can be assembled to build the
desired application? If the blueprint were easier to inspect than
code, we would likely have more confidence in the application
than if it were delivered to us in binary form.

This paper sketches such an approach for a class of pro-
grams called reactive programs. These are programs structured
around responding to external signals. Microcontrollers and
user-interface code are just two examples. What sets the
approach apart from work in declarative reactive programming
[2], [3] is that the building blocks, called LEGO bricks, are
not new program combining forms but rather fundamental
computing elements that are primitive enough to distinguish

LEGO is a trademark of the LEGO Group of companies which does not
sponsor, authorize or endorse this research.

between states and signals. States are used to remember history
while signals forget the past. The cost of remembering the past
is a function of input encoding and is reflected directly in brick
size, just as it is in deterministic finite automata. The idea is to
make the added complexity from having to remember the past
reflected directly in brick size so that unwanted or extraneous
behavior might become more obvious.

A definition of LEGO bricks and their systems is given
in the next section. An operation for “snapping” a brick to a
LEGO system is defined. It parallels the product construction
for two deterministic finite automata. Examples of LEGO
systems for a simple input transducer and ripple-carry adders
are given. Finally a LEGO system for managing a drop-down
menu is presented. Results presented here are preliminary as
the work is in progress.

II. THE LEGO BRICK

Bricks have two purposes. The first is to prescribe an
admissible ordering of some set of external signals (events)
that can occur over consecutive clock cycles of execution. Thus
bricks prescribe transitions between signals over cycles. The
second purpose is to count signals, up to a limit, in the context
of knowing that other events have already occurred. States are
used for this purpose. Thus bricks also prescribe transitions
between states. Signals and states are defined as follows:

signals C ::= B | C &C
basic signals B ::= c1, c2, . . .

states Q ::= p, q, r, s, . . .

where ‘&’ denotes conjunction. A basic signal is a two-valued
propositional variable having truth values T or I where I is
the indeterminate truth value. In one clock cycle, a basic signal
has one of these two values. Execution cycles are modeled as
transitions between truth assignments to a basic signal, much
like signal transition systems used to model circuits [5], [6] but
with one key difference. Non-occurrence is not represented
by assignment of truth value F to the signal but rather by
assignment of truth value I . The reason is because of the need
to distinguish negation from indeterminacy. Some basic signals
are mutually exclusive. For example, a mouse is up or down
but not both. The occurrence of one implies the negation of
the other. However, the absence of a signal in a cycle does not
imply its negation. It only means the signal did not occur, or
in other words, was indeterminate. A key on a keyboard, for
instance, may be pushed during a cycle. If not pushed, then
absent another signal in the cycle that prevents it from being
pushed, the most one can say is that the key push signal was

2014 IEEE Security and Privacy Workshops

© 2014, Dennis Volpano. Under license to IEEE.

DOI 10.1109/SPW.2014.30

152

2014 IEEE Security and Privacy Workshops

© 2014, Dennis Volpano. Under license to IEEE.

DOI 10.1109/SPW.2014.30

152

2014 IEEE Security and Privacy Workshops

© 2014, Dennis Volpano. Under license to IEEE.

DOI 10.1109/SPW.2014.30

152



Fig. 1. Binary keyboard

Fig. 2. Binary keyboard with delay

indeterminate, not that the signal was false because a mutually-
exclusive signal occurred. Indeterminacy also turns out to be
useful for handling basic signals like a mouse over a button. If
the physical button doesn’t exist in a cycle (e.g. in a dynamic
web page) then the basic signal’s value is indeterminate.

Conjunction is interpreted in Kleene’s weak three-valued
logic which has truth values T , F and I [4]. In this logic,
F & I = T & I = I & I = I . Therefore, (c = T )& (c = I)
becomes c = I for every basic signal c ∈ B. We will use the
notation I{c1,...,cn} for c1 = I & · · ·& cn = I if n > 0. Then
c& IB = IB if c ∈ B. Finally, a conjunction of basic signals
is a signal unless it comprises two or more mutually-exclusive
basic signals in which case it is inconsistent.

A LEGO brick is a pair (H, δ), where H ⊂ C ∪Q is finite
and δ : H → 2H is a transition function.1 H contains signals
and states. A brick transitions from a signal or state to another
signal or state. For example, Fig. 1 shows a brick for a binary
keyboard with signals K0D (key 0 down) and K1D (key 1
down). Each edge corresponds to one clock cycle. At the end
of each cycle, exactly one of the two keys was pushed during
that cycle. The one pushed determines to which signal the
brick transitions. While there may be more than one signal in a
brick, each occurs exactly once in the brick (signals are shown
as rectangles in brick diagrams). The brick in Fig. 1 merely
makes transitions between two signals without remembering
any previous ones. If we do not expect one of the two keyboard
signals to occur on every cycle then we can introduce delay
(called stutter in [7]) using indeterminate signal I{K1D,K0D}.
The result is the brick shown in Fig. 2.

Note that both of the preceding examples of bricks have no
state. Neither remembers any signal values prior to the most
recent one. So in a sense they operate like Markov machines.
Using states, a brick can remember a finite portion of the past
while counting other signals. An example of this is given in
the LEGO memory brick shown in Fig. 3. The states, which

1There are no designated starting signals as it is assumed that any signal
in H can be initial.

Fig. 3. Memory brick to count up to 3 signals after A or B

Fig. 4. 1-bit memory brick

are drawn as circles, count occurrences (or non-occurrences)
of some other signal while remembering that signal A has
occurred (top three states) or B has occurred (bottom three
states). The signal being counted is identified when the brick
is snapped into place. A concrete example of a memory brick
is the 1-bit memory brick shown in Fig. 4. It has two states,
named s and s’, that recall the previous input bit. We shall
see in Section IV how this brick can be used, and how a 2-bit
version of it is handy for building a ripple carry adder.

III. LEGO SYSTEMS

Intuitively, a LEGO system represents the accumulation of
repeatedly snapping bricks together. It is a pair (K,Δ) where
K ⊂ C × 2A is finite, A ⊂ Q is finite and Δ : K → 2K is
a transition function. Notice that unlike the domain of δ, the
domain of Δ always includes a signal because every element
(c, S) ∈ K comprises a signal c. Each element is equipped
with a signal c and a set of states S, which are used to decide
what to output. We shall say that (c, S) is a signal in a LEGO
system if S is empty and a state otherwise. If the set of states of
every member of K is empty then every member is just a signal
and the LEGO system degenerates to a brick. Likewise, any
brick comprised only of signals, as in Fig. 2, is also a LEGO
system. The brick in Fig. 3, however, is not. It transitions from
states but no state belongs to C × 2A.

A LEGO output system is a triple (K,Δ, O) where (K,Δ)
is a LEGO system and O : K → E an output function where E
is some set of output elements. The signals of K can be defined
with respect to members of E. For instance, E might contain
elements of a document object model (DOM) tree in a system
running within a web browser. In this case, a signal such as
mouse over a button might cause the button to be rewritten in
the DOM tree into another object such as a textbox explaining
the button. There may be signals defined with respect to the
textbox and those signals are indeterminate (have value I) until

153153153



the textbox exists. We shall see examples of this in Section V
with mouse-over-menu signals. An output system executes by
producing a sequence of output elements as determined by the
transition function Δ and output function O.

A. Signals vs state

In general, a signal does not remember the past, however, it
may in some special cases. The unique occurrence of a signal
c in a total ordering of signals indicates the presence of those
signals that preceded it. Since it’s unique, an output function
can map the occurrence of it to some output appropriate for
that past. However, if the signals that can precede it are
partially ordered then there may be more than one signal path
to c’s occurrence and the output function will be unable to
distinguish them there. So signals in general have amnesia.
Unlike states within bricks, they do not have names that can
uniquely identify different historical paths and enable an output
function to discriminate them. States allow you to uniquely
identify such paths if you want.

IV. THE SNAP OPERATION

The snap operation is similar to the product construction
for two deterministic finite automata [8]. Given a LEGO brick
L = (C1 ∪ A1, δ) and a LEGO system S = (C2 × 2A2 ,Δ),
where A1, A2 ⊂ Q, S snapon L is the LEGO system (C3 ×
2A1∪A2 ,Δ′) where C3 = {c1 & c2 | c1 ∈ C1 and c2 ∈ C2}
and Δ′ is the transition function, defined in Table I. In the
definition of Δ′, S is a set of states that may be empty. Like the
product construction for finite automata, snapping can produce
unreachable signals but for a different reason; no inconsistent
signal is reachable. Since consistency can be determined for
two signals, Δ′ is only defined for consistent ones.

The fourth rule of Δ′ needs explanation. It talks about a
transition from (c, S ∪ {q′}). On the LEGO system side, we
have (c1, S1) ∈ Δ(c, S) and on the LEGO brick side, we
have a brick in state q′. The product LEGO system allows the
LEGO system to proceed as it would in one cycle, however, the
brick remains “stuck” in q′. That’s because the LEGO system
proceeds under a signal, namely c1, under which there is no
way for the brick to proceed from q′ without a conflict with
c1. Two mutually-exclusive signals would occur in the same
cycle or a signal would occur and also be indeterminate.

For example, a two-bit decoder LEGO system with delay
is produced by snapping the 1-bit memory brick of Fig. 4
to the binary keyboard LEGO system of Fig. 2. In the result
are two signals K1D & I{K1D,K0D} and K0D & I{K1D,K0D} which
are equivalent in weak three-valued logic. These two signals
can be merged leaving just I{K1D,K0D}. Next we specify an
output function to yield the desired decoder. To decode two
input bits as ASCII, when the most significant bit is input first,
we introduce the ASCII output function. It is defined here by
annotating states of the resulting LEGO system. Upon doing
this, we get the resulting LEGO output system in Fig. 5. The
occurrence of I within the states stands for I{K1D,K0D}.

V. EXAMPLES OF LEGO SYSTEMS

Two examples of LEGO systems are given. The first
example is a ripple carry adder in two forms. The first form is
incremental, meaning two operands are added by supplying

(c1 & c2, S1) ∈ Δ′(c & c′, S)
if (c1, S1) ∈ Δ(c, S), c2 ∈ δ c′ and
c & c′ and c1 & c2 are each consistent

(c1, S1 ∪ {q′}) ∈ Δ′(c & c′, S)
if (c1, S1) ∈ Δ(c, S), q′ ∈ δ c′ and
c & c′ is consistent

(c1 & c2, S1) ∈ Δ′(c, S ∪ {q′})
if (c1, S1) ∈ Δ(c, S), c2 ∈ δ q′ and
c1 & c2 is consistent

(c1, S1 ∪ {q′}) ∈ Δ′(c, S ∪ {q′})
if (c1, S1) ∈ Δ(c, S) and c1 & c′ is indeterminate
or inconsistent for all c′ ∈ δ q′

(c1, S1 ∪ {q2}) ∈ Δ′(c, S ∪ {q′})
if (c1, S1) ∈ Δ(c, S) and q2 ∈ δ q′

TABLE I. DEFINITION OF TRANSITION FUNCTION Δ′

Fig. 5. 2-bit ASCII decoder

one bit from each operand at a time, least significant bit
first. This is the most efficient of the two forms as it only
requires remembering the last bit input and whether there
was carry from the previous two bits added. The second
form is not incremental as it allows one operand to be input
entirely before the other. Consequently, the whole operand
must be remembered before any addition can be done. As
inputs are encoded in binary, the size of the LEGO brick is
exponential in operand length just as the size of a deterministic
finite automaton under the same requirement would be. This
growth should be embraced as it reflects in brick size the
added complexity from having to remember history that is
exponential in input size. The second example is the start of
a full menu management LEGO system. Some rudimentary
bricks and LEGO systems formed from them are presented.
They illustrate the use of signals defined with respect to
elements in the range of a LEGO system’s output function.

A. Ripple carry adders

A LEGO output system for an incremental ripple carry
adder is shown in Fig. 6. It is an adder for two binary operands
of arbitrary length such that the least-significant two bits of
each operand are given first as input. There are no signals in
this LEGO output system, only states (a formal definition of it
would give unique state names to all states). The columns are
split into two groups depending on whether there is carry in for
the two bits being added. The third column of states stores only

154154154



Fig. 6. Incremental ripple-carry-adder

Fig. 7. 2-bit memory brick

carry-in true whereas the fourth column stores both carry-in
true and the previous keyboard signal. The fourth and second
column states have enough information for the output function
to produce a sum bit. Those states are annotated with output
0 or 1. Snapping the brick for a binary keyboard with delay
in Fig. 2 to the incremental ripple carry adder would produce
an adder LEGO output system with delay.

A nonincremental version of the ripple carry adder can
be built from the 2-bit memory brick in Fig. 7. This brick
expects one 2-bit operand to be input completely and then
remembers it while the second operand is input. Snapping
this brick to the binary keyboard with delay LEGO system
gives a LEGO system for which an output function can be
defined for adding two 2-bit inputs where one summand is
input completely before the other. The output function will
depend on input convention. Whether a sum bit can be output
in a state depends on whether the input is msb or lsb first.
For instance, in the state (K0D, {a}) of the resulting LEGO
system, no sum bit can be generated if K0D is the msb of the
second summand. But if K0D is the lsb then 1 can be output
in this state (0 ⊕ 1 where 1 comes from the previous signal
K1D). And in the state (K1D, {c}), 10 can be output (1 ⊕ 1
preceded by the carry 1) giving final sum 101 on inputs 11
and 10, in that order, lsb first. As one operand, given in binary,
must be input entirely before addition happens, the size of this
LEGO system is exponential in the size of the summands.

B. Two-option drop-down menu

We describe the development of a LEGO output system for
a drop-down menu of two elements that mirrors the behavior of
an HTML select in the Safari web browser. A menu in general
has several facets. We shall focus on just two, opening it and
selecting an option. When our menu is open, it shows two
options (0 and 1) where the most recent option selected is
checked. An option is highlighted if the mouse is positioned
over it. When the menu is closed, it shows the most recent
option selected. It may also, when closed, have a highlighted
perimeter which indicates it’s in an active state, meaning the
arrow keys can open it. Signals are mouse events, specifically,
mouse up, down, over and not over. The latter two are defined
with respect to objects of the document object model (DOM).
The objects of interest for our purpose are as follows:

1) DDC-0, DDC-1 – Drop-down menu closed showing
last option selected (0 or 1).

2) ADDC-0, ADDC-1 – Active drop-down menu closed
showing last option selected (0 or 1).

3) 0, 1 – Menu options 0 and 1 of open menu.

With these objects, we introduce signals MO-DDC-0 and
MO-NDDC-0. The former occurs when the DDC-0 object is
in the DOM tree and the mouse is over it while the latter occurs
if the object is in the tree but the mouse is not over it. If the
object is not in the tree then both signals are indeterminate.
The object may not be in the tree because the menu may
be open. There are signals MO-DDC-1 and MO-NDDC-1 as
well. Lastly there are signals MD and MU, for mouse down and
mouse up, and MO-0, MO-1 and MO-N0/1 for mouse over 0,
mouse over 1, and mouse over neither 0 or 1 when both exist
in the DOM tree. Signal MU is considered instantaneous in
that it happens in just once cycle, when the mouse transitions
from down to up, whereas MD can happen over contiguous
cycles by keeping the mouse button down.

Our goal is to develop and snap together some bricks into
a system for which an output function can be defined that
updates the DOM tree to produce the same effect as the HTML
select. We begin with a LEGO system for opening the menu.
The question is under what conditions a DDC object in the tree
should be replaced by the open-menu objects 0 and 1. A first
cut might say open the menu when the mouse is down and
positioned over the DDC object. But this wouldn’t preserve
HTML’s select semantics since one can drag the mouse to the
closed menu object yet this shouldn’t cause it to open. The
menu should open only if a MD event occurred and there hasn’t
been one since the last MU. In other words, the MD event must
be informally what is called a mouse “click”. So history of a
previous MD must be retained. To this end, a LEGO system
for mouse drag is created; it is shown in Fig. 8. The system
has one state to remember whether there has been a previous
MD event without an intervening MU. That way when another
brick is snapped to it, the resulting LEGO system will be able
to distinguish between a click and a drag. Thus DDC can be
replaced by open menu objects upon a click only.

For instance, the brick in Fig. 9 describes mouse position
relative to the closed menu object DDC-0; there’s a similar
brick for DDC-1. Note the transition from MO-NDDC-0 to
the indeterminate signal. It is there because in one cycle, the
menu object DDC-0 may exist in the DOM tree and in the next

155155155



Fig. 8. Mouse drag LEGO system

Fig. 9. Mouse position relative to closed menu DDC-0

cycle it doesn’t because the mouse was re-positioned and the
menu opened. A portion of the LEGO system resulting from
snapping this brick to the mouse drag LEGO system is shown
in Fig. 10. The complete system has nine signals and three
states. Two of those states are shown in the figure with state set
{r} (r is the name chosen for the only state in the mouse drag
LEGO system). The output function for this system would map
signal MD & MO-DDC-0 to the pair of objects 0 and 1 which
effectively opens the menu. It would be undefined at state
(MD & MO-DDC-0, {r}) because the occurrence of r tells us
there was a prior occurrence of MD without an intervening
MU. In other words, the mouse is being dragged. A similar
LEGO system is constructed for DDC-1.

Next we build a LEGO output system for managing the
selection of menu options. An option is selected by the
occurrence of two events in a cycle, a MU event and either
MO-0 or MO-1. The mouse is dragged over either option and
released to make a selection. During dragging, the previous
selection (or default) is indicated with a check mark and
the option over which the mouse is currently positioned is
highlighted. Any LEGO system then must provide states or
signals that can be mapped by the output function to update
the DOM tree in a way that is consistent with this behavior.
This can be accomplished with two snap operations.

To manage mouse movement over an open menu, we
introduce a brick for mouse position as shown in Fig. 11.
Note the transition from MO-N0/1 to the indeterminate signal.
It’s there since in Safari, an open menu can disappear with
a click away from it. The mouse-position brick is snapped

Fig. 10. A portion of the LEGO system for opening a two-option menu

Fig. 11. Mouse position relative to open menu

to the mouse drag LEGO system. To that resulting LEGO
system, we snap the 1-bit memory brick shown in Fig. 12.
The memory brick is used to remember the previous selection.
The resulting LEGO system has 28 states and two signals.
A portion of it is shown in Fig. 13. Notice how states r
(from the mouse drag LEGO system) and s (from the 1-bit
memory brick) appear in the result. In each of the four states
shown, s appears which implies 0 was most recently selected.
The output function makes use of this fact in the three states
where MD occurs by mapping each to the appropriate object
highlighted or checked; (MD & MO-0, {s}) and (MD & MO-0,
{r, s}) each get mapped to an open menu with 0 highlighted
and 0 checked, while (MD & MO-1, {r, s}) is mapped to an
open menu with 1 highlighted and 0 checked. The portion of
the LEGO system not shown has symmetric behavior for state
s’ where 1 is checked instead for those states that contain s’.
Signals MU & MO-0 and MU & MO-1 are mapped to objects
ADDC-0 and ADDC-1 respectively. The presence of state r in
{r, s} tells us the mouse is being dragged, however, the output
function does not exploit that information here.

156156156



Fig. 12. 1-bit memory brick to remember last selection

Fig. 13. A portion of the LEGO system for selecting a menu option

C. LEGO runtime system within a browser

A collection of LEGO output systems are run in parallel
by a system that resembles a commercial logic analyzer. A set
of signals is sampled at the end of each clock cycle. Based on
them and the current configuration (c, S) of each, a transition
is made in each of the systems deterministically and the target
configuration becomes the current one. Their output functions
are evaluated for any targets in their domain. Development of a
runtime system for executing LEGO systems that manipulate
a DOM tree is under way. It is written in JavaScript and is
intended to run within any web browser. Whether we can
harness signals in small enough “clock cycles” and update the
DOM tree while preserving the fluid behavior a user expects
is an open question. It will likely depend on the browser.

VI. CONCLUSION

The LEGO project grew out of an attempt to replace
JavaScript within Adobe Reader, the exploits of which are
well known. The premise was that Reader didn’t need such
power and that more basic functionality could be provided
with fewer sharp edges. The scope then broadened to that of
web browsers and applications running within them. A long-
term goal is to avoid running downloaded JavaScript within
a browser. Instead, a user would download a blueprint for
building a LEGO system. The blueprint would be intelligible
and draw upon local LEGO bricks as well as downloaded ones

if necessary. More work is needed to develop other LEGO
pieces that have high potential for reuse such as the memory
brick described in this paper. Eventually there should be a
manageable set of such pieces whose level of reuse rivals the
level achieved in the electronic games industry.

VII. ACKNOWLEDGEMENTS

Thanks to Avner Biblarz for dissecting menu behavior in
Safari for the purpose of identifying LEGO bricks and systems,
and to Joe Lukefahr for providing the initial runtime system for
executing LEGO output systems. Also thanks to the reviewers,
especially Anna Shubina, whose comments helped bring some
much needed transparency to the paper. This research was
supported by the Office of Naval Research.

REFERENCES

[1] G. Necula, “Proof-Carrying Code. Design and Implementation,” in Proof
and System Reliability. NATO Science Series, 2002, vol. 62, pp. 261–
288.

[2] C. Elliott, “Declarative Event-oriented Programming,” in Proceedings
of the 2nd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, 2000, pp. 56–67.

[3] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi, “Flapjax: a Programming Language for Ajax
Applications,” in Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Systems, Languages and Applications, 2009, pp. 1–20.

[4] Y. Nakayama, “DRT and Many-valued Logics,” in Logic, Language and
Computation, S. Akama, Ed. Kluwer Academic Publishers, 1997, pp.
131–142.

[5] F. Garcı́a-Vallés and J.-M. Colom, “Structural Analysis of Signal Tran-
sition Graphs,” in Petri Nets in System Engineering, 1997.

[6] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, “A Unified
Transition Graph Model for Asynchronous Control Circuit Synthesis,”
in Proceedings of the 1992 IEEE/ACM International Conference on
Computer-aided Design, 1992, pp. 104–111.

[7] L. Lamport, “The Temporal Logic of Actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923, 1994.

[8] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, 3rd ed. Addison Wesley, 2006.

157157157


