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ML Property Attestation using TEEs

» Clients of ML-based services cannot verify that responses come from the right model
» Algorithms, datasets, and training parameters cannot be verified after training
* ML property attestation can prove such properties efficiently and scalably

0 Introduction

* Measured model and dataset metrics used to
demonstrate the quality of models & inferences

* Need to link dataset, training parameters to
model, model to inference input/output

* New advances (e.g., Intel AMX+SGXv2) allow
training/running complex models within TEEs

e The problem

» Cryptographic proofs inefficient or don’t scale
* ML-based methods are inaccurate

» Current methods focus only on specific
properties

» Current certification services require
outsourcing both training and inference

e Our solution

Use remote attestation to run ML software and
prove properties like:

* Which model produced an inference
* How accurate is the model

* How was the model trained

What data was used to train it

* How representative was the training set

Q Implementation

+ SGX enclaves perform ML tasks and attest
process/performance claims

» Verifier combines attestations to link output
to input, model, training dataset

* Trust in claims derives from trust in TEE

Training Enclave

(run once per model)

Dataset
Model Training Metric
Metric Data Enclave
Enclave {run once

(run once per dataset)

per model)

Input Output

Inference Enclave
(run many times)
Attested ML architecture. Enclaves
(represented as boxes) hosting models
measure/attest metrics for training data,
model, and inference operations for
confidence in model & inferences.

1/0 Binding | Accuracy | Proof of
(100 operations) Training

Startup 32029ms 36470ms 36.5s
Preprocessing 0.5ms 294ms 4.4s
Computation 70.1ms 3490ms 514s
Proving 6.6ms 5.68ms 0.005s

Run-time for different types of attestation
(average of 10 runs).

e Conclusion

TEE-based ML property attestation is efficient,
scalable & versatile
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Abstract—Providers of machine-learning (ML)-based ser-
vices make various claims about their models, e.g., accuracy,
fairness, or the provenance and representativeness of the
data used to train it. Regulators and potential clients must
convince themselves that these claims are accurate. Prior
works have used purely ML approaches or cryptographic
primitives to prove certain properties, such as distributional
properties or proof of training. However, these are often nar-
rowly focused (lacking versatility), inefficient or inaccurate.
There is a need to efficiently audit different types properties
across the ML model training and inference pipeline. Trusted
computing researchers introduced the notion of property
attestation to prove various properties about a local com-
puting system to remote parties. Recent developments make
it possible to run and even train models inside hardware-
assisted trusted execution environments (TEEs). We propose
TEE-based ML property attestation to efficiently furnish attes-
tations for various ML properties for training and inference.
It scales to multiple verifiers, and is independent of ML
model configuration.

1. Introduction

Machine learning (ML) models are increasingly being
used for high-stakes decision making like medical diagno-
sis, job screening, and loan applications. This has raised
concerns about the different risks to data privacy, fairness
and robustness. In response, several jurisdictions have set
up regulations to ensure that the training process and
model’s behaviour during inference are as expected [3].
For example showing that (a) a model meets a desirable
level of accuracy or guarantees fairness, privacy or robust-
ness, without disclosing the model, or (b) distributional
properties of training data complies with regulations, with-
out disclosing the data.

ML property attestation [1] includes technical schemes
by which a prover (e.g., a model trainer) can demonstrate
relevant properties, during training and inference, about
the model to a verifier. Current attestation schemes have
various drawbacks in terms of accuracy [1], efficiency [1],
[2], or scalability to multiple verifiers [1]. Further, prior
works are limited to specific attestations such as proof of
training (that a model was trained on some dataset) [2] or
distributional property attestations (showing the training
dataset of a model satisfies distributional properties) [1].
There is a need to efficiently attest different aspects about
ML training and inference. We identify efficiency, scala-
bility, and versatility as important criteria for attestation
schemes.

Trusted Execution Environments (TEEs) already have
the notion of hardware-assisted remote attestation to prove

local system or software configuration to a remote verifier.
The trusted computing research community has extended
this to the notion of property attestation [6], and re-
cent developments by hardware vendors [4], [5], make
it possible to run and train ML models efficiently inside
TEEs. Hence, we identify TEEs as the choice for realizing
efficient, scalable and versatile ML property attestation.
We are the first to propose a software framework for TEE
based ML property attestation which satisfies this need.
More about this project is available at |https://
ssg-research.github.io/mlsec/mlattestation.

2. Problem Statement

Our goal is to design a scheme which can furnish
property attestation during ML training and inference.

Setting. A model is trained by an untrusted model
trainer who makes various claims, such as the identity
or distributional properties of the dataset used to train a
model, or the training configuration. The model trainer
may try to fool the attestation mechanism to make false
claims. Later an untrusted ML service provider is required
to attest to properties about the inference process, e.g.,
that the output was generated from a specific model on a
specific input.

Requirements. An ideal ML attestation scheme must be:
R1 Efficient (low-overhead generation and verification,
even with large models or expensive-to-compute proper-
ties).

R2 Scalable
provers/verifiers).
R3 Versatile (able to prove a wide variety of claims, and
new claims created with minimal effort.)

No prior attestation scheme using cryptographic prim-
itives satisfy all the three requirements. Secure MPC-
based attestation is applicable across different models, but
lack scalability and efficiency due to the large number of
interactions, and needing to train the model for each veri-
fication [1]. Zero-knowledge proofs (ZKPs) are scalable to
larger numbers of verifiers but lack efficiency and require
properties that can be adapted to the ZKP scheme [2].

(supports large numbers of

3. TEE-based ML Property Attestations

TEEs establish bindings between key components: the
model and its inputs/outputs, the model and its accuracy
with respect to a test dataset, the model and its training
dataset and configuration, and distributional properties
of a dataset. These bindings are implemented in normal
PyTorch-based Python code, making the approach highly
versatile. Bindings are signed with the TEE’s secret attes-
tation key, yielding attestations. As these can be generated



by anyone with the hardware, and validated by anyone,
this approach is inherently scalable. These attestations
enable verifiers to draw conclusions about the model and
training dataset properties during training and inference.
We describe the different types of attestations supported
by our framework.

Attestations made once per dataset.

« model provenance: the model has been certified by a
trusted organisation, linking it to a well-known identity.
« distributional property attestation shows that distri-
butional properties (e.g., sex ratio) in the training dataset
matches with required properties specified by the veri-
fier [1]]. This is done once for the training dataset but has
to be combined with proof of training to draw meaningful
conclusions.

Attestations made once per model.

« proof of training: a model was trained on a certain
dataset with a certain algorithm and configuration.

e accuracy attestation: achievement of some accuracy,
as measured with a test dataset.

« fairness attestation: achievement of a fairness metric
(e.g., accuracy parity, subgroup error rates).

« robustness attestation: achievement of some level of
robustness, measured with a test dataset containing adver-
sarial examples.

Attestations made once per inference.

« input-model-output attestation shows that a specific
output was generated from the model for a given input.

Combining these attestations allows the client verifying
them to obtain end-to-end guarantees, e.g. “this inference
is the result of applying model M over input I, where M
was trained on dataset DD (which has distribution F'), and
M has accuracy p when measured using test set 77’

4. Preliminary Results

We implement the framework using the Intel SGX

TEE, and the Gramine library to run Python programs
inside it.
Experimental Setup. We use the CIFARIO benchmark
dataset which consists of 60000 32 x 32 colour images
belonging to one of ten classes. We use 50000 training im-
ages and 10000 test images. We consider a convolutional
neural network three convolution layers of dimensions:
[32, 64, 128] and is trained for 10 epochs.

For metrics, we consider the CPU-based baseline that
performs the same computation outside of the SGX en-
clave, and without the attestation. The computation is
divided into:

o Startup: time to initialize the Gramine-based SGX en-
clave (except the baseline) and start the Python runtime.
o Data pre-processing: time to read the data from disk, as
well as performing any measurements or preprocessing.
o Computation: the time spent on the inference, training,
or property measurement operation.

o Proving: time spent generating the attestation.

We demonstrate efficiency by showing that proving
makes up only a small part of the overall execution time.
Results. The performance of proof of training is measured
by training the convolutional model on the CIFARI10
dataset, performance shown in Table (I} We then measure

TABLE 1: Time to produce a proof of training (mean +
s.d.).

Operation | Time (mean + s.d.)
Startup 36.510 4+ 0.320s
Preprocessing 4.35 4+ 0.02s
Computation 514 £ 7s
Proving 0.0054s + 0.00015s

TABLE 2: Accuracy attestation performance.

Operation | Time
Startup 36470 + 171ms
Preprocessing 294 + 2ms
Computation 3490 + 101ms

Proving 5.68ms £ 0.196ms

TABLE 3: Input-model-output attestation performance.

Operation | Time (mean + s.d.)
Startup 32029 + 187ms
Preprocessing 0.512 £+ 1.71ms
Computation 70.1 £+ 40.6ms
Proving 6.58 £+ 1.10ms

its accuracy, performance shown in Table [2| Not shown
are fairness and robustness attestation, computed similarly.

For input-model-output attestation, we ran 10 runs of
100 inferences, with performance shown in Table

5. Summary

These findings highlight the efficiency of our frame-
work, with minimal overhead incurred during attestation
generation. Notably, this initial startup cost is followed
by the ability for limitless verification by any number of
parties, affirming the scalability of our approach. Further-
more, TEEs exhibit versatility in training various models,
exemplified by their successful implementation with con-
volutional neural networks. In contrast, zero-knowledge
proofs, constrained by model-dependent proofs, are re-
stricted to simpler models.
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