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Abstract—This paper deals with the problem of continuous
usage control of multiple copies of data objects in distributed
systems. This work defines an architecture, a set of workflows,
a set of policies and an implementation for the distributed
enforcement. The policies, besides including access and usage
rules, also specify the parties that will be involved in the decision
process. Indeed, the enforcement requires collaboration of several
entities because the access decision might be evaluated on one
site, enforced on another, and the attributes needed for the policy
evaluation might be stored in many distributed locations.

Index Terms—Usage Control, UCON, Cloud System, At-
tributes, Concurrency Control

I. INTRODUCTION

Controlled usage of data objects is a challenging issue.
When data are stored in the domain of the originator, tra-
ditional access control techniques can be adopted to check
that users hold the proper access rights. Once data have been
copied and/or moved to another domain, typically no further
controls are performed to regulate their subsequent usage.
However, many scenarios require that the usage of data is
regulated even when they are not stored in the originator’s
domain any more. Controlling the usage of data that have
been stored outside the originator’s domain involves a large
number of challenging issues.

We exemplify our approach by considering Virtual Machine
Images (VMIs). Consider a user U that creates a VMI I, that
is provided by a Cloud IaaS service, to other users. U could
want that his image is used by users as long as their reputation
is above a given threshold. Hence, as soon as the reputation of
the user goes under the threshold, his virtual machine running
I should be suspended or interrupted.

To overcome limitations of the traditional access control
models and address the previous needs, usage control mod-
els [5] can be adopted, either the UCON approach of Park
and Sandhu [3], [4] which focuses mainly on continuity of
authorization and mutability of attributes or distributed usage
control [10] that focuses more on control of disclosed data.

This paper describes a framework of usage control for
enforcing policies on data objects stored in distributed systems
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that is an extension of the UCON model of Sandhu. The policy,
beside defining the rules that must be satisfied before and
during the access, also regulates other aspects of the decision
process. In particular, it allows the authorization system to find
which Policy Decision Points (PDPs) and Policy Information
Points (PIPs) are trusted to evaluate the policy itself. The
paper also presents initial implementation that enforces such
policies in distributed systems, addressing the problem of the
concurrent accesses to attributes. Indeed, concurrency issues
are very crucial in usage control. The UCON model introduces
updates of attributes as a result of the access evaluation. Thus,
two or more decision processes can read or update the same
attribute simultaneously. It is important to avoid concurrency
collisions which may lead to severe breaches in security.
In fact, the access may be granted to unauthorized users
and denied for legitimate ones. Hence, interleaving between
concurrent decision processes should be controlled.

As mentioned, we have chosen Cloud IaaS services as the
reference scenario. In particular, VMIs, provided by a Cloud
IaaS service, are data objects which are created by some
users but stored outside their domains and used by other
users of the service. For simplicity, the reference scenario
assumes that data objects are always stored in trusted domains,
i.e., Cloud service providers, in order to guarantee that the
right security policy is always and promptly enforced. Hence,
in this paper we focus on the definition of a policy and
of the distributed architecture for the policy evaluation and
enforcement, including resolution of concurrency issues. We
leave for future work the scenario where data are stored in
domains that are not trusted or where the network connection
could be down for some time, or where some components of
the framework might crash.

1) Motivation and Contribution: There are many scenar-
ios that require controlling the usage of data objects stored
in distributed systems outside the originator’s domain. For
instance, e-health scenarios, where medical documents (e.g.,
examination results or prescriptions) must be protected when
are sent outside the domain of a hospital that produces them, or
the distribution of Multimedia Contents, or controlling VMIs
that are executed in Cloud IaaS services.

An important improvement of the proposed approach with
respect to Digital Right Management is that the usage control
model proposes complex usage policies where rights to access
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and to use data depend on many factors, that could be indepen-
dent from the data that are being accessed, such as subject’s
features, or even the features of other data objects. Also, the
usage control model is very expressive and it defines policies
that, beside being used to decide the rights of execution of an
action on the data, are enforced the whole time the action
is in progress. Consequently, the action on the data could
be interrupted while in progress because the update of some
attributes lead to the policy violation.

Finally, this paper defines the reference architecture and
its initial implementation for enforcement of usage control
policies in distributed systems when data are stored outside
the originator’s domain. This architecture allows exploitation
of several PDPs and PIPs performing the decision process,
and it also addresses the concurrency issues that could arise
when several decision processes involving the same attributes
are executing concurrently.

This paper is organised as follows. We define the refer-
ence scenario in Section II. We introduce our extension to
the UCON model in Section III. Section IV describes the
architecture, the workflow. Section V introduces the initial
implementation of the proposed model. We finish the article
with related work (section VI) and conclusions (section VII).

II. REFERENCE SCENARIO

The reference scenario concerns the Cloud environment,
where VMIs provided by a Cloud IaaS service represent data
objects that are created by some users but accessed by others.

For example, the NESSoS EU project’ produced a VMI
where a set of security tools, provided by several partners
of the project, had been properly installed and configured,
and they are ready to be used. This VMI was uploaded on
the NESSoS Cloud Execution Environment, that is a cluster
of workstations running OpenNebula® to provide the IaaS
service to NESSoS users. The NESSoS administrators define a
security policy that determines which actions can be performed
on the VMI and under which conditions. The Cloud laaS
service provides the trusted domain where the VMI can be
stored and run in accordance with the policy.

This VMI is used by NESSoS users, who run it creating
a new Virtual Machine (VM), i.e., performing a long-lasting
execute action. Distinct users can create their distinct VMs
from the same VMI. The execute action ends when the user
stops the VM that he created.

The user can ask the Cloud IaaS service to replicate the
VMI (replicated&store action), i.e., to take a snapshot of the
running VM and to create a new VMI, in order to preserve
some updates he did on the VMI. This new VMI can be stored
in the Cloud IaaS service where also the original VMI is
stored, or it could be moved (through the migrate action)
to another Cloud. The new VMI has the same security policy
as the original VMI. The replicate&store action is also long-
lasting and it ends when the new VMI is destroyed.

Shttp://www.nessos-project.eu
Phttp://www.opennebula.org
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ITI. EXTENDING USAGE CONTROL MODEL WITH
MULTIPLE POLICIES

A data object can be stored at any site in a distributed
system and can be passed across different security domains.
Wherever the data object resides in the system, access to it and
its usage should be regulated according to the usage control
policy which is defined by the data originator.

The usage control policy is based on the Usage Control
model (UCON), that has been defined by Sandhu et al.
in [3]-[5]. The usage control policy states that some accesses
to the data object are long-lasting and must be controlled
continuously. As soon as the policy does not hold any more,
these accesses should be interrupted.

In distributed settings the access decision might be evaluated
on one site, enforced on another, and attributes needed for
the policy evaluation might be stored in many locations. We
extends the UCON model by addressing these issues.

A. Components

The core components of the UCON model are: subjects,
objects, actions, attributes, access decision factors (authoriza-
tions, conditions, obligations). Here we describe how subjects,
objects, actions, and attributes are instantiated in our approach.

Subjects, Objects and Actions.

The main actors of our scenario are:

e the Data Originator (DO) that is the entity that produces
and keeps the Original Data (OD);

e the Data User (DU), a subject, that can access the OD,
derive from the OD a similar (or identical) object called
data copy (DC), and move the DC to other DUs.

Fig. 1 describes actions defined on ODs and DCs and their
durability in time:

o replicate&estore(s, 0pd, 04c): the DU (s) calls it when
he wants a new DC (04.) derived from the OD (0,4);

o migrate(sfrom, Sto, 0dc): the DU calls this action when
he wants to move the DC (04.) to another DU (s;,);

e other actions related to the specific data object. Supposing
that the data object is a VMI, a possible action could be:

— execute(s, 04.): the DU calls this action to run the
VM exploiting the image o4.. The action terminates
when the VM is stopped.

Access to ODs and DCs is regulated by a data usage policy
that is embedded into data, i.e., the policy migrates with DCs.
The policy is detailed in subsection III-B.

Attributes. Attributes describe subjects’ and objects’ fea-
tures. Attributes can be mutable. Mutable attributes can be
updated before (pre-update), during (on-update), or after (post-
update) the access.

The nature of attributes is diverse. For instance, an attribute
can refer to: (i) a specific DC (e.g., “id” or “creation date” of a
VMI), (ii) a subset of DCs (e.g., “number of VMIs belonging
to the user U and stored in the Cloud C”), (iii) all DCs derived
from the OD (e.g., “global number of VMIs”).

Attribute values can be modified as a result of: (i) the
access decision process (“global number of VMIs” is changed
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Fig. 1. Actions on VMI

before and after execution of the replicate& store action), (ii)
other reasons, e.g., administrative actions, deliberate actions
of a user (e.g., the attribute “user role” is modified by the
administrator when the user gets an advancement, the attribute
“user location” is modified when the user moves from one
place to another). Some attributes can be included in both
categories. For instance, the attribute “balance” of the user can
be decreased as a result of the access (the user must pay for
running a VM), or increased by the user via a bank transaction.

In order to perform a decision process efficiently, it is cru-
cial to decide where various attributes are stored. Immutable
attributes can be embedded in a data object (e.g., attributes
like “id”, “creation date”, “originator’) because it is unlikely
that their values change during the object lifetime.

Mutable attributes, instead, change their values frequently.
Hence, embedding them in data objects could lead to a large
overhead for keeping consistency among all copies of the
same attribute. Consequently, we prefer to have only one copy
of each attribute and to store it in a specific location which
is defined by PIP allocation policy (see subsection III-B3).
The unique copy of the attribute might be accessed and
modified by many decision processes which run concurrently
and subsection IV-B1 covers issues related to the concurrency
control of mutable attributes.

B. Data Usage Policy

Data usage policy paired with each data object consists of
a set of auxiliary sub-policies, that regulate distinct aspects
of the decision process. In fact, besides the Usage Control
Policy, that defines the right of users to access objects, we
introduce two kinds of allocation policies, PDP Allocation
Policy and PIP Allocation Policy, which complement all the
aspects required to set up the policy enforcement.

1) Usage Control Policy: determines whether a subject
holds proper rights on a data object, and it is enforced while
the access in progress. We present a simple example of Usage
Control Policyfor our reference scenario. However, this policy

is expressed using a human-readable language:

policy-1:

action:replicate&store(s, o, o')

pre-authorization: (s.nCopyStored+s.nCopyMigrated<X)

AND (s.role==GOLDUSER)
(s.nCopyStored++) AND
(o’ .createdBy:=s.id) AND
(o’ .isCopyOf:=0.1id) AND
(o’ .storedCountry:=o.storedCountry)
on-authorization: (o’ .storedCountry==o0.storedCountry)
post-update: (s.nCopyStored--)
policy-2:
action:execute (s, o)
pre-authorization: (s.nRunning<Y) AND
(o.storedCountry==Italy)

pre-update: (s.nRunning++)
on-authorization: (s.reputation>T)

pre-update:

post-update: (s.nRunning--)

The policy labelled policy-1 regulates the replication of VMIs.
The pre-authorization predicate states that the user s can create
a new data object only if the total number of objects belonging
to him is less than X and his role is GOLDUSER. The pre-
updates initialize attributes of the new object. For example, the
attribute storedCountry is initialized with the id of the country
where the OD is stored. The on-authorization predicate states
that the object must reside in the same country as the OD
for its lifetime. Hence, if the new data object is migrated to
another country, the policy states that the right of storing that
object expires, and the access must be revoked.

The second policy concerns execution of existing VMIs.
The pre-authorization predicate states that a user can execute
a further VM if he is currently executing less than Y VMs,
and if the VM is running in Italy. The pre-update increases
the number of running VMs belonging to the user. The on-
authorization predicate requires that the reputation of the user
that runs the VM is greater than the threshold T during the
VM lifetime. Hence, if the reputation of the user goes under
the threshold T, the running VM must be interrupted.

2) PDP Allocation Policy: is evaluated to determine which
PDP is trusted to evaluate the Usage Control Policy. We model
the PDP Allocation Policy as a mapping between a policy id
and a PDP location which can be local, global, or a third
party PDP. The local PDP is placed on a client side, and the
global PDP is placed on a data originator site. The third party
PDP resides in a remote domain that is trusted by the data
originator. Besides the level of trust, the performance could
be another factor that is taken into account when defining the
PDP Allocation Policy.

An example of PDP Allocation Policy is the following:

policy-1 (replicate&store) : <global PDP_URL>,
<remote_ PDP1_URL>,
<remote_PDP2_URL>
policy-2 (execute) : <local PDP_URL>

3) PIP Allocation Policy: is evaluated to find PIPs for
retrieving fresh values of attributes required to carry out the
decision process, i.e., to evaluate the Usage Control Policy.
The PIP Allocation Policy specifies addresses of the PIPs to
which attribute queries must be sent. The selected PIPs must
be able to interact with Attribute Managers (AMs) that provide
raw values of attributes.

When the PDP needs an attribute, either it finds it in the
access request, or the PDP queries the right PIP that knows
which AM is in charge of managing the required attribute and
which is the protocol to communicate with this AM.

An example of PIP Allocation Policy is the following:

nCopyStored, nCopyMigrated, nRunning:<remote PIP1_URL>
role:<remote_PIP2_URL>

reputation:<remote PIP3_URL>

createdBy, isCopyOf, storedCountry:<local_PIP_URL>

IV. ARCHITECTURE

The architecture of our system, shown in Figure 2, extends
the common authorization architecture [9] to deal with a
continuous policy enforcement in distributed environment. The
architecture is distributed because the components are spread
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over several domains, and it has been designed to deal with
concurrent retrieval and update of mutable attributes.

We assume that the domain were the data are stored (i.e.,
domain Z in Figure 2) is trusted, and hence we don’t propose
any solution for the secure storage for these data and to ensure
that the data usage policy is always enforced, leaving these
issues as future work. Also, the domains that host the autho-
rization system and the services for attribute management are
trusted by the DO, because they have been chosen according
to the allocation policies which the DO embedded in his data.

A. Components

The main components of the architecture are the following:

e Policy Decision Point (PDP) evaluates usage control
policies and produces the access decision;

e Policy Enforcement Point (PEP) intercepts invocations of
access requests, suspends them before starting, chooses
PDPs that will be exploited for the decision processes
according to PDP Allocation Policy, queries the PDPs
for access decisions, enforces the obtained decisions
by resuming suspended requests, and interrupts ongoing
accesses when the policy violation occurs;

e Context Handler (CH) is the front-end of the authoriza-
tion system, that manages the protocol for communicat-
ing with PEPs, PDPs, and PIPs. It converts and forwards
messages sent between components in the proper format.

e Attribute Manager (AM) manages attributes and knows
their current values;

e Policy Information Point (PIP) provides interface for
other components to query attributes. The PIP commu-
nicates then with a specific AM to retrieve attributes;

e Lock manager (LM) determines whether an attribute
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query/update should be passed for execution to the AM,
or should be delayed by placing it in a queue and
executing it later. The LM might be embedded into the
AM;

e Session Manager (SM) is responsible for continuous con-
trol and manages ongoing accesses, i.e., usage sessions;

e Access Table (AT) keeps meta-data regarding usage ses-
sions. It contains a table of the current sessions with
their statuses and the table of IDs of attributes needed
to service each session.

All components are crucial for the correct enforcement of a
data usage policy, and hence they should be placed in domains
that are trusted by the DOs.

For what concerns the PDPs and the PIPs, the aim of the
PDP Allocation Policy and of the PIP Allocation Policy is
exactly to locate authorization system components which are
considered as trusted by the DO, and hence can be exploited
for the execution of the decision process. The PEP, instead,
should be located where the data are stored, in order to be able
to intercept all the security-relevant access requests related to
these data. Since the PEP must be non-bypassable and tamper-
proof, it must be placed in a trusted component (or machine)
that guarantees these features.

In our reference example the PEPs must be installed on
the Cloud provider site, that represents a trusted domain for
the DO. In particular, the PEPs should be integrated within
the framework that implements the Cloud IaaS service (e.g.,
OpenNebula or OpenStack), that is the component that really
executes the actions on the VMIs. Most of the available frame-
works are configurable to exploit external and customized
authorization systems.

B. Workflows

1) Concurrent Retrieval and Update of Attributes: The
policies paired with data objects may involve a common sub-
set of attributes and, consequently, some concurrency issues
in attribute management arise when several policy decision
processes are performing concurrently.

For example, the policy-1 from our reference scenario al-
lows the creation of a new data object only if the total number
of data objects belonging to a user s is less than X. Let us
suppose that s tries to create two distinct replicas of the object
at the same time. This triggers two policy decision processes.
Each policy decision process follows these operations: /)
retrieves the total number of data objects belonging to s; 2)
compares the value of the attribute with X; and 3) if the
current value of the attribute is less than X, increases the
attribute s .nCopyStored by 1 and allows creation of a new
data object.

A concurrency problem, called race condition, arises when
the resulting access decisions depend on interleaving of op-
erations performed by these decision processes. Lost update
and inconsistent retrieval are examples of the race condition
problem. Lost update happens when all decision processes read
the old value of the attribute simultaneously while decide on
and update the new attribute value independently. Assume that
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the second decision process retrieves the value of the same
attribute after the first process performed the operation 1 but
before the execution of the operation 3. As a matter of fact, if
the current value of the total numbers of data objects belonging
to s is N-1, both decision processes will allow the creation of
new data objects, while only one data object can be created
according to the policy. Inconsistent retrieval occurs when a
policy decision process retrieves one attribute before another
decision process updates it, and reads another attribute after
the same decision process has updated it.

The two-phase locking protocol (2PL) is the solution we
choose to address concurrency issues in attribute retrieval and
updates. Due to space limitation we refer to [8], [15] where
the family of these protocols is described in details.

Two-Phase Locking. To avoid concurrency issues, each
attribute is paired with a lock, and any operation on the
attribute value requires acquisition of the lock. When the
decision process requires to read and update one attribute or
more, all these attributes are locked before performing the
operations. If the attribute is already locked, i.e., there is
another concurrent decision process (or more) that involves
the same attribute, the decision process is suspended until the
lock is released by the other decision process. As soon as the
decision process has been performed, the involved attributes
are unlocked.

To avoid deadlocks, the policy decision process must lock
attributes in a predefined order. The order of unlocking is
arbitrary. We assume that it is possible to define the attribute
ordering because a set of attributes needed for enforcement
of a usage control policy is known a priori and this set is
specified in the PIP allocation policy. If the policy requires
same attributes of different principals, attributes are ordered
based on the holders’ ids.

2) Pre-authorization: Basic Workflow Steps: (1) The PEP
intercepts the access request 7; performed by a user, deter-
mines the subject and the object of 7; and gets the Usage
Control, PDP and PIP allocation policies from the object; (2)
The PEP enforces the PDP allocation policy and determines

| 6___4.__._O_k__

27

-

Sequence Diagram for Pre-Authorization

which PDP should perform the decision process to authorize
T;. The PEP attaches the usage control and the PIP allocation
policies to 7; and sends everything to the CH of the chosen
PDP; (3) The CH initiates the retrieving of attributes. The CH
determines all attributes needed to evaluate the usage control
policy. For each attribute, the CH determines the related PIP
by enforcing the PIP allocation policy; (4) The CH starts
pulling attributes according to the selected concurrency control
algorithm (e.g., a two-phase locking with attributes queried in
the predefined order). For each attribute attry, the CH sends
to the corresponding PIP;, the attribute query. The CH awaits
until all attributes are collected; (4.1) The PIP, receives the
request from the CH for the attribute attr, and forwards it
to LMy which tests if attry is locked. If so, LMy delays
the attribute query. Otherwise, LM}, sets a lock on attry, and
then sends the attribute query to the AM. The AM provides
the value and the LM, replays back to the CH via the PIPy.
The lock is not released yet; (5) The CH sends T;, collected
attributes, and the usage control policy to the PDP for the
access evaluation. The PDP evaluates the usage control policy
and replies to the CH with the access decision and the new
values of attributes; (6) The CH sends the new attribute values
to the PIPs. Since attributes are still locked because of step
4.1, the LMs simply ask the AMs to update them. Then, the
LMs release locks for attributes used for 7;. From now on,
the attributes are available for other accesses; (7) When all
attributes are updated, the CH is ready to reply to the PEP
with the access decision. If the access decision is “permit”,
the CH sends the create entry message to the SM for creating
a new entry in the AT that represents the new usage session.
(8) Finally, the CH replies with the access decision to the PEP;
(9) The PEP enforces the access decision allowing or denying
the execution of T;.

3) Continuous Control: 1f the pre-authorization phase al-
lows the execution of Tj, the continuous control phase is
started. The workflow is as follows: (10) when the access to
the data object has began (e.g., the VM is running in our
reference example), the PEP sends the notification to the CH
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that, in turn, forwards it to the SM. The SM contacts the AT
to change the status field of the database entry related to this
usage session indicating that the session is now active; (11-
13) Then, the continuous control phase starts, and the CH
behaves as in steps 3-5 of the pre-authorization phase, i.e., it
retrieves the current values of the attributes (locking them),
it asks the PDP to evaluate the UCON ongoing policy, and
it receives the decision along with the attribute updates to be
performed; (14) The CH sends the new attribute values to the
PIPs. Assume, the access decision produced by the PDP in
steps 11-13 is “permit”, then the CH, along with new values,
sends the subscription requests for the attributes to the PIPs.
The PIPs contact the related LMs, and since attributes are
already locked because of the previous step, the LMs simply
ask the AMs to update them. Then, the LMs release locks
for attributes used to service the access request. From this
moment on, the attributes are available for other accesses;
(15) From then on, the authorization system idles. When a
value of any subscribed attribute is changed, the CH receives a
notification from the PEP due to the previous subscription. The
notification triggers the access re-evaluation. The CH sends the
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attribute name to the SM; (16) The SM replies with a set of
active sessions whose policies involve this attribute; (17) The
CH determines a set of attributes which should be refreshed
and which are needed for the sessions re-evaluation; (18)
Then, the CH behaves as the steps 4 of the pre-authorization
phase. Attributes are locked by the CH for the PDP that re-
evaluates the local sessions, while other PDPs do wait unless
they are unlocked. Therefore, there is only one PDP at a
time in the system which possesses the lock over attributes;
(19) In order to perform the local re-evaluation of all active
sessions, the CH stores in a local cache the values of the
collected attributes. For each active session which should be
re-evaluated, the CH determines a subset of needed attributes
and sends them with the usage control policy to the PDP for
the access re-evaluation. The order in which active sessions are
re-evaluated could affect decision processes. How N ongoing
sessions should be re-evaluated (in what order) upon receiving
a new attribute value is out of scope of this paper. Furthermore,
the re-evaluation of the policy for a given session may update
an attribute value which might triggers the re-evaluation of
some other local sessions. This could lead to possible endless



loops. This is an intrinsic UCON issue, and to address it we
need a formal model of attributes, policies, and update actions.
In this paper, we do not focus on it. Simple solution may
require that sets of attributes used in ongoing authorization
predicates and ongoing update actions do not intersect; (20)
When all sessions are re-evaluated, the CH takes the updated
attribute values from the local cache and sends new attribute
values to the related PIPs to perform the updates on the AMs
and release the locks. For sessions where the access decision
was evaluated as “deny”, the workflow goes to the step 21.
Otherwise, the CH idles until new notification is received as
in the step 15 of the continuous control phase; (21) If for
a given session the end of access is received from the PEP,
or the access decision after the policy re-evaluation is “deny”,
then the CH computes a set of attributes which where exploited
only by this section and unsubscribes for notifications from the
PIPs. Also, some post-updates of attributes might be required
by the policy and they are enforced in the similar way to the
pre-authorization phase; (22) The CH asks the SM to change
the status of the session indicating the end or revocation of the
session; (23) In case of revocation, the PEP receives the revoke
message from the PEP and terminates the ongoing access.

V. IMPLEMENTATION

We developed a preliminary prototype implementing main
features of our approach. We integrated the prototype with the
OpenNebula (One), an open-source middleware for managing
Cloud resources and providing Cloud IaaS services.

We embedded a data usage policy (usage control, PIP
and PDP allocation policies) in the extension section of the
OVF (Open Virtualization Format) package of the VMI which
should be protected. The usage control policy was expressed
in the U-XACML language [1], [6], which is the extension
of the OASIS XACML language [2], that provides specific
constructs for usage control. PIP and PDP allocation policies
were embedded in the OVF package in the XML format.

PEP implementation. One is extensible system and we
configured it to exploit our authorization support. The PEP
code was embedded in several components of the One and we
refer to [7] where details are given on how the continuous
control is enforced by the PEP and how One functional
operations are mapped to usage control actions. Our current
implementation of the PEP extends [7] in several ways. First,
the PEP was enhanced with the possibility of retrieving,
evaluating and enforcing PDP allocation policies. Second, the
PIP allocation policy and the U-XACML policy where added
into the payload of the request message which is sent by the
PEP to the CH (step 2 in Figure 3).

Implementation of decision process. The PDP, the CH,
the SM, and the AT were realized as a state-full authorization
web-service in the Axis2 framework. Our authorization service
communicates with PEPs and PIPs exploiting SAML/XACML
security assertions inserted into SOAP messages sent via
secured channel (HTTPS). We extended the work in [7] as fol-
lows. The CH was enhanced with the possibility of accepting
and enforcing PIP allocation policies and U-XACML policies
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with the access request. Then, the authorization service pro-
duces attribute updates as the result of the access evaluation.
Therefore, there is a 2-rounds communication between the
PIP and the CH: (i) to collect and lock current attribute
values, (ii) to update and unlock attributes after the access
evaluation. Also, the CH deals with the distributed architecture
of the authorization framework and with concurrency issues
of attributes management. The CH collects attributes in pre-
defined order avoiding possible deadlocks. Finally, the CH
is able to subscribe to PIPs and listen for new attribute
values. Though, we used our customized implementation of
the subscribe-notify mechanism instead of adhering to the WS-
Notification specification.

Implementation of attributes management. The PIP was
implemented as a web-service which answers to attribute
queries received from CHs. It converts SAML/XACML at-
tribute queries into SQL statements and sends them to the
AM using the JDBC driver. We chose the PostgreSQL DB as
a realization of the AM (and the LM). The PostgreSQL allows
an explicit locking on table- and row-levels thus it is possible
to implement a customized locking protocol.

We implemented a conservative 2 phase-locking protocol
in which all attributes are locked in predefined order and then
released arbitrary. We assumed for simplicity that a database
table corresponds to an attribute. Suppose, the CH requests
attry and attry from the PIP. The PIP translates this request
into the SQL statement and initiates a new transaction:

BEGIN;
LOCK TABLE attr_ 1 IN ACCESS EXCLUSIVE MODE;
LOCK TABLE attr 2 IN ACCESS EXCLUSIVE MODE;
SELECT * FROM attr_ 1 ...;
Then, the PIP gets the response from the AM and sends it back
to the CH as the SAML/XACML security assertion. Once all
required attributes have been collected, the decision process
is performed as usual by the PDP which provides the access
response and new values for attributes. The CH sends new
attribute values to the PIP which forwards them to the AM,
releases locks, and ends the transaction:
INSERT INTO attr 1 ...;
COMMIT;

The PostgreSQL also allows execution of a particular
function whenever an important operation is performed on
database. It is possible to attach a trigger to a table (row)
and when this table (row) is modified the trigger fires and
executes the specified function. The function can be written
in procedural languages like PL/pgSQL or in C.

We exploited triggers written in the C language for imple-
menting a subscribe/notify mechanism for a continuous usage
control. When the CH subscribes to the PIP for updates of an
attribute attry, the PIP creates the trigger:

CREATE FUNCTION notify ()
RETURNS trigger AS notification.c
LANGUAGE C;
CREATE TRIGGER tucon
AFTER INSERT OR UPDATE OR DELETE ON attr_ 1
EXECUTE PROCEDURE notify () ;

Whenever the attribute changes the trigger fires and informs
the PIP about the change. The PIP forwards this information



to all subscribers, i.e. CHs. If the trigger is not needed any
more, the PIP drops it.

VI. RELATED WORK

The UCON model of Sandhu et al. [3]-[5], is a model
that encompasses and extends the existing access control
models. Its main novelties are dynamic rights, and that mutable
attributes of subjects’ and objects’, thus requiring continuous
enforcement of a security policy during the access.

Recently, usage control in distributed systems [10] has
become a hot topic of research. Indeed, the Cloud Computing
allows users to keep and exploit theirs assets remotely at a
low price. Guaranteeing security and privacy of users is still
very challenging.

The PrimeLife project [12] proposed a model of a down-
stream usage control where data objects travel with policies
attached. The approach studies distribution patterns of personal
data and allows the further distribution with a more restrictive
policy. The policy is based on the PPL language which
expresses privacy constrains on sharing personal data.

A provenance-based access control model [13] is focused
on the distribution of data objects. This model assumes that
the objects might be modified by parties it visits. Also, derived
objects can be generated and should be controlled.

Data usage control model proposed in [11] concerns on the
data flows in the distributed environment. Particularly, it re-
searches the intra- and cross-systems distribution modes. After
the data are stored somewhere, the further access decision
process is done locally.

Our model extends listed approaches in the following.
First, we consider a continuous control over the data object
and imply the access revocation. Second, we assume a fully
distributed infrastructure which requires collaboration of many
parties. Finally, in these approaches security policies are
enforced using local attributes, i.e., attributes that encodes
information about the data objects stored in a certain domain.
These attributes are not shared with other peers and autho-
rization systems. Therefore, it is not evident how to express
and enforce the policy on all (some) copies of the same data
object which requires attributes of each and every copy of the
data object.

Access control model in distributed environment where
many PDPs collaborate on producing the access decision is
studied in [16], though we also consider usage control.

VII. CONCLUSIONS

This paper proposed the approach regulating the usage of
data in distributed systems, once they have been stored outside
the originator’s domain. The approach is based on the UCON
model, and its main advantage is that the data originator
is enabled to define policies on his data to regulate their
usage when these data have been released. The paper also
proposed a reference architecture and its initial implementation
for the enforcement of data usage policies that addresses the
concurrency issues due to the concurrent execution of several
decision processes in the distributed environment.
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However, this paper assumes that data are always stored
in trusted domains, in order to guarantee that the data usage
policy paired with the data is always and promptly enforced.
For future work we plan to address also the scenario where
the data are stored in domain that are not trusted, and the
security support must also guarantee the secure storage of
the data and of the policy. Another future work concerns
the introduction of the risk concept in the policies to reduce
the overhead introduced by the serialization of the access to
attributes. Also, we would like more formally state and prove
properties that our design hold regarding concurrent retrieval
and update of attributes. Finally, the prototype is going to be
tested and evaluated in a real test-bed with a large number of
distributed components.
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