
Poster: CookieGuard: Isolating First Party Cookies
using CookieGuard

1st Pouneh Nikkhah Bahrami
Department of Computer Science

University of California, Davis
Davis, USA

pnikkhah@ucdavis.edu

2nd Aurore Fass
CISPA Helmholtz

Center for Information Security
Sankt Ingbert, Germany

fass@cispa.de

3rd Zubair Shafiq
Department of Computer Science

University of California, Davis
Davis, USA

zshafiq@ucdavis.edu

Abstract—Web applications now heavily rely on third-party
scripts to implement various features but this practice comes with
serious risks, in particular if third-party scripts are included in
the main frame. In this paper, we first investigate the indirect
inclusion of additional third-party scripts which are engaged
in cross-domain manipulation and exfiltration of cookies. To
investigate this phenomenon, we designed and implemented a
graph analysis tool based on PageGraph. We then use this tool to
crawl the top 10,000 websites, to quantify the prevalence of direct
and indirect third-party script inclusions, as well as cross-domain
cookie manipulation and exfiltration by such scripts within the
main frame. Our Results uncover significant cookie manipulation
and exfiltration: cross-domain third-party scripts exfiltrate and
manipulate cookies on almost half of the websites. Finally, we
introduce a deployable intervention mechanism in the form of a
browser extension. This extension can be effortlessly installed by
users to protect cookie jar against unauthorized access.

Index Terms—privacy, cookie, third-party, JavaScript

I. INTRODUCTION

Modern websites heavily rely on third-party scripts to im-
plement various features. However, third-party script inclusion
introduces security and privacy risks [7]. To mitigate this risk,
third-party scripts should be properly isolated, e.g., put in
a separate iframe. When a third-party script is isolated in a
separate iframe, the same-origin policy (SOP) would restrict
the interactions between the script and resources in the main
frame (or other frames) except via a narrow set of cross-origin
communication mechanisms such as postMessage and cross-
origin resource sharing (CORS).

However, developers often include different third-party
scripts directly in the main frame for simplicity [6]. This
means that the SOP and other origin- or frame-based security
mechanisms do not apply. Thus, when a third-party script is
embedded in the main frame (either directly by a developer
or indirectly by other scripts), it has access to the shared
resources of the main frame such as the cookie jar containing
first-party cookies.

In this paper, we investigate privacy implications of third-
party script inclusion in the main frame. Specifically, we focus
on two types of interactions between third-party scripts in
the main frame: (1) indirect injection of third-party scripts
and (2) cross-domain storage manipulation and exfiltration of
cookies in the cookie jar which is a shared resource between

all entities in the main frame. We then propose an intervention
mechanism to protect cookie jar from unauthorized scripts to
prevent cross-domain storage manipulation and exfiltration of
cookies.

While some work has studied the prevalence and impact
of third-party script inclusion [5], [7], also showing that
dynamically loaded third-party resources are disproportion-
ately associated with advertising and tracking [3], they did
not consider the privacy implications of cross-domain script
interactions in the main frame. Another line of work uncovered
JavaScript global identifier conflicts that arise when different
scripts are included in the same frame [9], but they did not
consider privacy implications of such conflicts.

While the exfiltration of cookies to other entities has been
studied [2], [8], to the best of our knowledge, no existing
interventions effectively prevent cookie exfiltration and ma-
nipulation from unauthorized access. Our proposed mechanism
fills this gap by providing robust protection for cookies within
the main frame’s shared resources.

II. MEASUREMENT

We design and implement a graph based tool called Page-
Graph++ to detect and quantify the prevalence of cross-
domain script manipulations and exfiltration of cookies in
the main frame. We built this tool on top of PageGraph
[1], an instrumented version of Chromium that can capture
fine-grained page execution behavior. PageGraph++ includes
a query tool that leverages the resulting graph structure to
analyze web pages and capture dynamic script injection and
shared resources (such as cookie) manipulation.

III. MEASUREMENT STUDY FINDING

PageGraph++’s deployment on top-10k websites [4] shows
two key findings. First, we find that more than 90% of
the websites injects at least one third-party script indirectly.
Furthermore, 75% of these scripts are advertising or tracking
scripts. Second, we find worrisome cross-domain storage ma-
nipulation by third-party scripts in the main frame. Cookies
are overwritten by cross-domain scripts on nearly a third
of the websites by 250 different third-party scripts. Cookies
are exfiltrated by cross-domain scripts on almost half of the
websites.



IV. DEVELOPMENT OF THE PREVENTION TOOL

To protect cookies against unauthorized access, we imple-
ment a browser extension called CookieGuard. CookieGuard’s
core principle is to ensure that scripts can only interact with
cookies they have set themselves, thereby preventing unautho-
rized access and manipulation. This approach is predicated on
intercepting and controlling both the setting and accessing of
cookies by scripts running within web pages.

A. Features

CookiesGuard has three main features designed to enhance
cookie jar protecting.

• Script Cookie Access Interception: This feature actively
monitors access to document.cookie, capturing both ”get”
and ”set” operations initiated by scripts on the web-page.

• Monitor set-cookie header in HTTP responses: This func-
tionality investigates all HTTP responses that include a
Set-Cookie header, ensuring comprehensive oversight of
cookie setting via HTTP.

• Book keeping: Implements detailed logging for all
first-party cookies, covering both first-party HTTP and
JavaScript-generated cookies. Specifically, this includes
maintaining a log of all first-party cookie names along
with their corresponding setter domains.

B. components and Implementation

We implement CookieGuard as a browser extension. The
extension has three main components.

• background.js: This component monitors HTTP re-
sponses for Set-Cookie headers and logs non-HTTPOnly,
first-party cookies by name and setter domain in a dataset
stored within the extension. It also manages communica-
tions with the content script, updating the dataset with
cookies set via the document.cookie ”set” function, and
retrieving the dataset for the ”get” function calls.

• contentScript.js: This component injects a script (cook-
ieGuard.js) into the webpage. Forwards messages be-
tween the cookieGuard.js and the background.js.

• cookieGuard.js: Implements a wrapper around the docu-
ment.cookie ”get” and ”set” functions to intercept cookie
access. It ensures that when cookies are set, details are
sent to background.js to update the dataset, and when
cookies are fetched, only those set by the specific script
are returned, preventing scripts from accessing cookies
set by others.

V. EVALUATION OF COOKIEGUARD

We do a manual analysis of CookieGuard to evaluate
the web breakage while using this extension. We select 10
websites and evaluate them in two different configuration; with
and without CookieGuard extension. We classify breakage
into four categories: navigation (moving between pages), SSO
(initiating and maintaining login state), appearance (visual
consistency), and miscellaneous (such as chats, search, and
shopping cart). Breakage is labeled as either major or minor
for each category: Minor breakage occurs when it is difficult

but not impossible to use the functionality. Major breakage
occurs when it is impossible to use the functionality on a
webpage. The result is shown in Table I. While there was
no impact on Navigation and Appearance (0% breakage),
we observed minor SSO disruptions on cnn.com and major
functionality breakages on facebook.com due to our extension.
These issues stem from the dependency on third-party cookies
for session management and login processes. Specifically,
Facebook’s Messenger service was significantly affected be-
cause it relies on fbcdn.com within facebook.com. To mitigate
such disruptions, implementing whitelists where all company-
related domains are treated as first-party resolve the issue.

Navigation SSO Appearance Miscellaneous

Minor 0% 1% 0% 0%
Major 0% 0% 0% 1%

TABLE I
BREAKAGE SUMMARY

VI. CONCLUSION

Our results shed light into the privacy implications of
including third-party scripts in the main frame. Web developers
need to be more mindful of the indirectly included scripts that
they implicitly trust. Our work also informs the deployment of
targeted countermeasures by web developers, such as CSP, to
limit the indirect inclusion of third-party scripts. Our extension
enhances web privacy by implementing an access control
system for the browser’s cookie jar. It is easly deployable by
all users.

REFERENCES

[1] Brave software, pagegraph. https://github.com/brave/brave-browser/wiki/
PageGraph, 2020.

[2] CHEN, Q., ILIA, P., POLYCHRONAKIS, M., AND KAPRAVELOS, A.
Cookie swap party: Abusing first-party cookies for web tracking. In
Proceedings of the Web Conference 2021 (2021), pp. 2117–2129.

[3] IKRAM, M., MASOOD, R., TYSON, G., KAAFAR, M. A., LOIZON, N.,
AND ENSAFI, R. Measuring and analysing the chain of implicit trust:
A study of third-party resources loading. ACM Transactions on Privacy
and Security (TOPS) 23, 2 (2020), 1–27.

[4] LE POCHAT, V., VAN GOETHEM, T., TAJALIZADEHKHOOB, S., KOR-
CZYŃSKI, M., AND JOOSEN, W. Tranco: A research-oriented top sites
ranking hardened against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (Feb. 2019), NDSS
2019.

[5] LEKIES, S., STOCK, B., WENTZEL, M., AND JOHNS, M. The un-
expected dangers of dynamic {JavaScript}. In 24th USENIX Security
Symposium (USENIX Security 15) (2015), pp. 723–735.

[6] LUO, W., DING, X., WU, P., ZHANG, X., SHEN, Q., AND WU, Z.
Scriptchecker: To tame third-party script execution with task capabilities.

[7] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A., VAN ACKER, S.,
JOOSEN, W., KRUEGEL, C., PIESSENS, F., AND VIGNA, G. You are
what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and commu-
nications security (2012), pp. 736–747.

[8] SANCHEZ-ROLA, I., DELL’AMICO, M., BALZAROTTI, D., VERVIER,
P.-A., AND BILGE, L. Journey to the center of the cookie ecosystem:
Unraveling actors’ roles and relationships. In 2021 IEEE Symposium on
Security and Privacy (SP) (2021), IEEE, pp. 1990–2004.

[9] ZHANG, M., AND MENG, W. Detecting and understanding javascript
global identifier conflicts on the web. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2020), pp. 38–
49.


