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Abstract—As heterogeneous systems become more common
and diverse in IoT and CPS settings, securing these systems
against malware has become a daunting task. To combat this,
real-time hardware and/or (hardware-)software malware detec-
tion has gained popularity. Hardware malware detectors are
effective but often require invasive changes to the CPU, hence
limiting their usefulness in diverse settings. Software methods are
non-invasive but often come with large performance overheads
and/or disruptions to the main functionality of the device.

This poster proposes SideGuard, a new, non-invasive approach
for detecting malware by analyzing the system’s internal power
consumption. With a tailored power sensor, our method utilizes
this measured power consumption signal as a stand-in for
program behavior. It collects training data, understanding how
signals should appear in different program sections during
proper execution. It then monitors execution, identifying in-
stances where the observed signal deviates from the expected
ones. For monitoring, the crucial idea is to indirectly measure
power using customized sensors on an embedded FPGA or
co-processor common in modern heterogeneous IoT systems.
Notably, the monitoring unit (e.g., embedded FPGA) doesn’t
need a direct CPU connection but simply shares the power
source, offering a key advantage: the malware detection unit
requires no CPU changes, resulting in zero performance, power,
and area overhead for the main CPU. Implementing this idea
requires addressing several new challenges compared to prior
work. Specifically, we introduce a new software-signal processing
co-design approach. Results show that our approach can achieve
>95% accuracy in detecting real-world malware. As heteroge-
neous IoT systems become more common, we believe our method
is a strong contender for securing future hardware systems.

I. INTRODUCTION

Computing systems, especially embedded and smart IoT
systems, are increasingly targeted by malware [1]. There are
various methods to detect malware. Among them, hardware
malware detectors (HMD) have gained attention in recent
years [2]–[4].

HMDs typically function by incorporating two key elements
into the system: monitoring logic that gathers hardware-level
information (e.g., performance counters) about the application,
and a classifier to identify potential malware and anomalies.
While highly effective, the main drawback of HMDs is the
need for invasive changes to the device’s CPU and/or its under-
lying system. Despite being feasible for many systems, it is not
suitable or even possible for others, especially those already
in use, older systems, and custom heterogeneous systems in
which the system integrator lacks control over the internal
design of each hardware component and can only add/remove
components. Given the shift toward more heterogeneity, where
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Fig. 1. Conventional hardware malware detectors (left) vs. our proposed
method (right). Instead of collecting performance counters from the CPU and
using a classifier, our method indirectly measures power consumption. No
connection between the monitor and CPU is needed.

various components including CPUs, FPGAs, and sensors are
integrated on the same device/chip, there is a strong demand
for techniques that can match the capabilities and performance
of HMDs without invasive modifications.

To address this demand, we propose a new on-device non-
invasive malware detection method called SIDEGUARD. The
key insight is leveraging on-chip power side-channel as a
means to indirectly monitor the system, and using a new
detection algorithm that utilizes this data to detect anomalies.
As shown in Figure 1, instead of collecting hardware-related
features from the CPU, SIDEGUARD indirectly measures the
power consumption (i.e., a side-channel signal) of the CPU
using customized sensors (“Sen”) implemented as a separate
component. This data is then used by our detection algorithm
(“Det.”) also implemented on the same unit, collectively
creating an on-device malware detection unit.

The key advantage of this method is that it doesn’t require
any hardware support from the CPU or any connection to
it, unlike current HMDs. This feature broadens its suitability
for various systems with SoCs. In such setups, the malware
detection unit can reside in a distinct component (an FPGA)
or as a separate IP (in an SoC). Additionally, as the detection
module is physically separated from the CPU, it creates an
“air gap,” further enhancing robustness.

Designing and implementing SIDEGUARD involves several
new contributions. First, although the utilization of on-chip
power sensors (e.g., ring oscillators) has been employed pre-
viously for side-channel attacks and hardware Trojan detec-
tion [5]–[9], this study stands out as the first to apply on-
chip power consumption for dynamic program monitoring and
consequently for detecting malware. Unlike earlier studies,
dynamic program monitoring introduces entirely new research
inquiries.

Second, creating SIDEGUARD involves tackling two new
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Fig. 2. Software running on a CPU creates unintentional power consumption
fluctuations (i.e., power side-channels). SIDEGUARD captures this information
using an array of on-chip power sensors and leverages a signal analysis and
detection algorithm to find anomalies.

research challenges. The initial one is devising and executing
the malware detection algorithm. The fundamental distinction
between our approach and current classifiers for malware
detection lies in the nature of our features. Traditional HMDs
utilize hardware performance counters, which offer a naturally
discrete feature space. In contrast, our problem deals with a
continuous time-series data feature space. Also, in contrast
to previous methods that used on-chip power monitoring for
detecting Trojans, our task (dynamic program monitoring)
demands a significantly more intricate detection algorithm.
The difficulty stems from the need to monitor a diverse range
of software applications and types of malware. This is a
departure from the monitoring of just a single application (such
as cryptographic cores) and a single malicious behavior, as
seen in Trojan detection techniques.

The next challenge involves the system and hardware design
aspects of SIDEGUARD. Two main questions need addressing
here. Firstly, how to design the sensors and manage continuous
data effectively to reduce storage usage? Secondly, considering
the power and storage constraints on the device (especially
for embedded and IoT devices) and the requirement for an
advanced signal processing method to handle time-series data,
how can a detection algorithm be implemented efficiently in
terms of both area and power usage?

We systematically analyze the effectiveness of our detection
framework using various malware on a real SoC system, a
DE1-SoC board.

II. SYSTEM DESIGN OVERVIEW

Threat Model and Assumption. We focus on malware
detection for heterogeneous “smart” embedded/IoT devices
such as robotic devices, medical devices, and smart home
systems. We target devices equipped with a system-on-chip
(SoC) and/or heterogenous 2.5D systems, comprising various
IPs and/or chips/chiplets. These components include sensors,
actuators, and processing elements where one or multiple cores
are controlled by an operating system. We assume that our
detection framework is implemented on the system using a
hardware component such as an embedded FPGA (eFPGA)
and/or a co-processor implemented as a separate IP and/or
chip. It’s worth noting that comparable assumptions were made
in previous hardware malware detection frameworks, utilizing
the eFPGA/co-processor to implement the classifier [2]–[4],
[10]. Therefore, SIDEGUARD doesn’t introduce new hardware;

instead, it suggests a method to repurpose the existing hard-
ware.

We assume that the system is initially secure. The system,
however, can get compromised as it starts executing various
applications. Once it is compromised, the adversary controls
the entire CPU and kernel OS. Furthermore, we assume that
SIDEGUARD and its underlying hardware (i.e., eFPGA) is part
of the root-of-trust (RoT) and can only be re-programmed
through a secure update. Further, the RoT is additionally
protected from an adversary since the monitoring framework
is physically separate from the CPU and not controlled by
the OS (i.e., air-gapped). Providing this air-gap eliminates the
possibility of the monitor being infected by the same attack
vectors that have compromised the host system.

For detecting malicious activities, SIDEGUARD doesn’t
possess a priori knowledge about the type of attack or
its power signatures and detection solely depends on the
signals gathered by the sensors during monitoring. Further,
SIDEGUARD always maintains accurate reference models for
malware-free signatures. These models are stored internally
and remain uncompromised. The models, however, can be
updated through a secure update, if needed. Moreover, we
assume that the adversary is familiar with the system and
program(s), including any existing vulnerabilities, and can
manipulate the system by sending random inputs.
System Overview. The high level design of SIDEGUARD is
shown in Figure 2. Internally, SIDEGUARD consists of three
main components: a sensor array, a signal analysis unit, and
a classifier. We briefly explain each in the following.

The first component is the on-chip power sensors ( 2 ).
An essential feature of SIDEGUARD is its complete non-
invasiveness. Therefore, the sensors (power or other types)
should not have direct connections to the CPU. Instead, their
design should allow indirect monitoring of the CPU (when
running different applications). To achieve this, we utilize a
time-to-digital converter (TDC) primitive [8]. These sensors
are capable of tracking alterations in power usage within the
shared power distribution network (PDN) by sensing changes
in the delay of a propagating signal through a chain of buffers
or other logic, thereby capturing the behavior of various appli-
cations operating on the host CPU ( 1 ). A primary challenge
in our design is the balance between sensor circuit size and
precision. While more sensors provide more accurate data,
they also occupy additional space and consume more power.
We opt for a design with 32-bit granularity.

The second element is a signal analysis module. The fun-
damental distinction between our problem and current HMD
solutions is our analysis involving a continuous time-domain
signal. Consequently, we present a novel signal analysis algo-
rithm ( 3 and 4 ). In our design, a crucial strategy is adopting
a co-design approach. This means tailoring our signal analysis
strategy to match the observed behavior of the target software.
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