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Abstract—As digital storage and cloud processing become
more common in business infrastructure and security systems,
maintaining the provable integrity of accumulated institutional
data that may be required as legal evidence also increases in
complexity. Since data owners may have an interest in a proposed
lawsuit, it is essential that any digital evidence be guaranteed
against both outside attacks and internal tampering. Since the
timescale required for legal disputes is unrelated to computational
and mathematical advances, evidential data integrity must be
maintained even after the cryptography that originally protected
it becomes obsolete. In this paper we propose Gringotts, a system
where data is signed on the device that generates it, transmitted
from multiple sources to a server using a novel signature scheme,
and stored with its signature on a database running Evidence
Record Syntax, a protocol for long-term archival systems that
maintains the data integrity of the signature, even over the course
of changing cryptographic practices. Our proof of concept for a
small surveillance camera network had a processing (throughput)
overhead of 7.5%, and a storage overhead of 6.2%.

Keywords — Digital Evidence, Digital Signatures, Stream Data,
Long-Term Authenticity, Evidence Record Syntax

I. INTRODUCTION

Any company in the modern world collects data on a large
scale: data generated by users, by employees, by automatic
digital archiving. Where, how, and how long that data is stored
depends on a number of factors, including legal necessities.
Data collected in the usual course of business may become
essential in a court case, at which point its status as electronic
evidence depends on the trustworthiness and reliability of
that data’s transmission, processing, and storage [1]. Evidence
must, of course, be available in a human-accessible form, how-
ever in this paper we are concerned with the trustworthiness
of reliably stored data. In order to trust evidence from an
interested party, the court must be reasonably certain that the
data provided is the whole and entire record at the time and
from the device it purports to be from.

Relevant data can be accumulated from a variety of sources,
including sensor networks, user or employee machines, and
access control devices such as metal detectors. One common
factor among these varied systems is that they consist of many
data sources sending their information to a central server or
data center. This network model is somewhat unusual in secu-
rity applications, which are generally intended for trustworthy
multicast or decentralized peer-to-peer data distribution (rather
than collection) systems.

One common form of digital evidence is the data gen-
erated by a company or organization’s security sensors, e.g.
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surveillance cameras. While some security cameras are directly
connected to analogue tapes or exclusively use a secure
intranet, a growing percentage are IP cameras: cameras that
stream their recordings to a predetermined web server or
database using the Internet [2], [3]. However, since the data
is being transmitted over a network that may not be trusted,
guaranteeing the authenticity and integrity of the archived data
is a serious concern. Security camera streams can be found
by straightforward web searches [4], and once a stream is
intercepted, altering or reordering the data silently is possible
using a Man in the Middle Attack. An adversary could also
generate false data and send it to the server as a valid stream, in
which case the conflicting data from the same place and time
might make it impossible to identify the correct record. Even if
the data transmitted over the network were authenticated, and
thus protected from allegations of tampering or falsification,
legal processes can work more slowly than cryptographic ones.
If the data is protected by an algorithm that is later deemed
insecure by the legal or cryptographic communities (and every
algorithm eventually becomes insecure), the data will become
inadmissible as evidence.

The major contributions of the paper are: an efficient
and secure signature scheme for data streamed from multiple
sources to a single server; and the Gringotts System, which
uses this scheme in conjunction with a variant of the Evidence
Record Syntax (ERS) [5] protocol to indefinitely verify the
existence and integrity of data streamed from multiple sources
to a database over an untrusted network. When implemented
on a small surveillance camera-style layout, the Gringotts
System increased processing time by 7.5%, as compared to
an unsigned data stream. On the same implementation, data
stored in the Gringotts Database required 6.2% more storage
space than the same data stored in a standard (unprotected and
unverifiable) database.

This paper is organized as follows: §II provides context
for the project and describes related research. §IIT describes
the Gringotts Signature Scheme and lays out the overall system
design. §IV analyzes the security of the Gringotts System com-
ponents individually and collectively. §V describes our proof
of concept implementation, and analyzes its performance. §VI
concludes and discusses future research goals.

II. BACKGROUND AND RELATED WORK

Digital signatures can be used to guarantee data integrity
over untrusted networks. A digital signature, generally based
on a public key cryptosystem, allows the sender to include an
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encrypted version of the data (the signature) that the receiver
can check against the received data. If a secure algorithm is
used, only the sender has the ability to generate a verifiable
signature for the data it sends, and thus if the receiver can
verify a signature, it can be assumed that the data was unaltered
during transmission. Because only the sender can create a
valid signature (even the receiver cannot forge a signature),
digital signatures also provide the property of non-repudiation
of origin, which means that at some later date, the sender
cannot deny having signed and sent the data.

Signatures schemes specifically intended for streamed data
are not new — Gennaro and Rohatgi proposed a solution as
early as 1997 [6]. One of the main motivating use cases for
stream signature was and remains sending video data from a
web server to multiple end users (a multicast network), where
dropped packets present little risk and can problematically
delay the network. As such, there are a number of signature
schemes for streamed data that allow for dropped packets or
build on the multicast structure [7]-[11]. Since our goal is
a trustworthy system, easily dropped packets are of greater
concern than optimally efficient network usage, although since
video data is still an applicable use case for Gringotts, band-
width usage remains a consideration. Our proposed system
layout is the inverse of a multicast system (many senders and
one receiver), so none of these schemes are applicable. While
the original Gennaro-Rohatgi scheme fulfills the Gringotts
security requirements by strictly disallowing dropped packets,
micro-benchmarking showed that, in practice, the one-time
signatures required by Gennaro-Rohatgi are slower than an
efficient public key scheme such as the Elliptic Curve Digital
Signature Algorithm (ECDSA); and that both the Gennaro-
Rohatgi one-time signature scheme and a naive one ECDSA
signature per packet scheme resulted in a sender-side pro-
cessing time that was slower than the data generation speed,
making those solutions impractical for a real system. The
microbenchmarking of ECDSA is discussed in §V-B.

There have also been proposals for error correcting code-
based signature schemes for streamed data [12]-[14]. However,
all these solution are solely theoretical in nature, and would
require error correcting or erasure codes significantly more
efficient than those currently in use.

The eventual obsolescence of most cryptographic algo-
rithms is a more recent, but very pressing, concern. Information
theoretically secure cryptographic primitives may last longer,
but are generally inefficient compared to the current best
computationally secure scheme, and may also require novelty
hardware to implement [15]. Working from a different point
of view, the IETF Long-Term Archive and Notary Services
Working Group [16] has proposed Evidence Record Syntax
(ERS), a protocol for storing authenticated data in long-
term non-repudiable manner [5]. The Gringotts system uses a
variant of ERS that includes protection for data ordering [17].
Since ERS is designed to efficiently update its authentication
algorithms as they become obsolete, a system using ERS
can always use the fastest secure signature scheme without
compromising the future security of the data.

III. DESIGN

The Gringotts System is a set of cooperative software tools
that can be used in conjunction with existing data gathering
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Fig. 1. Layout of a Gringotts System. Trusted data sources transmit signed
information to the semi-trusted server, which stores it on a semi-trusted
database. The database runs ERS, which makes use of timestamps from a
trusted Time Stamp Authority. Data is accessed from the database through a
verifier program.

deployments. Gringotts assumes that multiple senders connect
to a single server, which either serves as or connects to a
database where the data is stored. Administrators, end users,
and law enforcement professionals may connect to the database
to view the saved data.

In Gringotts, each sender has a unique key pair that it uses
to sign the data it generates before sending that data over
the network. The signature is verified and preserved by the
Gringotts server, and archived on the database using ERS.
Users with a right to access the data can connect to the
database and verify the signature and the ERS metadata before
reading.

A. Threat Model

Fig. 1 shows the layout of a system using Gringotts.
The various data sources transmit information to the server,
which stores it in the database. When data is accessed, its
authentication is confirmed by the verifier.

The Gringotts threat model has three threat levels: un-
trusted, semi-trusted, and trusted. The network between the
data sources and the server is considered to be completely
untrusted. It is assumed that an attacker can gain access to
and manipulate the contents of any transmissions. Once the
data reaches the server, we consider the system behaviour to
be semi-trusted. By this we mean that the server, database, and
verifier are expected to honestly follow Gringotts protocols, but
are not trusted to authenticate or manipulate data. That is, a
database administrator or user may choose to attempt to alter
data stored on the database or passing through the server, but
may not silently change the code of the Gringotts programs,
since these can be checked against the official release. The data
sources, which should be physically and remotely difficult to
access, is considered trusted; so is the Time Stamp Authority,
which is provided by a trusted third party.

Throughout this paper we consider data generator keys to
be inviolate. The means of safely binding keys to entities is
outside the scope of this paper, and remains an open problem.
We also assume that an attacker is computationally bounded,
meaning that she has finite time and computational power.
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Fig. 2.

Transmission of a block using the Gringotts Signature Scheme. Packets P are sent in blocks of ¢ messages M, which include a packet number and an

HMAC. After an entire block is sent, the block signature is sent and acknowledged, and a new block is begun.

B. Signature Scheme

A digital signature only guarantees data integrity as far
back as the device that created the signature, so the Gringotts
System requires that signatures be generated by the same
entity that generated the data, e.g. in a surveillance system,
signatures must be created by the security cameras. Since the
network is completely untrusted, data must be signed before it
is sent to the server. From micro-benchmarking experiments,
we determined that signing each packet as it is transmitted
is prohibitively slow. As discussed in §II, an examination of
existing signature schemes for streamed data did not yield any
scheme that maintained the integrity of the data stream while
still transmitting fast enough to be practical.

Fig. 2 outlines the Gringotts Signature Scheme. As
with more permissive streaming signature schemes [7], [11],
Gringotts breaks the possibly infinite stream of data into finite
blocks of ¢ packets each for processing. The sender begins
the protocol by sending a block of ¢t messages. A message
contains a data packet, an incrementing packet number, and
Hash-based Message Authentication Code (HMAC) computed
on the concatenation of the data and packet number. Generation
of the shared key k& used in the HMAC is system-dependent,
but the handshake used in our implementation is described
briefly in §V-A. Since the semi-trusted server can forge an
HMAC using the shared key k, the HMACs are not used to
authenticate data. However, the block size ¢ must be less than
the ENISA/NIST-required number of times an HMAC key can
be securely used [18], and k should be periodically rolled
over after a predetermined number of uses to disallow replay
attacks.

Once a complete data block as been transmitted, the sender
generates a signature for the entire block’s data, and sends it to
the server. The HMACs and packet numbers are not included
in the signed block data. The block signature is sent with the

block number, and the transmission is authenticated with an
HMAC. Because the signature is generated by the camera, this
scheme retains the property of non-repudiation of origin. The
block signature authenticates the data to the server, and is later
used by the Gringotts Verifier to provide authentication to the
end user when that data is accessed.

If a data packet is corrupted, not only is that packet unver-
ifiable, but the block it is part of also becomes unverifiable,
since the final block signature will only be verifiable on the
receipt of the entire, correct data block. This is the reason for
including HMAC:s in our design. If the authentication process
only relied on the final signature, then a single corrupted bit
(either random or malicious) would require that the entire
block be either dropped or resent. If the server cannot verify
the signature and one of the packets in the current block has
an unverifiable HMAC, then only the unverified packet needs
to be resent for the server to be able to verify the signature.

If the server can verify the block signature, then it sends
an acknowledgement of the verified block to the sender, and
writes the block data and its associated signature to the
database, which is described in §III-C. If the server cannot
verify a block signature, instead of an acknowledgement it
sends a reply to the sender requesting the corrupted mes-
sages or signature be resent, using the HMACs to identify
the problematic transmissions. When the server has received
the necessary messages and has properly verified the block
signature, it acknowledges for the now-verified block to the
sender. After a proper acknowledgement has been transmitted,
the sender and receiver then proceed to the next block.

For practical systems, the number of permissible resend
attempts must be bounded by a timeout. Infinite retry attempts
would create a new vector for denial of service attacks.



C. Storage

Once a data block’s signature has been verified, the next
requirement for the Gringotts System is to preserve that non-
repudiable signature so that at any point in the future, the
data can be trusted without reference to who has had access
to the server or the database. For the purpose, we format the
database using the ERS protocol, which is designed to safely
and verifiably store long-term archival data while maintaining
provable data integrity [S].

If data needs to be stored for months or years, traditional
proofs of integrity, such as digital signatures, can decrease in
usefulness as their underlying cryptographic primitives or key
sizes become outdated. Data protected by obsolete schemes
must be resigned, and the resigning must be timestamped to
prove that it happened before the signature was easily forge-
able. However, an archival system may contain a multitude
of signed data objects. In the case of security camera footage,
even a few sensitive hours can require gigabytes of data and, if
processed using the Gringotts Signature Scheme, may include
thousands of signed blocks. As such, manually discovering and
resigning all files is impractical.

A database implementing ERS stores its documents in a
hash tree. A hash tree is built by concatenating and rehashing
file hashes, with the root hash as its apex [19]. In ERS, the root
hash is signed with a certificate from a Time Stamp Authority
(TSA), a trusted third party that certifies the existence of
an object at a particular time. Since a data file cannot be
altered without altering the root hash and thus making the
TSA certificate unverifiable, a verifiable root hash with a
verifiable TSA certificate can be used to prove the integrity
and existence of all the data in the hash tree from the time the
certificate was generated. The data in an ERS tree, once made,
is effectively immutable. For Gringotts, which receives data in
infinite streams, maintaining a single ERS tree is impossible,
so the server periodically saves accumulated data as a new ERS
tree. If the ERS cryptographic functions need to be updated
(if they become old or insecure), all existing ERS trees are
gathered into a single updated tree, which then receives the
new TSA certificate for its root hash.

ERS as defined in [5] offers no guarantee on the order
of the files in a hash tree (although order between hash
trees may be guessed by the history of the TSA certificates,
which include timestamps). While not all data that may be
used as evidence is ordered, in cases such as security camera
recordings or system logs, order is essential. For that reason,
our Gringotts implementation uses Ordered ERS, a modified
version of ERS, described in [17]. In Ordered ERS, two types
of management files are added. Registry files list the order
of the data files from a given stream in a given hash tree. A
single hash tree may have multiple registry files (for multiple
streams), and a single stream will have multiple registry files
(in different ERS trees). Registry files also contain a pointer
to the previous registry file for the stream they list, so that
the order for registry files (and thus the order for the ordered
groups of data files they describe) can be determined from this
linked list. The second management file specific to Ordered
ERS is the ferminator file. There is one terminator file per
stream, and it contains a pointer to most recent registry file.
The terminator file is used to find the end of the ordered list
of files, either for appending a new data group (and its registry

* { register lcd]
LY

\ ’

AY 1

Fig. 3. A set of Ordered ERS hash trees. Two streams, 1 (in grey stripes)
and 2 (in solid blue), are stored in two hash trees. The upper tree (with root
A) covers data files a and b of Stream 1 and data files a, b, and ¢ of Stream
2. The lower tree (root B) covers data files ¢ and d for Stream 1, and data
files d, e, and f for Stream 2. Data file hashes (the leaves of the trees) are
labeled by stream name and data block. For example, “h2b” is the hash of
data file b in Stream 2. Intermediate hashes are computed by concatenating
the node’s children and hashing the result. For example, “hlcd” is the hash of
the register file for stream 1, files ¢ and d, concatenated with the hash of data
file ¢ in Stream 1 and the hash of data file d in Stream 1. Pointers between
management files are marked with dotted arrows.

file) or for finding and verifying an existing data file. Fig. 3
shows two data streams stored in Ordered ERS hash trees.

D. Verification

The Gringotts Database is an access controlled, read-only
data store. The exact details of the access control policy are
outside of the scope of this project, but can be implemented us-
ing the database’s native access control policies, or third-party
software. Even if a user has permission to access data stored
by Gringotts, that data must be verified before being made
available. The Gringotts Verifier first identifies the Evidence
Record for a requested data file, and verifies the Evidence
Record’s hash tree and TSA certificate. Each Evidence Record
contains the data file and its reduced hash tree, so a single
evidence record is sufficient to verify that file. Assuming that
Ordered ERS is used, the Verifier also verifies the validity of
the data ordering from the the metadata. Register files list the
order of the data group they describe (their sibling data files in
the hash tree). Since register files are included in the Ordered
ERS hash tree, a verifiable root hash means that the register
files for that tree are also valid, and the ordering they provide
can be used to verify that no files have been deleted, and all
requested files remain in the correct order. Finally, the Verifier
checks the data signature (the block signature from the sender).
Once the signature and ERS tree have been verified, the data
can be returned to the user.

IV. SECURITY ANALYSIS

The goal of the Gringotts System is to protect data in such
a way that it can be trusted by a court or other third-party
to accurately represent its purported contents. We trust data
generators, such as security sensors or cameras entirely, and
we consider the server and database semi-trusted: we assume
that they will be maintained according to the protocol, but



not that the stored data is immune to tampering. We expect
that the server will accept and store received data, and that
the database will be updated if the cryptographic algorithms
used by ERS become obsolete. Since we are concerned only
with the integrity of the data which is stored in the database,
a misbehaving server that deletes or ignores incoming data is
outside of the scope of this project. A malicious administrator
could neglect or attempt to obfuscate ERS maintenance, but
the ERS protocol includes a trusted third party-provided times-
tamped certificate, so the attacker would be unable to silently
disrupt the system operations. The network is considered to be
completely untrusted.

In §III-A, we introduced the threat model Gringotts is
designed to protect against. In this section we discuss the
security of the various parts of the Gringotts System. Since
the network is untrusted, we address the possibility of attacks
on the transmission of data from the sender to the server (also
referred to as the receiver in this section to avoid confusion).
Considering the semi-trusted database and server, we consider
first outsider attacks (primarily on the database), and then the
possibility of a malicious party who has direct access to some
part of the system.

A. Network Security

We first consider an attack on the data as it is transmitted
over the network. Out implementation of the Gringotts Sig-
nature Scheme uses ECDSA, and this proof assumes the use
of elliptic curve (EC) cryptography for both block signatures
and the computation of the HMAC keys. However, in the case
where ECDSA provides insufficient security guarantees, it may
be replaced by a different unforgeable under chosen message
attack (UF-CMA) signature scheme, and a similar proof should
be constructible.

We assume that ECDSA is existentially unforgeable (UF-
CMA) by either the receiver or a third party, and that an HMAC
is existentially unforgeable by a third party. Since HMACs are
based on a shared private key, obviously there is no way to
prevent the receiver from forging an HMAC. We also assume
that the Elliptic Curve Diffie Hellman (ECDH) Problem is hard
(unsolvable in polynomial time).

Based on these assumptions, and considered independently,
the HMACs and block signatures must be existentially un-
forgeable. This means that an adversary could not, without
detection, alter existing packets or add packets to the stream.
To silently corrupt or insert a packet, the adversary would
have to successfully forge both the packet’s HMAC and the
block’s signature, which would contradict our assumptions.
An adversary also cannot cause messages to be dropped.
The sender and receiver can communicate using TCP, where
non-malicious dropped packets would be dealt with on the
transport layer. However, even if the adversary forged all
following TCP headers to ensure that the dropped packet
was not acknowledged at the transport layer, application-level
authentication ensures that dropped packets are identifiable.
Since the messages include the packet number, dropping a
packet and altering the following packet number is impossible
without forging both that following packet’s HMAC, as well
as, eventually, the block signature. These forgeries would
contradict our assumptions. If an attacker attempts to drop an

entire block, the same contradiction applies on a block scale, as
the block signatures are similarly numbered, and that number
is also authenticated by an HMAC.

The server is unable to alter the data received from the
senders, since to do so would require the forgery of a block
signature. While the server can forge any HMAC, the HMACs
are only used to ensure the data integrity of the packets
travelling over the network. The server does have the power to
drop blocks, although not silently for timestamped data. If the
data covered by the block signature includes information about
data or transmission times or ordering, missing blocks will
be visible. If an attacker on the server writes an unverifiable
block to the database, this error will become apparent during
retrieval, since the verification process checks the validity of
both the ERS tree and the block signature.

In the Gringotts System, the ECDSA signatures and the
shared HMAC key k (assumed to be computed using a ECDH
key exchange) are not completely independent — they can (and
in our proof of concept do) both rely on the same set of EC
parameters and public-private key pairs belonging to the sender
(S) and the receiver (R). This relationship, however, does not
reduce the security guarantees previously discussed. Let us call
the sender’s secret key, dg, and her public key, Qs = Gdg; and
the receiver’s secret key, dg, and her public key, Qr = Gdgr
(where G is the publicly available generator for the group).

Suppose, using some algorithm F', one could forge a
ECDSA signature from reading all the HMACs exchanged
between the two hosts. Then, without loss of generality, the
receiver R could forge the sender S’s signature as follows. R
determines k£ by multiplying her private key with S’s public key
(@s), and given k she can create (i.e., read) as many HMACs
are required for input to F'. R then uses F' to forge a message-
signature pair purporting to come from S. Thus, R will have
forged S’s signature with no more than (), which is publicly
available. This clearly contradicts our assumption regarding
the security of ECDSA, so we can see that knowledge of any
number of HMACs sharing the same EC parameters does not
allow R or a third-party to forge an ECDSA signature.

Since Gringotts’ security guarantees derive from the
ECDSA block signature, it is sufficient to show that using an
ECDH key k based on the same EC parameters as the signature
does not compromise the signature. The converse (that a third
party seeing the ECDSA signatures cannot compromise future
HMACs based on the same key) is not a security concern
for the system, merely a performance one. Forged HMACs
mean that a unverified block must be completely resent, but
do not allow the attacker to corrupt a block stored in the
database. While we do not formally prove that forged HMACs
are impossible, we suggest the following intuition: If we could
gain information about the HMACs from ECDSA signatures,
then either we have gained information about key k (which
contradicts our assumption of the security of ECDH), or about
the information required to compute key dg or key dr, namely
the secret keys of the communicating hosts (which contradicts
out assumption that ECDSA is unforgeable).

Replay Attacks: Since the block and packet numbers
are integral to the prevention of dropped packets, and these
numbers must, in a real world implementation, wrap around,
we consider the possibility of replay attacks. Replaying only



packets has little effect on security, as the new block signature
would fail to verify if the old block data were sent instead.
Replaying an entire old block complete with its old signature
is a possibility. However, the key k used in the HMAC is
regularly rolled over to avoid brute force attacks on the security
of the HMAC:s. In our current deployment, that rollover occurs
before the integers wrap around (k should be reset around
every 220 transmissions [18]; the integers wrap around every
232 transmissions), so it is impossible for an attacker to replay
an old block with the correct new HMACsS. In a deployment on
different hardware, the size of an integer must be considered.
If the integers wrap around before k is required to roll over,
that implementation should roll k£ over earlier to prevent the
development of a vector for replay attacks.

B. Database Security

Each Evidence Record in the database is stored with its
signature and is part of a timestamped Ordered ERS hash tree.
Thus the data existence is provably verifiable, as described
in [5], §III-D, §IV-A. The ordering of the evidence records,
however, is entirely maintained by the Ordered ERS registry
files, which are generated by the server, and thus cannot be
authenticated by the data source. Given the semi-trusted nature
of the server and the database, we cannot assume that either
will reliably authenticate data ordering. However, for ordered
data, the records themselves are likely to contain some ordering
information. If so, these data timestamps may not be aligned
with the server’s clock, but they should be internally consistent,
and thus provide reliable confirmation of the server-generated
ordering.

The timestamp on an ERS hash tree is generated when
the hash tree is created. Since the senders’ clocks are not
synchronized, and hash trees are only generated periodically,
the hash tree timestamps have no actual relation to when the
data was generated.

C. Insider Attacks

Since a motivation for the Gringotts System is the admissi-
bility of data as digital evidence in court cases, and the owner
of data may not be disinterested in the results of said case,
it is essential that we also consider the danger of internal
tampering. We consider two types of internal threat: those that
threaten the semi-trusted portions of our system, and those that
threaten the trusted components.

1) Semi-trusted: Physical access to the database or the
server would allow an attacker to delete or corrupt stored
data, but not to silently alter it. Since the signatures come
from a data source, and we assume that those signatures are
unforgeable (see §TV-A), an attacker targeting the server or the
database will not be able to provide a valid signature for the
altered data, and the forgery would be detected when a user
attempted to the data.

2) Trusted: Insider attacks on trusted components are out-
side of the scope of Gringotts’ threat model. However, in
reality, this may not be the case, so we briefly outline the
dangers of such attacks, and possible safeguards. If an attacker
has physical access to a data source, she could alter the
data without being detected. In the case of security sensor
data (e.g., surveillance cameras), we assume that the data

generation hardware is located in protected or hard to reach
places. Should physical access to data senders be a concern,
physical safeguards such as tamper-evidence hardware can
also be used. If a data source is compromised, or the its
cryptographic key pair is tampered with, rekeying will require
careful auditing to maintain the trusted nature of the data
sources. If an insider attacks the TSA, the timing and security
of root hash certificates are suspect. TSA providers generally
have stringent access control policies when it comes to their
servers, however.

V. IMPLEMENTATION AND PERFORMANCE

Our proof of concept Gringotts implementation uses a Mac
mini with a 2.5GHz Intel Core i5 processor and 4GB of
1333MHz DDR3 memory running OS X 10.8 as the server
and database, and a third generation iPad with a IGHz ARM
Cortex A9 processor and 1GB of 1024MHz DDR2 memory
running i0S6 as the data source. The data generated for our
performance analysis was video data encoded using MPEG-
4 with a 640x480 frame size, and was transmitted at 15
frames per second. With the exception of the encoding type,
this is within the range of standard industry security camera
data transmissions. The difference in encoding is due to the
proprietary nature of the standard industry encoding style,
H.264. Like H.264, MPEG-4 uses variable frame sizes and
types, so we believe that our signature scheme could be applied
to an H.264 stream with similar overheads.

The data generation code consists of “2400 lines of Objec-
tive C and C code, and uses OpenSSL and FFmpeg libraries as
well as CocoaTouch frameworks. The server code consists of
~2700 lines of Java code, and also uses OpenSSL and FFmpeg
libraries, as well as an implementation of OrderedERS. The
FFmpeg URLProtocol that implements the Gringotts Signature
Scheme is used by both sender and server code, and consists of
~1200 lines of C code. These counts include some embedded
unit tests, as well as trace and error messages.

The implementation of Ordered ERS used in Gringotts
was created specifically for that purpose, and consists of an
ERS implementation and “1500 lines of Java code. To the best
of our knowledge, our proof of concept represents the first
implementation of Ordered ERS.

A. Handshake

In §III-B, we presupposed the existence of a secret key &
shared between the sender and the server. In our implemen-
tation, we include the following handshake, which allows the
server to authenticate incoming data streams, and provides a
protocol for computing the shared key k.

We assume that the server listens on a publicly known port
for new connections. When it starts to run Gringotts code,
each data source is assigned an EC key pair. The server is
aware of each sender’s unique public key information using
some form of out-of-band authentication or trusted third party
certification. This prevents unknown cameras from being added
to the system.

A new data source initiates the handshake by sending its
public key and a signed, session-unique stream name to the
server’s open public port. Our Ordered ERS implementation
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Fig. 4. Signature Scheme Timing. The signature generation and verification
time required for ECDSA and HMAC, the two authentication algorithms used
in the Gringotts System. ECDSA, while the fastest signature algorithm in
general use, is still too slow to sign every packet for high-bandwidth data
transmission, like video.

uses the stream names to differentiate ordered file groups from
different sources. On receiving the initial transmission, the
server confirms that the public key it has just received is one
of its known data sender public keys. This check prevents an
attacker from generating a new key pair and masquerading as
a valid data source. The server also verifies the signature on
the proposed stream name. A verifiable signature proves that
the connecting entity is the data sender it purports to be, since
no one else has access to the secret key associated with its
public key, and thus could not produce a valid signature for
that key.

Once it has authenticated the connecting data generator, the
server selects an unused port, and starts a new thread to process
data input from the new stream. The new thread sends the
data generator its port number, and the sender initiates a Diffie
Hellman key exchange. Once the exchange is finished, both the
sender and the server have calculated a shared secret key k, and
the sender begins sending data using the Gringotts Signature
Scheme. The server stores verified data in the database, which
runs Ordered ERS.

B. Signature Scheme

Fig. 4 shows the processing times required for ECDSA
and HMAC generation and verification. The values shown
were computed using the Objective C class NSDate. These
signature scheme microbenchmarks were helpful in allowing
us to determined the necessity of the Gringotts Signature
Scheme. An analysis of video data produced during our
experiments showed that the median data packet size was
around 1000B, and that our experimental data source had
a throughput of "0.18Mbps. Thus, we can see that our ex-
perimental data generator sent around 22 packets per second
(150t s e X LS X qgfiges). The experimental
packet transmission time was ~0.045sec. From Fig. 4, we
see that using an ECDSA signature on every packet would
increase the transmission time by 22%, and the verification
time by 20%. An HMAC per packet, by comparison, in-
creases transmission time by 2.4%, and verification time by
only 0.12%. Using the Gringotts Signature Scheme, several
hundred packets can be transmitted with only the overhead
from HMAC processing, before a single ECDSA signature is
required. How necessary the use of the Gringotts Signature
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Fig. 5. Server Processing Time. The average time required for the server to
process a 5s video sent from a data source, with and without the Gringotts
Signature Scheme.

Scheme is depends on the type of data being transmitted, and
the network specifications. However, for large data transfers,
such as surveillance video, network bandwidth is invariably a
concern, and a 20% overhead for transmission is impractical.

Fig. 5 shows the overhead caused by the Gringotts Sig-
nature Scheme. The left bar (“Unsigned”) shows the time
required for the server to receive 5s of video data from the
sender using only standard TCP with no additional protection.
The right bar (“Gringotts”) shows the time required for the
server to receive 5s of video data from the sender using the
Gringotts Signature Scheme over TCP. The server processing
time was computed using the Unix fime command on the
server. The processing time measured for Gringotts includes
the time required to receive additional data (HMACs and
signatures), to verify HMACs and block signatures, and to
send application-level acknowledgements. For our 5s video,
the Gringotts Signature Scheme required an average of 0.514s
processing time, as compared to the average 0.478s required
to process 5s of video without signatures. Thus the overhead
for using Gringotts is only 7.5% as compared to an unpro-
tected stream. The number of packets per block ¢ for these
benchmarking experiments ranged from 100 to 500 without a
statistically significant variation in timing.

For a larger scale experiment, we set up a small network
over which two cameras recorded and transmitted data to
a server running Gringotts continuously for about an hour
without observing any disruption of transmission speed or
quality. In comparison, the naive proposal to sign every packet
with an ECDSA signature led to a stalled transmission from a
single camera in under 5 minutes.

C. Storage

In our experiments, ECDSA signatures were of size 76B.
The average packet size was around 20kB, meaning that the
Gringotts block signatures increased the data storage by 0.38%.
The ERS hash tree files required an additional 1.1%, and
the Ordered ERS metadata, an additional 4.7% of disk space.
Overall, Gringotts required 6.2% more storage than a system
without integrity guarantees.

The current ERS library Gringotts uses is a simple Java
implementation of the standard, which includes the local
file system as its database. As such, it has no indexing, or



storage and processing optimization. Using an Ordered ERS
implementation that runs on a well-optimized database could
improve both storage space and verification time requirements.
Similarly, more efficient storage of Ordered ERS metadata,
much of which is currently stored in text and xml files, would
decrease the required space.

VI. CONCLUSION

In an age where legal and contractual evidence is increas-
ingly digital, it is necessary to be able to both prove the
veracity of stored data, and to be able to trust data provided
by others. In this paper, we have described the Gringotts
System, which aims to indefinitely protect archival data. Using
our novel Gringotts Signature Scheme and the existing ERS
protocol to preserve a data source-generated signature over
an untrusted network and for an unspecified period of time,
this system should be applicable to data that must be stored
securely for months or even years. We have also demonstrated
the practical applicability of our design by implementing a
proof of concept for the transmission of video data from
multiple sources. In our implementation, the transmission time
was increased by only 7.5% and the storage space by 6.2%,
in comparison to an unprotected system.

While the Gringotts System as it stands fulfills our se-
curity goals, the database used in our implementation was
unoptimized. For a system like Gringotts, which expects to
collect large amounts of data over long periods of time, a more
efficient data store would be preferable. In future, we hope to
implement the Gringotts Database for a distributed database
management system.

Another direction for future research is the relation between
a data source and its key pair, and how to securely communi-
cate that information safely to the server. We are also interested
in creating a secure method for renewing data source keys that
may have become compromised.

Comparing data stored on Gringotts is also an open ques-
tion. As the current design stands, timestamps are provided
by independent data sources, with no guarantee of clock
synchronization. Thus, we also hope to develop a clock syn-
chronization method for distributed data generators.

This paper has used video surveillance as a motivating
example of the Gringotts System, and our proof of concept
reflects that. However, we believe that our system can be
applied to a variety of data types and sources with equal
efficiency. The Gringotts Signature Scheme can also be used
separately from the archival storage system for any project
needs a complete, and completely authenticated, data stream.
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