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Abstract—It is shown in the literature that network address 

translation devices have become a convenient way to hide the 
source of malicious behaviors. In this research, we explore how 
far we can push a machine learning (ML) approach to  identify 
such behaviors using only network flows. We evaluate our 
proposed approach on different traffic data sets against passive 
fingerprinting approaches and show that the performance of a 
machine learning approach is very promising evenwithout using 
any payload (application layer) information. 

Keywords—Network address translation classification, traffic 
flows, traffic analysis, machine learning. 

I. INTRODUCTION 
The usage of Network Address Translation (NAT)devices 

is very common among the devices such as computers, laptops 
and smart phones connecting to the Internet. While NAT 
devices are generally used in local area networks (LAN), they 
can also be used just for one computer. In home networks, 
most Internet Service Providers (ISPs) give WiFi-enabled 
NAT home gateways to their users.  Thus, when users can 
connect their devices to the Internet, theirprivate Internet 
Protocol (IP) addresses are hidden on the Internet since they 
are encapsulated with a public IP address that the NAT 
provides.  

Basically, NAT allows a single device, such as a proxy, to 
act as an agent between the Internet and a private network. 
This means that only a single IP address is required to 
represent one or more computers to the rest of the world. 
Thus, NATs are used for many reasons such as a solution to 
the shortage of IPv4 addresses or for security and privacy 
reasons. The latter is the focus of this work.In this case, to be 
represented by one public IP addressgives anonymity within 
the group of computers behind a NAT device. This could be 
advantageous tosome users, since their private IP addresses 
cannot be identified at a glance.All these advantages enable 
the NAT usage to be common for network management 
purposes. However, the same reasons also make itattractive 
and useful for malicious users who want to hide their real 
identities. Hence, NAT usage increases both in legitimate and 
in malicious environments.  

Moheeb et al. [18]showed that the initial exploit in multi-

stage infections was likely some form of a shellcode 
containing a Uniform Resource Locator (URL) that hosts the 
malware binary. In their research, such a URL pointed back to 
the source that sent the exploit in the first stage. Using this, 
they could determine which sources were located behind NAT 
devices by parsing the log of collected URLs. They could then 
extractthose sources that use local IP addresses in the URL 
sent to the victim.They showed that the widespread use of 
NAT had significant implications on how different families of 
malware spread on the Internet. 

Thus,identifying the NAT devices becomes more and more 
important to understand and to detect the malicious behavior 
in traffic and application usage. In this research, our goal is to 
explore whether we can find specific patterns in the network 
traffic that will enable us to identify NAT like behaviors. To 
this end, we propose a ML based approach to automatically 
find patterns indicating NAT usage without using IP 
addresses, port numbers or payload information. In doing so, 
our aim is to not only analyze how far we can push a ML 
approach but also to achieve a well generalized classifier, 
which can work under encrypted payload and traffic filtering 
(based on IP address or port number) conditions.We evaluate 
our proposed system on two different data sets and compareit 
to other approaches used in the field. Our results demonstrate 
that the proposed system is very promising in identifying NAT 
device behaviors by analyzing traffic flows. This enables us to 
analyze both encrypted and non-encrypted traffic since traffic 
flows are only based on the packet header features.The 
remainder of this paper is organized as the following. Section 
II reviews the literature on NAT related research. Section III 
describes our proposed system and the methodology we 
followfor our evaluations. Section IV presents the empirical 
results and our observations. Finally, Section V draws 
conclusions and discusses the future work. 

II. LITERATURE REVIEW 
The identification of NAT devices and the number of end 

users behind such devices is a relatively new research area. To 
this end, different algorithms were proposed, but generally, 
researchers used some form of passive Operating System (OS) 
fingerprinting to identify NAT behaviors. To achieve this,they 
analyzecertain parameters within the TCP/IP (Transmission 
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Control Protocol/ Internet Protocol) protocol stack and most of 
the time conduct experiments with simulated NAT data sets. 

Examples of passive methods includeBellovinet al.[8] who 
identified that consecutive packets carry sequential IP 
Identification (ID) fields, which were included in the IP 
header and generally were used as counters. Therefore, 
theyconcluded that it was possible to count the string values of 
those IP ID fields to find the number of hosts. However, such 
an approach might have some complications when faced with 
packets with zero IP IDs or packets using byte-swapped 
counters. Moreover, the recent versions of OpenBSD and 
FreeBSD use pseudo-random number generator for the IP ID 
fields. So counting such values will not work accurately on 
these OSs.Beverlyet al.[7] proposed a classifierto infer the OS 
passively and find the number of hosts behind a NAT. They 
used Time-To-Live (TTL), Do-not-fragment (DF), Window-
size and SYN-size features. Miller et al.[6] analyzed 
thetcpdump packets. They checked certain fields, namely 
Type of Service (TOS), total length, IP ID, TTL, source port, 
window  and TCP options in the TCP/IP header to fingerprint 
different OSs. The idea is that if an IP address has more than 
one OS associated with it, this might indicate a NAT device 
with different OSs behind it. Indeed, it is easy to see that such 
an approach will give false alarms if a computer has more than 
one OS on it. 

Moreover, more active methods are also proposed. 
Murakami et al. [3] focused on the Medium Access Control 
(MAC) address of a device and proposed a NAT router, which 
relays the MAC address of the computers based on 
FreeBSD.So ifthe proposed NAT relaying machine is used on 
a network,then it is straight forward to identify the NAT 
device.Ishikawa et al. [1] proposed to identify the computers 
behind a NAT router with proxy authentication on a proxy 
server. Their target application was WWW. They used realm 
field in the authentication header by associating with a MAC 
address of a client computer after authentication is succeeded. 
That realm is shown to the user as a prompt message. Their 
proposed system requires Java Runtime Environment (JRE) on 
each client machine. They assumed that a web browser always 
adds the authentication header to its request message when 
authentication has succeeded. Even though this method is 
successful, it could only be used for their target applicationand 
the proxy conditions require the JRE code the authors 
developed. 

On the other hand, Rui et al. [4] proposed the use ofa 
Support Vector Machine (SVM) based classifier to detect the 
presence of a NAT in agiven traffic trace. They captured 
traffic on  five different hosts that were potential NAT 
devices. Then they trained a SVM classifier on the captured 
traffic to be able to detect the NAT device among the five 
potential hosts.They collected different statistics on a host  to 
show its activeness. Their hypothesis was that the hosts behind 
a NAT device send more bytes, need more network 
connections, visit more web sites,and produce more complex 
traffic traces compared to an ordinary host. Therefore, a host 
behind a NAT device would have higher activity value than an 
ordinary one.They labeled their traffic data as ordinary hosts 
and hosts behind a NAT. Then, they applied binary 
classification using the SVM.Even though this is an interesting 
approach to collect traffic on the host that is suspected to be a 

NAT device. However, collecting such data may not be 
feasible in practice unless we have full control on such a host. 

Maier et al. [2] focused on detecting DSL lines that use 
NAT devices to connect to the Internet. Their approach is 
similar to passive fingerprinting and is based on the IP TTL 
and the HTTP user agent strings. They extracted the operating 
system and the browser family and its versions from the HTTP 
user agent strings. Indeed, this necessitates deep packet 
inspection into the payload of a packet. However, if they do 
not have access to the payload information, then they only use 
the IP TTL information. They analyzed the user agent strings 
of typical browsers and they ignored the ones, which came 
from mobile devices and gaming consoles. They found 10% of 
DSL lines had more than one user active at the same time, and 
that 20% of the lines have multiple hosts that were active 
within one hour of each other. These results indicated the 
potential NAT devices in their DSL data sets. 

In summary, Maier et al. [2]'s approach, seems to be the 
best performingapproach reported in the literature albeit its 
requirement for payload information. Thus, in this paper, we 
re-engineered their approach to understand its advantages and 
disadvantages. In addition, we employed their system as the 
representation of the state-of-the-art in our evaluations against 
our proposed system. Finally, our aim is to study whether we 
can learn general enough patterns to identify the behavior of 
NAT devices among the traffic received by the computer that 
is under analysis. This makes it very different from Rui et al's 
work [4], which analyzes the traffic of a host to determine 
whether it is a NAT device or not.To the best of our 
knowledge, our work is the first one aiming to evaluate these 
different approaches on different traffic traces from different 
networks to identify the potential NAT devices. 

III. METHODOLOGY 
In this research, we aimed to evaluate two different 

approaches on identifying potential NAT devices on given 
traffic traces. These approaches are:our proposedMLbased 
approach and the passive fingerprintingapproachthat 
analyzesspecific parameters in a given network traffic trace. 
For the proposed approach, we employ the C4.5and Naive 
Bayes learning techniques as our classifiers. The reason we 
chose these two learning algorithms are two folds: C4.5 
learning technique provides the solution it learns from the data 
in a tree form using if-then-else format. This makes it easy for 
a human expert to analyze the solution and to understand what 
the algorithm learned. In other words, the solution is no longer 
a black box. On the other hand, Naïve Bayes is one of the well 
known statistical learning algorithms (albeit with an opaque 
solution) so it naturally represents a standard baseline 
classifier for this work. As for the passive fingerprinting 
approach, we re-engineered and employed the algorithm 
introduced by Maier et al. [2] as the representative state-of-
the-art technique.  

For bothapproaches, we employ the same data sets 
including both encrypted and non-encrypted traffic from two 
different organizations. The following describes the data sets, 
and the algorithms employed as well as the experiments 
performed in this work. 

A. Data sets Employed 
In this research, two different data sets from two different 
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organizations (networks), namely Nims-NAT and Partner-
NAT,areemployed to evaluate the aforementioned approaches. 
These are traffic data sets in the form of tcpdumplog files 
without any payload information.Our first data set, Nims-NAT 
also includes the web access log files, which belong to the 
same time period. Nims-NAT data is collected over a week on 
November 2012 on our network. This data set is labeled as (i) 
NAT flows; and (ii) OTHER flows where we know the ground 
truth about the NAT devices.  

Our second data set is provided to us with the ground truth 
(in terms of NAT flows vs. OTHER flows) by our industrial 
partner, which is a medium sized private company. We will 
refer to this data set as Partner-NAT hereafter. Given the 
privacy issues related to this data set, we will not be able to 
provide any further details about the Partner-NAT. However, 
Table I presents some properties of bothNims-NAT and 
Partner-NAT data sets. 

B. Features Employed 
In this work, we converted our packet based traffic traces 

(tcpdump files) totraffic flows. To this end, NetMate[15]open 
source tool is employed to generate the flows and compute the 
statistical features for each flow.Once the flows are generated, 
we do not usethe source and destination IP addresses as well 
as the source and destination port numbersin our feature set to 
represent the flow traffic to our classifiers. We think that such 
information can bias the results. It is well known that port 
numbers can be assigned dynamically and IP addresses can be 
anonymized very easily. One can say that in some ways, 
NATs and proxies are already doing this for free. Moreover, 
filters can be set to block or choose certain traffic. Our aim 
here is to find patterns (in other words signatures) 
automatically without using any biased features. Indeed, to be 
able to apply our approach both to the encrypted and the non- 
encrypted traffic, we do not employ any payload (application 
layer) information as features in our proposed ML based 
approach. However, such information is employed for the 
passive OS fingerprinting as Mailer et al.described in [2].In 
the following, we discuss the features in more detail. 

1) Features for the Proposed Approach - Netmate 
Features 

NetMate[15] is an open source flow generator. In this case, 
flows are bidirectional and the first packet of the flow 
identified byNetmate determines the forward (source to 
destination) direction. A flow can be uniquelyidentified by 
five parameters within a certain time period. These parameters 
are source and destination IP addresses, source and destination 
port numbers and protocol. Netmate considers only the UDP 
and the TCP flows. Moreover, the UDP flows are terminated 
by a flow timeout, whereas the TCP flows are terminated upon 
proper connection teardown or by a flow timeout, whichever 
occurs first.The flow timeout value employed in this work is 
600 seconds as recommended by the IETF [16]. The Netmate 
features that we used in our experiments are shown in Table 
II. 

2) Features for the Passive Fingerprinting Approach 
As discussed earlier, we re-engineered the passive 

fingerprinting approach of Maier et al. as it is described in [2]. 
In their passive fingerprinting approach, some features require 
access to the payload (application level) information whereas 
others do not. We detail these features below. 

a) PacketHeader Base Features – Time to Live (TTL) 
Networking stacks of OSsuse well-defined initial IP TTL 

values (ttlinit) in outgoing packets. For instance, Windows uses 
128, MacOS uses 64 andDebian based systems use 64, 
too.The TTL field of the IP header is defined to be a timer 
limiting the lifetime of the IP datagram. It is an 8-bit field and 
may be implemented as a counter or a timestamp. Each router 
(or other modules) that handles a packet must decrement the 
TTLby at least one, even if the elapsed time was much less 
than a second.When a router forwards a packet, it must reduce 
the TTL by at least one. Thus, it isassumed that if there is a 
machine routing in the network, in some ways a NAT device 
falls under this category, it will decrement the TTL values for 
each packet that passes through.  

TABLE I. Number of flows in the data sets employed in this work 

The Number of Flows 
NAT OTHER TOTAL 

D 
A 
T 
A 
S 
E 
T 
S 

Nims-
NAT 

Training 9126 9126 18252 

Testing 3042 156199 159241 

Total 12168 165325 177493 

Partner-
NAT 

Training 9126 9126 18252 

Testing 90116 35348 125464 

Total 99242 44474 143716 

 

b) Packet Payload Base Features – HTTP User Agent 
String 

The user agent string identifies the browser that is used to 
access the web. When a user visits a webpage, his/her browser 
sends the user-agent string to the web server hosting the site 
that is visited. This string indicates which browser is in use, its 
version, and otherdetails about the user’s system, such as the 
OS and its version. 

For this part (payload information), we utilized the web 
access log files to be able to extract this information, Table 
III.Maier et al. [2] analyzed the user agent strings to obtain the 
OS and the browser information. Then based on this 
information, they made adecision regarding the presence of a 
NAT device in the traffic. They limited their analysis to user 
agent strings from typical browsers such as Firefox, Internet 
Explorer, Safari and Opera [2].However, when we applied 
their approach on our data sets, we did not limit their 
technique only to the typical browsers. In our data sets, we 
observed many user agent strings from Android based devices, 
iPhones and iPads so we included them in our analysis. 

C. Passive Fingerprinting Approach 
We evaluated this approach in four different steps based on 

the utilization of the features to better understand their effect 
on a given data set. 

1) TTL Range 
In the simplest form, Maier et al. infer the presence of a 

NAT device based on the TTL values of packets sent by users. 
If the TTL is ttlinit �1 the sending host is directly connected to 
the Internet (as the monitoring point is one hop away from the 
device on which the traffic is monitored / analyzed).If the TTL 
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is ttlinit �2 then there is a routing device (i.e., a NAT device) in 
the users’ premises. Hereafter, werefer to this technique as 
“L1”. 

Although L1 techniquecan be used to detect the presence 
of a NAT device for some networks, it also has some 
limitations. These may prevent the detection of a NAT device 
under the following conditions: 

• L1assumes that the number of hops between the 
machine on which the traffic is captured and the 
machine on which the analysis is made, is known. 
Because, only then the TTL values used can be 
interpreted accurately to detect a NAT device. 
Otherwise, L1 technique cannot work accurately. 

• L1 assumes that the NAT devices decrement the TTLs 
for each packet that passes through them. However 
some NAT implementations might not decrement the 
TTL values for some reason or another such as hiding 
the network topology. 

• In Maier et al.’s work, the data set employed is from an 
ISP so the analysis (monitoring) is performed on the 
residential users’ traffic of the ISP. In that case, the 
traffic coming from residential ISP users naturally goes 
through a device, which performs the NAT as well as 
the DNS services. They assume the traffic gets NATed, 
if they see an IP address that sends DNS packets with a 
special TTL value. Moreover, they assume that TTL 
value is only used for DNS packets. However,  in some 
networks, the DNS and the NAT services might not be 
on the same server.Therefore, in these cases, the TTL 
values will not be as accurate as the ones seen in Maier 
et all's data sets. 
 

2) TTL Range and the Distinct TTL Values Per IP 
Address 

In this case, not only the TTL range is observed to detect a 
NAT device but also thenumber of distinct TTL values is 
observed per IP address.Given that Windows uses a ttlinitof 
128, MacOSX and Linux use 64, and these ranges are far 
enough apart to distinguish between them, observed TTL 
values can be used to distinguish between Windows and non-
Windows OSs. Thus, if more than one TTL value range is 
observed for one IP address, then that IP address may belong 
to a NAT device. Hereafter, we refer to this technique as “L2”. 

Although utilizing this techniquecan give a better 
performance than L1for detecting a NAT device, it still has the 
following limitations: 

• Similar to L1, if the users reconfigure their systems to 
use a different TTL policy, then this system cannot 
infer the presence of a NAT device based on the 
different TTL values. 

• When there are two completely different operating 
systems (eg. Linux and Windows) on the same host, 
this approach would see two different TTL values (e.g. 
64 and 128). So it would infer that there is a NAT 
device in this traffic, even though there is not. 

 
 
 
 

TABLE II. Features Employedby  the Proposed Approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE III. Features (and some example cases) Employed by the Passive 

Fingerprinting Approach 
From Packet Header From HTTP User Agent 

Approach TTL IP OS Browser 
Family 

Browser 
Version 

L1 61 - - - - 

L2 61 129.173.13.94 - - - 

L3 125 129.173.13.94 
Windows 

NT 5.1 
- - 

L4 125 129.173.13.94 
Windows 

NT 5.1 
Firefox 3.0.3 

 

3) TTL Range, the Distinct TTL Values Per IP Address, 
and the Different OS Information in the HTTP User 
Agent Strings 

Given the above constraints and the false alarms they may 
cause, Maier et al. extended their technique into the HTTP 
user agent strings (when the information is available) to 
observe the OS types and their versions. In this case, they 
assume thata NAT device is more accuratebased on the OS 
fingerprint. Hereafter, we refer to this technique as 
“L3”.However, thistechnique also has the following 
limitations: 
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• If all the hosts in a NAT network use the same type of 
OS, this technique cannot detect the NAT device. 

• When there are two versions of an OSon the same host 
(e.g. Windows XP and Windows 7), this 
techniquewould detect one TTL value but two different 
OS versions. So it would classify them as two separate 
hosts and would infer that there isa NAT device, even 
though there is not. 

4) TTL Range, the Distinct TTL Values Per IP Address, 
the Different OS and the Browser Information in the 
HTTP User Agent Strings 

In this case, in order to have more accurate results,the 
browser type and version are also extracted from the HTTP 
user agent string to detect a NAT device. This technique aims 
to minimize the false alarms that may arise from one host 
having two different versions of the same OS. The assumption 
behind this technique is that one host might have two different 
web browsers, but it cannot have two different versions of the 
same web browser working simultaneously [2]. Hereafter, we 
refer to this techniqueas “L4”. 

Detecting the NAT devices and their traffic based on the 
web browser information in the HTTP user agent strings still 
has the following limitations: 

• When there are several computers behind a NAT 
device with the same OS and the same browser (e.g. a 
network in a university lab where all of the computers 
have the same OS and the same browser), this 
technique could not classify such traffic as NAT traffic, 
because it could not find any evidence for different 
TTL values, OSs, and browsers. 

• When one host uses a specific version of a web 
browser and later it uses another version of the same 
browser, L4 technique could detect these as NAT 
devices even though they are not. This may happen 
when the user updates his/her web browser.  

• There are several examples of HTTP user agent strings 
where they do not have any information about the OS 
and the web browser of the client.Under such 
conditions, L4 techniquecould not work accurately. 

D. Proposed ML Based Approach 
As discussed above, our proposed system is a ML based 

approach using network flow based features. To this end, we 
employ two learning techniques: a decision tree classifier, 
namely C4.5, and a probabilistic classifier, namely Naive 
Bayes. The following summarizesthe learningtechniques 
employed. 

1) C4.5 
C4.5 is an algorithm that generates a decision tree using 

information gain. A decision tree is a hierarchical data 
structure for implementing a divide-and-conquer strategy. 
C4.5 is an efficient non-parametric technique that can be used 
for both classification and regression problems. C4.5 
constructs decision trees from a set of training data applying 
the concept of information entropy, Eq. (1) [13].The training 
data is a set, S, such that each input of the set is an instance of 
already classified samples. Each sample in the set is a vector 
where each element in the vector represents a feature of the 
sample. C4.5 can split the data into smaller subsets using the 

fact that each feature of the data can be used to make a 
decision (one class versus another class). The feature with the 
highest information gain is used to make the decision of the 
split. 

��������������������������� � ��� ��
	


�� ���� ��
	 (1) 

 
If the split is not pure, then the instances should be split to 

decrease impurity. There are multiple possible features on 
which a split can be done. Indeed, this is locally optimal; 
hence there is no guarantee of finding the smallest decision 
tree. In this case, the total impurity after the split can be 
measured by Eq. (2) [13]. In other words, when a tree is 
constructed, at each step the split that results in the largest 
decrease in impurity is chosen.  This is the difference between 
the impurity of data reaching node m, Eq. (1), and the total 
entropy of data reaching its branches after the split, Eq. (2). A 
more detailed explanation of C4.5 algorithm can be found in 
[9]. 

�� � ���
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2) Naive Bayes 
Naive Bayesian is a statistical classi�er based on Bayes 

theorem that gives its conditional probability a given class.A 
Naive Bayes classifier assumes that the presence (or absence) 
of a particular feature of a class is unrelated to the presence (or 
absence) of any other feature. Depending on the precise nature 
of the probability model, Naive Bayes classifiers can be 
trained efficiently in a supervised learning approach [14]. A 
simple Naive Bayes probabilistic model can be expressed as 
Eq.(3) in the following: 

������ ��� � � �
� � �


�
���� ���	��������������������������



	� (3) 

 
where������ ��� � � �
� is the probabilistic model over the 

dependent class variable C with a small number of outcomes 
or classes, conditional on several feature variables F1 through 
Fn; Z is a scaling factor dependent only on �� ���� � �
, i.e., a 
constant if the value of the feature variables are known.More 
detailed information on the Naive Bayesian algorithm can be 
found in [14]. 

IV. EXPERIMENTS AND RESULTS 
In this research we have employed C4.5 and Naïve Bayes 

learning algorithms via an open source tool called 
Weka[17].We measure the performance of all the techniques 
employed using two metrics, namely Detection Rate (DR) and 
False Positive Rate (FPR). DR reflects the number of NAT 
traffic flows correctly classified. It is calculated using Eq. (4): 

DR = TP / (TP+FN)                            (4) 
 

where False Negative (FN) reflects the number of NAT flows 
incorrectly classified as OTHER flows, i.e. non-NAT flows. 
On the other hand, FPR reflects the number of OTHER flows 
incorrectly classified as NAT flows using Eq. (5): 

FPR = FP/ (FP+TN)                             (5) 
 
Naturally, a high DR and a low FPR are the desirable 
outcomes.  
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A. Performances of the Passive Fingerprinting Approach 
We appliedall the passive fingerprinting classifiers, namely 

L1, L2, L3 and L4 techniques, to our datasets to identify the 
presence of NAT behavior. These results are discussed in the 
following. 

1) L1  
L1 classification technique aims to detect the presence of 

NAT behaviorbased only on the TTL values present in the 
traffic traces. As can be seen in Table IV, in this case, the DR 
is 0% and FPR is 100% for both of the datasets. The reason is 
thatL1 requires the prior knowledge about the location of the 
monitoring point. However, we do not have any prior 
knowledge about the location of the monitoring point in our 
data sets. 

Fig. 1, Fig. 2 and Fig. 3 show the different TTL value 
ranges for the Nims-NAT data sets.As can be seen from these 
figures, they do not fall in the range, ttlinit-1 and ttlinit-3, as 
given by Maier et al. [2]. 
Fig. 1. TTL range for Microsoft Windows versions (MS Windows 95/98/98 

SE etc.) 

 
 

Fig. 2. TTL range for Mac OS X, Unix and Unix like systems 

 

 

 

 

Fig. 3. TTL range for newer Microsoft Windows versions (MS Windows 
2000, Vista etc.) 

 

TABLE IV. Test Results on the Nims-NAT and the Partner-NAT data sets by 
using the L1 classifier 

 Class-NAT Class-OTHER 

Data sets DR FPR DR FPR 

Nims-NAT 0% 100% 0% 100% 

Partner-NAT 0% 100% 0% 100% 
 

2) L2 
L2 classification technique aims to detect the presence of 

NAT behaviorbased on the TTL range and the distinct TTL 
values per IP address. Table V presents the DRand FPR results 
for this classifier on our data sets. In this case, the DR of the 
NAT behavior in the Nims-NATdata set is 100% because the 
real NAT devices in this data set has more than one TTL value 
(64 and 128), so all distinct instances belonging to this IP 
address are detected. In the Nims-NAT data set, there are 
12,168 NAT traffic flows (out of 177,493 flows in total)and 
all are identified (detected) correctly.However the DR for the 
Partner-NATdata set is 0%. Since all the OSs that belong to 
the NAT IP addresses in the Partner-NATdata set have the 
same OS, there is noNAT device IP address with more than 
one TTL value in this data set.Moreover, for both theNims-
NAT and Partner-NATdata sets, there are some flows that 
belong to the hosts that have both Windows and Linux OSs. 
Thus, these hosts IP addresses have more than one distinct 
TTL valueobserved in the data sets. Thisresults in the L2 
technique to identify them as NAT devices and causes theFPR 
for bothdata sets. 

TABLE V. Test Results on the Nims-NAT and the Partner-NATdata sets by 
using the L2 classifier 

 Class-NAT Class-OTHER 

Data sets DR FPR DR FPR 

Nims-NAT 100% 0.16% 99.8% 0% 

Partner-NAT 0% 2.7% 97.2% 100% 
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3) L3 

L3 classification technique aims to detect the presence of 
NAT behavior based on the TTL Range, the distinct TTL 
values per IP address, and the different OS information in the 
HTTP user agent strings per IP address. Table VI shows the 
DR and FPR for this classifier on our data sets. In this case, 
the FPR of the L3 classifier on the Nims-NAT data set is more 
than the FPR of the L2  (Table V) classifier on the same data 
set even though L3 classifier employs payload inspection, i.e. 
HTTP user agent string. This was not expected so when we 
analyzed the data set, we found that Nims-NAT data set has 
some instances that belong to the hosts with two OSs, but both 
of those OSs are two different versions of the same OS, e.g. 
Windows XP and Windows 7, so L3 classifierautomatically 
detects them as NAT devices,which is obviously not correct. 
As for the Partner-NAT data set, the DR of NAT flows is still 
0% because L3 classifier cannot detect the NAT flows coming 
from hosts that use the same version of the same OS behind 
the NAT device.  

TABLE VI. Test Results on the Nims-NAT and the Partner-NAT data sets by 
using the L3 classifier 

 Class-NAT Class-OTHER 

Data sets DR FPR DR FPR 

Nims-NAT 100% 0.93% 99.6% 0% 

Partner-NAT 0 2.7% 97.3% 100% 

 
4)   L4 
L4 classification technique aims to detect the presence of 

NAT behavior based on the TTL Range, the distinct TTL 
values per IP address, the different OS and the browser 
information in the HTTP user agent strings per IP address.As 
shown in Table VII, the FPR of L4 classifier on the Nims-
NAT data set is very high (6%). The reason is that there is a 
DHCP server that assigns the IP addresses randomly to the 
mobile devices (e.g. smartphones and laptops)on this network. 
These devices have different versions of the same web 
browser and might end up using the same IP address during 
different times of the day. In this case, L4 classifier 
categorizes them as NAT devices even though they are not 
and hence the high FPR. On the other hand, L4 classifier 
works much better (DR: 100%, FPR: 3%) on the Partner-
NATdata set than the L1, L2 and L3 classifiers. 

TABLE VII. Test Results on the Nims-NAT and the Partner-NAT data sets by 
using the L4 classifier 

 Class-NAT Class-OTHER 

Data sets DR FPR DR FPR 

Nims-NAT 100% 6% 93.9% 0% 

Partner-NAT 100% 2.7% 97.2% 0% 

 

B. Performance of the Proposed Approach 
As we have seen in the previous section, each classifier 

used for passive fingerprinting approach to identify NAT 
behavior in the monitored data has some drawbacks on one 
data set or the other.This not only shows that detecting the 

NAT behavior in the monitored (analyzed) traffic is 
challenging, but also it shows that there are different NAT 
behaviors depending on the organization (Nims versus Partner 
networks). Moreover, each organization’s data can be 
reflected differently depending on at which level it is analyzed 
i.e. network layer (network traffic flows) versus application 
layer (HTTP user agent strings). Based on our evaluations 
presented above, the L2 classifier among the passive 
fingerprinting techniques was the best for the Nims-NATdata 
set, while the L4 classifierwas the best for the Partner-NAT 
data set. 

As for the performance of our proposed approach based on 
the ML classifiers using only network flows,Table II shows 
the Netmate flow features used to represent the traffic to the  
learning classifiers. In this case, we trained both the C4.5 and 
the Naïve Bayes learning algorithms using a portion of the 
network flow data sets from Nims-NAT and Partner-NAT data 
sets. To this end, we have employed a balanced training data 
of network traffic flows from each data set. Weused the 
Uniform Distribution Filter1 from Weka to randomly select the 
training instances to form the training data set for training both 
of the ML classifiers. Once the classifiers are trained on the 
trainingdata set,i.e. the sampled data set, we used all the 
unseen data that is not included in our trainingdata set for 
testing purposes. 

Table Ishows the number of flows used for training and 
testing for each data set. It should be noted here that these are 
the same data sets used for the passive fingerprint classifiers. 
Table VIIIpresents the performance of our proposed approach, 
where we compared two different ML algorithms for detecting 
NAT behaviors in Nims-NAT and Partner-NATdata sets. 
According to these results, the performance results of the C4.5 
learning technique seems to be well generalized from one data 
set to the other. This is achieved without using any IP address, 
port numbers, TTL data or HTTP user agent strings, i.e. 
without any application level information. 

Table IX shows the most important features that enable the 
C4.5 based classifier to identify the NAT device behavior at 
the end of the training phase. 

TABLE VIII. Test Results on the Nims-NAT and Partner-NATdata sets by using 
the proposed approach with flow features 

 Class-NAT Class-OTHER 
DR FPR DR FPR 

Nims-NAT 
data set 

C4.5 based 
classifier 98.7% 3.7% 96.3% 1.3% 

Naive Bayes 
based classifier 15% 13% 98% 98% 

Partner-NAT 
data set 

C4.5 based 
classifier 98% 2.4% 97.6% 2% 

Naive Bayes 
based classifier 34% 10% 89% 66% 

 
Our proposed system using C4.5 classifier outperforms the 

L1 classifier of the passive fingerprinting approach on both 
data sets in terms of DR and FPR. Our proposed system only 
                                                           

1Uniform Distribution filter is set in Weka by following this path: 
weka.filters.supervised.instances.spreadsubsample. This filter produces 
random subsamples of a data set by using the options options; -S, -M, -W and 
-X. -M is the maximum class distribution spread. If it is chosen as 1.0, the 
class values are chosen equally in the manner of uniform distribution.  
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employs network flow based information. Moreover, it also 
outperforms the L2 and L3 classifiers on the Partner data set 
and performs as good as the L4 classifier on both data sets 
even though L4 classifier employs both the packet header and 
the HTTP user agent strings information. 

As discussed earlier, C4.5 learning technique based 
classifier has the ability to choose the most appropriate 
features from a given feature set. This enables us to learn 
which features of the network flow traffic have contributed to 
this high performance. Once we analyzed the solution decision 
tree generated by the C4.5 algorithm, we were able to identify 
the most helpful features for the classifier to detect different 
NAT behaviors existing in the network traffic, Table IX. 

TABLE IX. The most important Netmate features selected by the 
proposed system using the C4.5 learning classifier 

FEATURES 

Name Description 

sflow_bytes The average number of bytes in a sub flow in the 
forward direction 

total_bvolume Total bytes in the backward direction 

mean_fpktl The mean size of packets sent in the forward direction 

max_active The maximum amount of time that the flows was active 
before going idle 

min_fpktl The size of the smallest packet sent in the forward 
direction 

max_bpktl The size of the biggest packet sent in the backward 
direction 

std_bpktl The standard deviation from the mean of the packet sent 
in the backward direction 

 
These features seem to work for both of thedata sets 

employed in this work. Even though these are the features 
with the highest weights in the solution, actually our system is 
based on all 41 Netmate flow features. This also indicates the 
challenges and different NAT behaviors present in the 
different data sets.  

In summary, these results show that passive fingerprinting 
classifiers seem to work for certain NAT behaviors better than 
the others. Moreover, as the NAT behavior gets more unique 
and challenging, passive approach requires access to the 
application (payload) information such as HTTP user agent 
strings to reach a high DR with low FPR. On the other hand, 
our proposed approach based on the C4.5 decision tree 
learning classifier, enables us to achieve a high performance 
(high DR and low FPR) accuracy without using any 
application level data and generalizing well to different NAT 
behaviors present in different data sets. 

V. CONCLUSION AND FUTURE WORK 
In this research, we explored how far we can push a ML 

based classification approach to identify NAT devices using 
only network flows. To this end, we represented the traffic as 
network flows to two ML techniques, namely C4.5 and Naive 
Bayes, without using IP addresses, port numbers and payload 
(application) information. We evaluated our approach on two 
different data sets against four different variants of the passive 
fingerprinting approach [2], which represents the state-of-the-
art techniques. Our results show that the proposed approach 
using C4.5 learning classifier performs better than  the passive 
fingerprinting approach on both data sets even though the 

latter uses payload information. This is a very promising result 
given that payload becomes opaque when encryption is used at 
the application level. Future work will analyze different NAT 
behaviors and explore how solutions of the C4.5 based 
classifier can be converted into automatic signatures. 
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