

YaseminGokcen
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada

gokcen@cs.dal.ca

VahidAghaeiForoushani
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada

vahid@cs.dal.ca

A. NurZincir-Heywood
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada

zincir@cs.dal.ca

Abstract—It is shown in the literature that network address

translation devices have become a convenient way to hide the
source of malicious behaviors. In this research, we explore how
far we can push a machine learning (ML) approach to identify
such behaviors using only network flows. We evaluate our
proposed approach on different traffic data sets against passive
fingerprinting approaches and show that the performance of a
machine learning approach is very promising evenwithout using
any payload (application layer) information.

Keywords—Network address translation classification, traffic
flows, traffic analysis, machine learning.

I. INTRODUCTION
The usage of Network Address Translation (NAT)devices

is very common among the devices such as computers, laptops
and smart phones connecting to the Internet. While NAT
devices are generally used in local area networks (LAN), they
can also be used just for one computer. In home networks,
most Internet Service Providers (ISPs) give WiFi-enabled
NAT home gateways to their users. Thus, when users can
connect their devices to the Internet, theirprivate Internet
Protocol (IP) addresses are hidden on the Internet since they
are encapsulated with a public IP address that the NAT
provides.

Basically, NAT allows a single device, such as a proxy, to
act as an agent between the Internet and a private network.
This means that only a single IP address is required to
represent one or more computers to the rest of the world.
Thus, NATs are used for many reasons such as a solution to
the shortage of IPv4 addresses or for security and privacy
reasons. The latter is the focus of this work.In this case, to be
represented by one public IP addressgives anonymity within
the group of computers behind a NAT device. This could be
advantageous tosome users, since their private IP addresses
cannot be identified at a glance.All these advantages enable
the NAT usage to be common for network management
purposes. However, the same reasons also make itattractive
and useful for malicious users who want to hide their real
identities. Hence, NAT usage increases both in legitimate and
in malicious environments.

Moheeb et al. [18]showed that the initial exploit in multi-

stage infections was likely some form of a shellcode
containing a Uniform Resource Locator (URL) that hosts the
malware binary. In their research, such a URL pointed back to
the source that sent the exploit in the first stage. Using this,
they could determine which sources were located behind NAT
devices by parsing the log of collected URLs. They could then
extractthose sources that use local IP addresses in the URL
sent to the victim.They showed that the widespread use of
NAT had significant implications on how different families of
malware spread on the Internet.

Thus,identifying the NAT devices becomes more and more
important to understand and to detect the malicious behavior
in traffic and application usage. In this research, our goal is to
explore whether we can find specific patterns in the network
traffic that will enable us to identify NAT like behaviors. To
this end, we propose a ML based approach to automatically
find patterns indicating NAT usage without using IP
addresses, port numbers or payload information. In doing so,
our aim is to not only analyze how far we can push a ML
approach but also to achieve a well generalized classifier,
which can work under encrypted payload and traffic filtering
(based on IP address or port number) conditions.We evaluate
our proposed system on two different data sets and compareit
to other approaches used in the field. Our results demonstrate
that the proposed system is very promising in identifying NAT
device behaviors by analyzing traffic flows. This enables us to
analyze both encrypted and non-encrypted traffic since traffic
flows are only based on the packet header features.The
remainder of this paper is organized as the following. Section
II reviews the literature on NAT related research. Section III
describes our proposed system and the methodology we
followfor our evaluations. Section IV presents the empirical
results and our observations. Finally, Section V draws
conclusions and discusses the future work.

II. LITERATURE REVIEW
The identification of NAT devices and the number of end

users behind such devices is a relatively new research area. To
this end, different algorithms were proposed, but generally,
researchers used some form of passive Operating System (OS)
fingerprinting to identify NAT behaviors. To achieve this,they
analyzecertain parameters within the TCP/IP (Transmission

Can we identify NAT behavior by analyzing
Traffic Flows?

This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

2014 IEEE Security and Privacy Workshops

© 2014, Yasemin Gokcen. Under license to IEEE.

DOI 10.1109/SPW.2014.28

132

2014 IEEE Security and Privacy Workshops

© 2014, Yasemin Gokcen. Under license to IEEE.

DOI 10.1109/SPW.2014.28

132

2014 IEEE Security and Privacy Workshops

© 2014, Yasemin Gokcen. Under license to IEEE.

DOI 10.1109/SPW.2014.28

132

Control Protocol/ Internet Protocol) protocol stack and most of
the time conduct experiments with simulated NAT data sets.

Examples of passive methods includeBellovinet al.[8] who
identified that consecutive packets carry sequential IP
Identification (ID) fields, which were included in the IP
header and generally were used as counters. Therefore,
theyconcluded that it was possible to count the string values of
those IP ID fields to find the number of hosts. However, such
an approach might have some complications when faced with
packets with zero IP IDs or packets using byte-swapped
counters. Moreover, the recent versions of OpenBSD and
FreeBSD use pseudo-random number generator for the IP ID
fields. So counting such values will not work accurately on
these OSs.Beverlyet al.[7] proposed a classifierto infer the OS
passively and find the number of hosts behind a NAT. They
used Time-To-Live (TTL), Do-not-fragment (DF), Window-
size and SYN-size features. Miller et al.[6] analyzed
thetcpdump packets. They checked certain fields, namely
Type of Service (TOS), total length, IP ID, TTL, source port,
window and TCP options in the TCP/IP header to fingerprint
different OSs. The idea is that if an IP address has more than
one OS associated with it, this might indicate a NAT device
with different OSs behind it. Indeed, it is easy to see that such
an approach will give false alarms if a computer has more than
one OS on it.

Moreover, more active methods are also proposed.
Murakami et al. [3] focused on the Medium Access Control
(MAC) address of a device and proposed a NAT router, which
relays the MAC address of the computers based on
FreeBSD.So ifthe proposed NAT relaying machine is used on
a network,then it is straight forward to identify the NAT
device.Ishikawa et al. [1] proposed to identify the computers
behind a NAT router with proxy authentication on a proxy
server. Their target application was WWW. They used realm
field in the authentication header by associating with a MAC
address of a client computer after authentication is succeeded.
That realm is shown to the user as a prompt message. Their
proposed system requires Java Runtime Environment (JRE) on
each client machine. They assumed that a web browser always
adds the authentication header to its request message when
authentication has succeeded. Even though this method is
successful, it could only be used for their target applicationand
the proxy conditions require the JRE code the authors
developed.

On the other hand, Rui et al. [4] proposed the use ofa
Support Vector Machine (SVM) based classifier to detect the
presence of a NAT in agiven traffic trace. They captured
traffic on five different hosts that were potential NAT
devices. Then they trained a SVM classifier on the captured
traffic to be able to detect the NAT device among the five
potential hosts.They collected different statistics on a host to
show its activeness. Their hypothesis was that the hosts behind
a NAT device send more bytes, need more network
connections, visit more web sites,and produce more complex
traffic traces compared to an ordinary host. Therefore, a host
behind a NAT device would have higher activity value than an
ordinary one.They labeled their traffic data as ordinary hosts
and hosts behind a NAT. Then, they applied binary
classification using the SVM.Even though this is an interesting
approach to collect traffic on the host that is suspected to be a

NAT device. However, collecting such data may not be
feasible in practice unless we have full control on such a host.

Maier et al. [2] focused on detecting DSL lines that use
NAT devices to connect to the Internet. Their approach is
similar to passive fingerprinting and is based on the IP TTL
and the HTTP user agent strings. They extracted the operating
system and the browser family and its versions from the HTTP
user agent strings. Indeed, this necessitates deep packet
inspection into the payload of a packet. However, if they do
not have access to the payload information, then they only use
the IP TTL information. They analyzed the user agent strings
of typical browsers and they ignored the ones, which came
from mobile devices and gaming consoles. They found 10% of
DSL lines had more than one user active at the same time, and
that 20% of the lines have multiple hosts that were active
within one hour of each other. These results indicated the
potential NAT devices in their DSL data sets.

In summary, Maier et al. [2]'s approach, seems to be the
best performingapproach reported in the literature albeit its
requirement for payload information. Thus, in this paper, we
re-engineered their approach to understand its advantages and
disadvantages. In addition, we employed their system as the
representation of the state-of-the-art in our evaluations against
our proposed system. Finally, our aim is to study whether we
can learn general enough patterns to identify the behavior of
NAT devices among the traffic received by the computer that
is under analysis. This makes it very different from Rui et al's
work [4], which analyzes the traffic of a host to determine
whether it is a NAT device or not.To the best of our
knowledge, our work is the first one aiming to evaluate these
different approaches on different traffic traces from different
networks to identify the potential NAT devices.

III. METHODOLOGY
In this research, we aimed to evaluate two different

approaches on identifying potential NAT devices on given
traffic traces. These approaches are:our proposedMLbased
approach and the passive fingerprintingapproachthat
analyzesspecific parameters in a given network traffic trace.
For the proposed approach, we employ the C4.5and Naive
Bayes learning techniques as our classifiers. The reason we
chose these two learning algorithms are two folds: C4.5
learning technique provides the solution it learns from the data
in a tree form using if-then-else format. This makes it easy for
a human expert to analyze the solution and to understand what
the algorithm learned. In other words, the solution is no longer
a black box. On the other hand, Naïve Bayes is one of the well
known statistical learning algorithms (albeit with an opaque
solution) so it naturally represents a standard baseline
classifier for this work. As for the passive fingerprinting
approach, we re-engineered and employed the algorithm
introduced by Maier et al. [2] as the representative state-of-
the-art technique.

For bothapproaches, we employ the same data sets
including both encrypted and non-encrypted traffic from two
different organizations. The following describes the data sets,
and the algorithms employed as well as the experiments
performed in this work.

A. Data sets Employed
In this research, two different data sets from two different

133133133

organizations (networks), namely Nims-NAT and Partner-
NAT,areemployed to evaluate the aforementioned approaches.
These are traffic data sets in the form of tcpdumplog files
without any payload information.Our first data set, Nims-NAT
also includes the web access log files, which belong to the
same time period. Nims-NAT data is collected over a week on
November 2012 on our network. This data set is labeled as (i)
NAT flows; and (ii) OTHER flows where we know the ground
truth about the NAT devices.

Our second data set is provided to us with the ground truth
(in terms of NAT flows vs. OTHER flows) by our industrial
partner, which is a medium sized private company. We will
refer to this data set as Partner-NAT hereafter. Given the
privacy issues related to this data set, we will not be able to
provide any further details about the Partner-NAT. However,
Table I presents some properties of bothNims-NAT and
Partner-NAT data sets.

B. Features Employed
In this work, we converted our packet based traffic traces

(tcpdump files) totraffic flows. To this end, NetMate[15]open
source tool is employed to generate the flows and compute the
statistical features for each flow.Once the flows are generated,
we do not usethe source and destination IP addresses as well
as the source and destination port numbersin our feature set to
represent the flow traffic to our classifiers. We think that such
information can bias the results. It is well known that port
numbers can be assigned dynamically and IP addresses can be
anonymized very easily. One can say that in some ways,
NATs and proxies are already doing this for free. Moreover,
filters can be set to block or choose certain traffic. Our aim
here is to find patterns (in other words signatures)
automatically without using any biased features. Indeed, to be
able to apply our approach both to the encrypted and the non-
encrypted traffic, we do not employ any payload (application
layer) information as features in our proposed ML based
approach. However, such information is employed for the
passive OS fingerprinting as Mailer et al.described in [2].In
the following, we discuss the features in more detail.

1) Features for the Proposed Approach - Netmate
Features

NetMate[15] is an open source flow generator. In this case,
flows are bidirectional and the first packet of the flow
identified byNetmate determines the forward (source to
destination) direction. A flow can be uniquelyidentified by
five parameters within a certain time period. These parameters
are source and destination IP addresses, source and destination
port numbers and protocol. Netmate considers only the UDP
and the TCP flows. Moreover, the UDP flows are terminated
by a flow timeout, whereas the TCP flows are terminated upon
proper connection teardown or by a flow timeout, whichever
occurs first.The flow timeout value employed in this work is
600 seconds as recommended by the IETF [16]. The Netmate
features that we used in our experiments are shown in Table
II.

2) Features for the Passive Fingerprinting Approach
As discussed earlier, we re-engineered the passive

fingerprinting approach of Maier et al. as it is described in [2].
In their passive fingerprinting approach, some features require
access to the payload (application level) information whereas
others do not. We detail these features below.

a) PacketHeader Base Features – Time to Live (TTL)
Networking stacks of OSsuse well-defined initial IP TTL

values (ttlinit) in outgoing packets. For instance, Windows uses
128, MacOS uses 64 andDebian based systems use 64,
too.The TTL field of the IP header is defined to be a timer
limiting the lifetime of the IP datagram. It is an 8-bit field and
may be implemented as a counter or a timestamp. Each router
(or other modules) that handles a packet must decrement the
TTLby at least one, even if the elapsed time was much less
than a second.When a router forwards a packet, it must reduce
the TTL by at least one. Thus, it isassumed that if there is a
machine routing in the network, in some ways a NAT device
falls under this category, it will decrement the TTL values for
each packet that passes through.

TABLE I. Number of flows in the data sets employed in this work

The Number of Flows
NAT OTHER TOTAL

D
A
T
A
S
E
T
S

Nims-
NAT

Training 9126 9126 18252

Testing 3042 156199 159241

Total 12168 165325 177493

Partner-
NAT

Training 9126 9126 18252

Testing 90116 35348 125464

Total 99242 44474 143716

b) Packet Payload Base Features – HTTP User Agent
String

The user agent string identifies the browser that is used to
access the web. When a user visits a webpage, his/her browser
sends the user-agent string to the web server hosting the site
that is visited. This string indicates which browser is in use, its
version, and otherdetails about the user’s system, such as the
OS and its version.

For this part (payload information), we utilized the web
access log files to be able to extract this information, Table
III.Maier et al. [2] analyzed the user agent strings to obtain the
OS and the browser information. Then based on this
information, they made adecision regarding the presence of a
NAT device in the traffic. They limited their analysis to user
agent strings from typical browsers such as Firefox, Internet
Explorer, Safari and Opera [2].However, when we applied
their approach on our data sets, we did not limit their
technique only to the typical browsers. In our data sets, we
observed many user agent strings from Android based devices,
iPhones and iPads so we included them in our analysis.

C. Passive Fingerprinting Approach
We evaluated this approach in four different steps based on

the utilization of the features to better understand their effect
on a given data set.

1) TTL Range
In the simplest form, Maier et al. infer the presence of a

NAT device based on the TTL values of packets sent by users.
If the TTL is ttlinit �1 the sending host is directly connected to
the Internet (as the monitoring point is one hop away from the
device on which the traffic is monitored / analyzed).If the TTL

134134134

is ttlinit �2 then there is a routing device (i.e., a NAT device) in
the users’ premises. Hereafter, werefer to this technique as
“L1”.

Although L1 techniquecan be used to detect the presence
of a NAT device for some networks, it also has some
limitations. These may prevent the detection of a NAT device
under the following conditions:

• L1assumes that the number of hops between the
machine on which the traffic is captured and the
machine on which the analysis is made, is known.
Because, only then the TTL values used can be
interpreted accurately to detect a NAT device.
Otherwise, L1 technique cannot work accurately.

• L1 assumes that the NAT devices decrement the TTLs
for each packet that passes through them. However
some NAT implementations might not decrement the
TTL values for some reason or another such as hiding
the network topology.

• In Maier et al.’s work, the data set employed is from an
ISP so the analysis (monitoring) is performed on the
residential users’ traffic of the ISP. In that case, the
traffic coming from residential ISP users naturally goes
through a device, which performs the NAT as well as
the DNS services. They assume the traffic gets NATed,
if they see an IP address that sends DNS packets with a
special TTL value. Moreover, they assume that TTL
value is only used for DNS packets. However, in some
networks, the DNS and the NAT services might not be
on the same server.Therefore, in these cases, the TTL
values will not be as accurate as the ones seen in Maier
et all's data sets.

2) TTL Range and the Distinct TTL Values Per IP
Address

In this case, not only the TTL range is observed to detect a
NAT device but also thenumber of distinct TTL values is
observed per IP address.Given that Windows uses a ttlinitof
128, MacOSX and Linux use 64, and these ranges are far
enough apart to distinguish between them, observed TTL
values can be used to distinguish between Windows and non-
Windows OSs. Thus, if more than one TTL value range is
observed for one IP address, then that IP address may belong
to a NAT device. Hereafter, we refer to this technique as “L2”.

Although utilizing this techniquecan give a better
performance than L1for detecting a NAT device, it still has the
following limitations:

• Similar to L1, if the users reconfigure their systems to
use a different TTL policy, then this system cannot
infer the presence of a NAT device based on the
different TTL values.

• When there are two completely different operating
systems (eg. Linux and Windows) on the same host,
this approach would see two different TTL values (e.g.
64 and 128). So it would infer that there is a NAT
device in this traffic, even though there is not.

TABLE II. Features Employedby the Proposed Approach

TABLE III. Features (and some example cases) Employed by the Passive

Fingerprinting Approach
From Packet Header From HTTP User Agent

Approach TTL IP OS Browser
Family

Browser
Version

L1 61 - - - -

L2 61 129.173.13.94 - - -

L3 125 129.173.13.94
Windows

NT 5.1
- -

L4 125 129.173.13.94
Windows

NT 5.1
Firefox 3.0.3

3) TTL Range, the Distinct TTL Values Per IP Address,
and the Different OS Information in the HTTP User
Agent Strings

Given the above constraints and the false alarms they may
cause, Maier et al. extended their technique into the HTTP
user agent strings (when the information is available) to
observe the OS types and their versions. In this case, they
assume thata NAT device is more accuratebased on the OS
fingerprint. Hereafter, we refer to this technique as
“L3”.However, thistechnique also has the following
limitations:

135135135

• If all the hosts in a NAT network use the same type of
OS, this technique cannot detect the NAT device.

• When there are two versions of an OSon the same host
(e.g. Windows XP and Windows 7), this
techniquewould detect one TTL value but two different
OS versions. So it would classify them as two separate
hosts and would infer that there isa NAT device, even
though there is not.

4) TTL Range, the Distinct TTL Values Per IP Address,
the Different OS and the Browser Information in the
HTTP User Agent Strings

In this case, in order to have more accurate results,the
browser type and version are also extracted from the HTTP
user agent string to detect a NAT device. This technique aims
to minimize the false alarms that may arise from one host
having two different versions of the same OS. The assumption
behind this technique is that one host might have two different
web browsers, but it cannot have two different versions of the
same web browser working simultaneously [2]. Hereafter, we
refer to this techniqueas “L4”.

Detecting the NAT devices and their traffic based on the
web browser information in the HTTP user agent strings still
has the following limitations:

• When there are several computers behind a NAT
device with the same OS and the same browser (e.g. a
network in a university lab where all of the computers
have the same OS and the same browser), this
technique could not classify such traffic as NAT traffic,
because it could not find any evidence for different
TTL values, OSs, and browsers.

• When one host uses a specific version of a web
browser and later it uses another version of the same
browser, L4 technique could detect these as NAT
devices even though they are not. This may happen
when the user updates his/her web browser.

• There are several examples of HTTP user agent strings
where they do not have any information about the OS
and the web browser of the client.Under such
conditions, L4 techniquecould not work accurately.

D. Proposed ML Based Approach
As discussed above, our proposed system is a ML based

approach using network flow based features. To this end, we
employ two learning techniques: a decision tree classifier,
namely C4.5, and a probabilistic classifier, namely Naive
Bayes. The following summarizesthe learningtechniques
employed.

1) C4.5
C4.5 is an algorithm that generates a decision tree using

information gain. A decision tree is a hierarchical data
structure for implementing a divide-and-conquer strategy.
C4.5 is an efficient non-parametric technique that can be used
for both classification and regression problems. C4.5
constructs decision trees from a set of training data applying
the concept of information entropy, Eq. (1) [13].The training
data is a set, S, such that each input of the set is an instance of
already classified samples. Each sample in the set is a vector
where each element in the vector represents a feature of the
sample. C4.5 can split the data into smaller subsets using the

fact that each feature of the data can be used to make a
decision (one class versus another class). The feature with the
highest information gain is used to make the decision of the
split.

��������������������������� � ��� ��
	

�� ���� ��
	 (1)

If the split is not pure, then the instances should be split to

decrease impurity. There are multiple possible features on
which a split can be done. Indeed, this is locally optimal;
hence there is no guarantee of finding the smallest decision
tree. In this case, the total impurity after the split can be
measured by Eq. (2) [13]. In other words, when a tree is
constructed, at each step the split that results in the largest
decrease in impurity is chosen. This is the difference between
the impurity of data reaching node m, Eq. (1), and the total
entropy of data reaching its branches after the split, Eq. (2). A
more detailed explanation of C4.5 algorithm can be found in
[9].

�� � ���
���

��

�� � ���

	�
	� ��� ���

	 (2)

2) Naive Bayes
Naive Bayesian is a statistical classi�er based on Bayes

theorem that gives its conditional probability a given class.A
Naive Bayes classifier assumes that the presence (or absence)
of a particular feature of a class is unrelated to the presence (or
absence) of any other feature. Depending on the precise nature
of the probability model, Naive Bayes classifiers can be
trained efficiently in a supervised learning approach [14]. A
simple Naive Bayes probabilistic model can be expressed as
Eq.(3) in the following:

������ ��� � � �
� � �

�
���� ���	��������������������������

	� (3)

where������ ��� � � �
� is the probabilistic model over the

dependent class variable C with a small number of outcomes
or classes, conditional on several feature variables F1 through
Fn; Z is a scaling factor dependent only on �� ���� � �
, i.e., a
constant if the value of the feature variables are known.More
detailed information on the Naive Bayesian algorithm can be
found in [14].

IV. EXPERIMENTS AND RESULTS
In this research we have employed C4.5 and Naïve Bayes

learning algorithms via an open source tool called
Weka[17].We measure the performance of all the techniques
employed using two metrics, namely Detection Rate (DR) and
False Positive Rate (FPR). DR reflects the number of NAT
traffic flows correctly classified. It is calculated using Eq. (4):

DR = TP / (TP+FN) (4)

where False Negative (FN) reflects the number of NAT flows
incorrectly classified as OTHER flows, i.e. non-NAT flows.
On the other hand, FPR reflects the number of OTHER flows
incorrectly classified as NAT flows using Eq. (5):

FPR = FP/ (FP+TN) (5)

Naturally, a high DR and a low FPR are the desirable
outcomes.

136136136

A. Performances of the Passive Fingerprinting Approach
We appliedall the passive fingerprinting classifiers, namely

L1, L2, L3 and L4 techniques, to our datasets to identify the
presence of NAT behavior. These results are discussed in the
following.

1) L1
L1 classification technique aims to detect the presence of

NAT behaviorbased only on the TTL values present in the
traffic traces. As can be seen in Table IV, in this case, the DR
is 0% and FPR is 100% for both of the datasets. The reason is
thatL1 requires the prior knowledge about the location of the
monitoring point. However, we do not have any prior
knowledge about the location of the monitoring point in our
data sets.

Fig. 1, Fig. 2 and Fig. 3 show the different TTL value
ranges for the Nims-NAT data sets.As can be seen from these
figures, they do not fall in the range, ttlinit-1 and ttlinit-3, as
given by Maier et al. [2].
Fig. 1. TTL range for Microsoft Windows versions (MS Windows 95/98/98

SE etc.)

Fig. 2. TTL range for Mac OS X, Unix and Unix like systems

Fig. 3. TTL range for newer Microsoft Windows versions (MS Windows
2000, Vista etc.)

TABLE IV. Test Results on the Nims-NAT and the Partner-NAT data sets by
using the L1 classifier

 Class-NAT Class-OTHER

Data sets DR FPR DR FPR

Nims-NAT 0% 100% 0% 100%

Partner-NAT 0% 100% 0% 100%

2) L2
L2 classification technique aims to detect the presence of

NAT behaviorbased on the TTL range and the distinct TTL
values per IP address. Table V presents the DRand FPR results
for this classifier on our data sets. In this case, the DR of the
NAT behavior in the Nims-NATdata set is 100% because the
real NAT devices in this data set has more than one TTL value
(64 and 128), so all distinct instances belonging to this IP
address are detected. In the Nims-NAT data set, there are
12,168 NAT traffic flows (out of 177,493 flows in total)and
all are identified (detected) correctly.However the DR for the
Partner-NATdata set is 0%. Since all the OSs that belong to
the NAT IP addresses in the Partner-NATdata set have the
same OS, there is noNAT device IP address with more than
one TTL value in this data set.Moreover, for both theNims-
NAT and Partner-NATdata sets, there are some flows that
belong to the hosts that have both Windows and Linux OSs.
Thus, these hosts IP addresses have more than one distinct
TTL valueobserved in the data sets. Thisresults in the L2
technique to identify them as NAT devices and causes theFPR
for bothdata sets.

TABLE V. Test Results on the Nims-NAT and the Partner-NATdata sets by
using the L2 classifier

 Class-NAT Class-OTHER

Data sets DR FPR DR FPR

Nims-NAT 100% 0.16% 99.8% 0%

Partner-NAT 0% 2.7% 97.2% 100%

137137137

3) L3

L3 classification technique aims to detect the presence of
NAT behavior based on the TTL Range, the distinct TTL
values per IP address, and the different OS information in the
HTTP user agent strings per IP address. Table VI shows the
DR and FPR for this classifier on our data sets. In this case,
the FPR of the L3 classifier on the Nims-NAT data set is more
than the FPR of the L2 (Table V) classifier on the same data
set even though L3 classifier employs payload inspection, i.e.
HTTP user agent string. This was not expected so when we
analyzed the data set, we found that Nims-NAT data set has
some instances that belong to the hosts with two OSs, but both
of those OSs are two different versions of the same OS, e.g.
Windows XP and Windows 7, so L3 classifierautomatically
detects them as NAT devices,which is obviously not correct.
As for the Partner-NAT data set, the DR of NAT flows is still
0% because L3 classifier cannot detect the NAT flows coming
from hosts that use the same version of the same OS behind
the NAT device.

TABLE VI. Test Results on the Nims-NAT and the Partner-NAT data sets by
using the L3 classifier

 Class-NAT Class-OTHER

Data sets DR FPR DR FPR

Nims-NAT 100% 0.93% 99.6% 0%

Partner-NAT 0 2.7% 97.3% 100%

4) L4
L4 classification technique aims to detect the presence of

NAT behavior based on the TTL Range, the distinct TTL
values per IP address, the different OS and the browser
information in the HTTP user agent strings per IP address.As
shown in Table VII, the FPR of L4 classifier on the Nims-
NAT data set is very high (6%). The reason is that there is a
DHCP server that assigns the IP addresses randomly to the
mobile devices (e.g. smartphones and laptops)on this network.
These devices have different versions of the same web
browser and might end up using the same IP address during
different times of the day. In this case, L4 classifier
categorizes them as NAT devices even though they are not
and hence the high FPR. On the other hand, L4 classifier
works much better (DR: 100%, FPR: 3%) on the Partner-
NATdata set than the L1, L2 and L3 classifiers.

TABLE VII. Test Results on the Nims-NAT and the Partner-NAT data sets by
using the L4 classifier

 Class-NAT Class-OTHER

Data sets DR FPR DR FPR

Nims-NAT 100% 6% 93.9% 0%

Partner-NAT 100% 2.7% 97.2% 0%

B. Performance of the Proposed Approach
As we have seen in the previous section, each classifier

used for passive fingerprinting approach to identify NAT
behavior in the monitored data has some drawbacks on one
data set or the other.This not only shows that detecting the

NAT behavior in the monitored (analyzed) traffic is
challenging, but also it shows that there are different NAT
behaviors depending on the organization (Nims versus Partner
networks). Moreover, each organization’s data can be
reflected differently depending on at which level it is analyzed
i.e. network layer (network traffic flows) versus application
layer (HTTP user agent strings). Based on our evaluations
presented above, the L2 classifier among the passive
fingerprinting techniques was the best for the Nims-NATdata
set, while the L4 classifierwas the best for the Partner-NAT
data set.

As for the performance of our proposed approach based on
the ML classifiers using only network flows,Table II shows
the Netmate flow features used to represent the traffic to the
learning classifiers. In this case, we trained both the C4.5 and
the Naïve Bayes learning algorithms using a portion of the
network flow data sets from Nims-NAT and Partner-NAT data
sets. To this end, we have employed a balanced training data
of network traffic flows from each data set. Weused the
Uniform Distribution Filter1 from Weka to randomly select the
training instances to form the training data set for training both
of the ML classifiers. Once the classifiers are trained on the
trainingdata set,i.e. the sampled data set, we used all the
unseen data that is not included in our trainingdata set for
testing purposes.

Table Ishows the number of flows used for training and
testing for each data set. It should be noted here that these are
the same data sets used for the passive fingerprint classifiers.
Table VIIIpresents the performance of our proposed approach,
where we compared two different ML algorithms for detecting
NAT behaviors in Nims-NAT and Partner-NATdata sets.
According to these results, the performance results of the C4.5
learning technique seems to be well generalized from one data
set to the other. This is achieved without using any IP address,
port numbers, TTL data or HTTP user agent strings, i.e.
without any application level information.

Table IX shows the most important features that enable the
C4.5 based classifier to identify the NAT device behavior at
the end of the training phase.

TABLE VIII. Test Results on the Nims-NAT and Partner-NATdata sets by using
the proposed approach with flow features

 Class-NAT Class-OTHER
DR FPR DR FPR

Nims-NAT
data set

C4.5 based
classifier 98.7% 3.7% 96.3% 1.3%

Naive Bayes
based classifier 15% 13% 98% 98%

Partner-NAT
data set

C4.5 based
classifier 98% 2.4% 97.6% 2%

Naive Bayes
based classifier 34% 10% 89% 66%

Our proposed system using C4.5 classifier outperforms the

L1 classifier of the passive fingerprinting approach on both
data sets in terms of DR and FPR. Our proposed system only

1Uniform Distribution filter is set in Weka by following this path:
weka.filters.supervised.instances.spreadsubsample. This filter produces
random subsamples of a data set by using the options options; -S, -M, -W and
-X. -M is the maximum class distribution spread. If it is chosen as 1.0, the
class values are chosen equally in the manner of uniform distribution.

138138138

employs network flow based information. Moreover, it also
outperforms the L2 and L3 classifiers on the Partner data set
and performs as good as the L4 classifier on both data sets
even though L4 classifier employs both the packet header and
the HTTP user agent strings information.

As discussed earlier, C4.5 learning technique based
classifier has the ability to choose the most appropriate
features from a given feature set. This enables us to learn
which features of the network flow traffic have contributed to
this high performance. Once we analyzed the solution decision
tree generated by the C4.5 algorithm, we were able to identify
the most helpful features for the classifier to detect different
NAT behaviors existing in the network traffic, Table IX.

TABLE IX. The most important Netmate features selected by the
proposed system using the C4.5 learning classifier

FEATURES

Name Description

sflow_bytes The average number of bytes in a sub flow in the
forward direction

total_bvolume Total bytes in the backward direction

mean_fpktl The mean size of packets sent in the forward direction

max_active The maximum amount of time that the flows was active
before going idle

min_fpktl The size of the smallest packet sent in the forward
direction

max_bpktl The size of the biggest packet sent in the backward
direction

std_bpktl The standard deviation from the mean of the packet sent
in the backward direction

These features seem to work for both of thedata sets

employed in this work. Even though these are the features
with the highest weights in the solution, actually our system is
based on all 41 Netmate flow features. This also indicates the
challenges and different NAT behaviors present in the
different data sets.

In summary, these results show that passive fingerprinting
classifiers seem to work for certain NAT behaviors better than
the others. Moreover, as the NAT behavior gets more unique
and challenging, passive approach requires access to the
application (payload) information such as HTTP user agent
strings to reach a high DR with low FPR. On the other hand,
our proposed approach based on the C4.5 decision tree
learning classifier, enables us to achieve a high performance
(high DR and low FPR) accuracy without using any
application level data and generalizing well to different NAT
behaviors present in different data sets.

V. CONCLUSION AND FUTURE WORK
In this research, we explored how far we can push a ML

based classification approach to identify NAT devices using
only network flows. To this end, we represented the traffic as
network flows to two ML techniques, namely C4.5 and Naive
Bayes, without using IP addresses, port numbers and payload
(application) information. We evaluated our approach on two
different data sets against four different variants of the passive
fingerprinting approach [2], which represents the state-of-the-
art techniques. Our results show that the proposed approach
using C4.5 learning classifier performs better than the passive
fingerprinting approach on both data sets even though the

latter uses payload information. This is a very promising result
given that payload becomes opaque when encryption is used at
the application level. Future work will analyze different NAT
behaviors and explore how solutions of the C4.5 based
classifier can be converted into automatic signatures.

ACKNOWLEDGMENT
This research is supported by the Canadian Safety and
Security Program(CSSP) E-Security grant. The CSSP is led by
the Defense Research and Development Canada, Centre for
Security Science (CSS) on behalf of the Government of
Canada and its partners across all levels of government,
response and emergency management organizations, non-
governmental agencies, industry and academia.

REFERENCES
[1] Y. Ishikawa; N. Yamai; K. Okayama; M. Nakamura.; , "An

Identification Method of PCs behind NAT Router with Proxy
Authentication on HTTP Communication," Applications and the Internet
(SAINT), 2011 IEEE/IPSJ 11th International Symposium on , vol., no.,
pp.445-450, 18-21 July 2011.

[2] G. Maier, F. Schneider, and A. Feldmann. NAT Usage in Residential
Broadband Networks. Proceedings of the 12th International Conference
on Passive and Active Network Measurement (PAM 2011), Atlanta,
Georgia, March 2011.

[3] R. Murakami; N. Yamai; K. Okayama; , "A MAC-address Relaying
NAT Router for PC Identification from Outside of a LAN," Applications
and the Internet (SAINT), 2010 10th IEEE/IPSJ International
Symposium on , vol., no., pp.237-240, 19-23 July 2010.

[4] L. Rui; Z. Hongliang; X. Yang; Y. Yixian; W. Cong; , "Remote NAT
Detect Algorithm Based on Support Vector Machine," Information
Engineering and Computer Science, 2009. ICIECS 2009. International
Conference on, vol., no., pp.1-4, 19-20 Dec. 2009.

[5] P. Phaal, Detecting NAT devices using sFlow.
http://www.sflow.org/detectNAT/ (last modified: 2009).

[6] T. Miller, Passive OS fingerprinting: Details and techniques.
http://www.ouah.org/incosfingerp.htm (last modified: 2005).

[7] R. Beverly. A robust classifier for passive TCP/IP fingerprinting. In
Proc. Conference on Passive and Active Measurement (PAM) (2004).

[8] S. M. Bellovin, “A technique for counting natted hosts”, In IMW ’02:
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, pp. 267–272, New York,NY, USA, 2002, ACM Press.

[9] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers,1993.

[10] V. Krmicek , J. Vykopal , R.Krejci, Netflow based system for NAT
detection, Proceedings of the 5th international student workshop on
Emerging networking experiments and technologies, December 01-01,
2009, Rome, Italy.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-mann, and I. H.
Witten, "The weka data mining software:An update," SIGKDD
Explorations, vol. 11, no. 1, 2009.

[12] R. Alshammari, A. N. Zincir-Heywood, Machine learning based
encrypted traffic classification: Identifying ssh and skype, IEEE
Symposium on Computational Intelligence for Security and Defense
Applications, pp. 1–8, 2009.

[13] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers,1993.

[14] G. H. John and P. Langley Estimating Continuous Distributionsin
Bayesian Classi�ers. Proceedings of the Eleventh Conference on
Uncertainty in Arti�cial Intelligence. pp. 338-345, Morgan Kaufmann,
San Mateo, 1995.

[15] Netmate.http://www.ipmeasurement.org/tools/netmate/
[16] IETF.http://www3.ietf.org/proceedings/97apr/97aprfinal/xrtftr70.htm.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten
(2009); The WEKA Data Mining Software: An Update; SIGKDD
Explorations, Volume 11, Issue 1.

[18] M. A. Rajab, F.Monrose, A.Terzis, On the impact of dynamic
addressing on malware propagation,In Proceedings
of the 2006 ACM Workshop on Recurring Malcode, pages
51–56, 2006.

139139139

