
POSTER: Optimizing Zero-Knowledge Proofs for
Verifiable Decision Trees

Hanwei Zhu
School of Computing

Australian National Univerisity
Canberra, Australia

henry.zhu@anu.edu.au

Sid Chi-Kin Chau
Data61
CSIRO

Sydney, Australia
sid.chau@data61.csiro.au

Abstract—In the evolving landscape of machine learning se-
curity, the integrity and confidentiality of decision tree models
are paramount. This paper presents a groundbreaking approach
in the realm of zero-knowledge proofs (ZKPs) for decision trees,
addressing core challenges in privacy, verifiability, and efficiency.
We introduce a technique that replaces traditional hash function
commitments with constraint-based polynomial commitments,
significantly reducing the number of multiplication gates and
enhancing computational efficiency. A pivotal feature of our
work is the decoupling of decision tree parameters from the
tree structure itself. This modular design not only facilitates
dynamic and seamless updates to the model parameters without
overhauling the entire tree but also maintains the model’s
integrity and security.

Index Terms—ML integrity, zk-snarks, decision trees

I. INTRODUCTION

As machine learning models increasingly play a crucial role
across a wide range of sectors, from healthcare and finance to
autonomous driving and beyond, the imperative to safeguard
their integrity and accuracy, while simultaneously ensuring
the protection of the intellectual property rights inherent in
these sophisticated algorithms, is becoming more pressing
than ever before. This paper contributes a novel perspective
to the domain by presenting a verification framework distinct
from papers in the literature [1], [2], which predominantly
rely on computationally intensive Merkle trees and hash func-
tions within zero-knowledge proofs such as zk-SNARKs. Our
approach significantly reduces the number of multiplication
gates required for proof generation, enhancing computational
efficiency. Contrary to other studies that bind decision trees to
their parameters, our method introduces the flexibility of an
”empty tree” structure with updatable parameters. This adapt-
ability facilitates ongoing iterations and model refinements
without compromising the verification process.

II. OUR APPROACH

Our method encapsulates a three-step process: converting
a decision tree inference problem into a constraint system,
incorporating tree parameters and input data, and encoding the
entire framework into a Polynomial Interactive Oracle Proof
(IOP), as illustrated in Fig 1.

Fig. 1: Our Zero-knowledge Decision Tree Construction

A. Decision Tree Inference

Each internal node in a decision tree signifies a decision
based on an attribute, with branches indicating outcomes and
leaf nodes yielding the final prediction. Inference in decision
trees proceeds by navigating from the root to an appropriate
leaf, making sequential decisions at each node based on input
attributes, until a final prediction is reached. In the paper,
we assume the decision trees are binary and balanced, with
a node’s condition deemed satisfied (i.e., moving to its right
child) only if the input exceeds a set threshold.

B. Constraint System Formulation

Following the inference procedure, we formalize the tree’s
logic into a constraint system. This transformation encapsu-
lates the decision criteria and outcomes of the binary and
balanced decision tree into a series of equations.

We first introduce 2 constraint gadgets in our design.
Positivity: A constraint system is satisfiable if a value w > 0
and a binary indicator a = 1, or w ≤ 0 and a = 0. For
simplicity, we write positivity satisfaction as Pos(·) = 1.
Zeroality: The constraint system holds if w = 0 and a = 1,
or w ̸= 0 and a = 0. This can test equality by setting w as
the difference of two values. Denote Zero(·) = 1 as zeroality
satisfaction.

Next, we elucidate the inference constraints of our decision
tree. The system is segmented into input-threshold mapping,
node evaluation, and path traversal. Given a balanced deci-
sion tree DT[h] with height h, it includes a root, 2h − 2
internal nodes, and 2h leaf nodes. A user provides data
input X = [x1, . . . , xn], while the tree owner specifies an

attribute selector S = [s1, . . . , s2h−1] and a threshold array
T = [t1, . . . , t2h−1], which guide comparisons at non-leaf
nodes. The owner defines a label array L = [l2h , . . . , l2h+1−1]
representing outcomes at leaf nodes, culminating in an output
label y.
Component 1: Input-Threshold Mapping
This component aims to map input data to specific decision
thresholds within the tree. It consists of the following equa-
tions:

n∑
p=1

x[p] · v[j,p] = x[s[j]], for 1 ≤ j ≤ 2h − 1

v[j,p] · (1− v[j,p]) = 0, for 1 ≤ j ≤ 2h − 1, 1 ≤ p ≤ n

s[j] − p = ω[j,p], for 1 ≤ j ≤ 2h − 1, 1 ≤ p ≤ n

Zero(ω[j,p]) · v[j,p] = 0, for 1 ≤ j ≤ 2h − 1, 1 ≤ p ≤ n

(1− Zero(ω[j,p])) ·
(1− v[j,p]) = 0, for 1 ≤ j ≤ 2h − 1, 1 ≤ p ≤ n

The equation
∑n

p=1 x[p] · v[j,p] = x[s[j]] serves as a selector
mechanism to identify the appropriate threshold s[j] for each
input vector x. The binary variable v[j,p] is assigned a value
of 1 when the index p of the input data x corresponds to the
correct threshold index s[j]. Additionally, ω[j,p] ensures that
the mapping operates correctly by representing the difference
between the selector index s[j] and all potential indices p.
Component 2: Node Evaluation
This segment of the constraint system focuses on evaluating
the conditions at each internal node by comparing input values
to predetermined thresholds. The system is defined as follows:

x[s[j]] − t[j] = w[j], for 1 ≤ j ≤ 2h − 1

c[j] · (1− c[j]) = 0, for 1 ≤ j ≤ 2h − 1

Pos(w[j]) · c[j] = 0, for 1 ≤ j ≤ 2h − 1

(1− Pos(w[j])) · (1− c[j]) = 0, for 1 ≤ j ≤ 2h − 1

The equation x[s[j]] − t[j] = w[j] is used to calculate the
difference between the selected input value x[s[j]] and the
threshold value t[j] at each internal node j. The binary
Boolean-like variable c[i] indicates whether the condition at
a given node is satisfied, with a value of 1 meaning ’True’
and 0 meaning ’False’.
Component 3: Path Traversal
This component is concerned with determining the appropriate
leaf node based on the satisfaction of conditions along the path
leading to it. The equations are formulated below.

The equation
∑2h+1−1

i=2h l[i] · z[i] = y provides a method for
identifying a single leaf node y, conditional on the satisfaction
of all constraints c[i] along its path. Specifically, each term l[i]
in the summation signifies a leaf node, and c[i] represents the
conditions being met along the path to the corresponding leaf
node i. The binary variable β[i,a] and its constraints ensure
that the correct leaf node and its ancestral nodes are uniquely
identified.

β[i,a] · (1− β[i,a]) = 0, for 2h ≤ i ≤ 2h+1 − 1,

1 ≤ a ≤ h+ 1
h+1∑
a=1

β[i,a] · 2a−1 = i, for 2h ≤ i ≤ 2h+1 − 1

h∏
d=1

∆ ·Θ +

(1−∆) · (1−Θ) = z[i], for 2h ≤ i ≤ 2h+1 − 1

2h+1−1∑
i=2h

l[i] · z[i] = y,

where ∆ = c[
∑d

f=1 β[i,(h−f+2)]·2d−f], and Θ = β[i,h−d+1].

C. Encoding into Polynomial IOP
Finally, building upon the constraint system, we encode

the decision tree’s structured logic into a Polynomial Inter-
active Oracle Proof (IOP). In this paper, we utilize Sonic zk-
SNARK [3]. This system translates the constraint system into
three polynomial equations, as illustrated below.

r[X,Y]
△
=

N∑
i=1

ai(XY)i +

N∑
i=1

bi(XY)−i +

N∑
i=1

ci(XY)i−N

s[X,Y]
△
=

N∑
i=1

ûi[Y]X−i +

N∑
i=1

v̂i[Y]Xi +

N∑
i=1

ŵi[Y]Xi+N

t[X,Y]
△
= r[X, 1](r[X,Y] + s[X,Y])− k̂[Y]

Specifically, we map the equations of the constraint system
to vectors a, b, and c to represent multiplication constraints,
and vectors û, v̂, ŵ, and k̂ to represent linear constraints.
Unlike the approaches in [1], [2], our framework uniquely
generates the polynomials r[X,Y], s[X,Y], and t[X,Y] by
leveraging the constraint system independently from the secret
tree parameters and data inputs. Then, to prove the validity
of the system, a prover needs to commit to t[X,Y] using
a polynomial commitment scheme. The verifier’s task is to
confirm whether t[X,Y] possesses a zero constant term. Since
the constant term of t[X,Y] reflects the constraint system’s
satisfaction, verifying its nullity is tantamount to affirming
the system’s fulfillment. This verification step upholds the in-
tegrity of the decision tree’s inference process while preserving
the zero-knowledge property.

REFERENCES

[1] H. Wang, Y. Deng, and X. Xie, “Public verifiable private decision tree
prediction,” in Information Security and Cryptology: 16th International
Conference, Inscrypt 2020, Guangzhou, China, December 11–14, 2020,
Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2020, p.
247–256.

[2] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs for
decision tree predictions and accuracy,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 2039–2053.

[3] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured
reference strings,” Cryptology ePrint Archive, Paper 2019/099, 2019.

Context and Importance

Pervasiveness of Machine Learning: Essen al in healthcare, fi-
nance, and autonomous driving with a rapidly growing role in
decision-making.
Necessity for Integrity and Security: Integrity and accuracy are
cri cal as they impact human lives and financial stability; reliability
is a societal impera ve.

Problem Statement

Verifica on Challenges: Verifying ML model is difficult due to re-
stricted access to proprietary and sensi ve informa on; exis ng
methods lack scalability and are computa onally intensive [1, 2].
Intellectual Property Concerns: Protec ng intellectual property in
algorithms is crucial for maintaining compe ve advantages and
promo ng innova on.

Research Gap

Limita ons of Exis ng Solu ons: Current methods bind models to
parameters, reducing flexibility and requiring expensive hash com-
puta ons.

Significance

Enhanced Verifica on Processes: Research improves verifica on,
ensuring safer, more reliable ML applica ons.
Strengthened Stakeholder Confidence: Ensures trust in model in-
tegrity while safeguarding intellectual property.
Support for Sustainable AI Deployment: Promotes secure, adapt-
able AI technology deployment.
Blockchain Readiness: The reduced computa onal complexity
makes the system suitable for blockchain applica ons, enhancing
transparency and security.

H[(A > 0)|(B < 15)|(T)|(F)|(B > 35)|(T)|(F)]

H[(B < 15)|(T)|(F)]

H[T] H[F]

H[(B > 35)|(T)|(F)]

H[T] H[F]

Tree Parameters
Index: [A, B, B]
Threshold: [>0, <15, >35]
Label: [T, F, T, F]

Figure 1. An Example of Exis ng Merkle Tree-based Approach

Contribu on of This Research:
• Develops a novel framework that reduces mul plica on gates in

proof genera on, enhancing computa onal efficiency.
• U lizes an ”empty tree” structure for dynamic parameter updates,

maintaining high security and verifiability without re-verifica on.
• Offers major enhancements over tradi onal methods, allowing

models to adapt swi ly to new data or changes without full re-
verifica on.

Figure 2. Our Zero-knowledge Decision Tree Construc on

Decision Tree Inference Problem

Node Significance: Each internal node in a decision tree represents
a decision based on an a ribute, leading to various outcomes.
Branches and Outcomes: Branches from each node indicate pos-
sible outcomes, with leaf nodes providing the final predic on.
Inference Process: Inference involves naviga ng from the root
to an appropriate leaf, making sequen al decisions at each node
based on the input a ributes.
Tree Characteris cs: We assume decision trees are binary and bal-
anced.
Decision Criteria: A node’s condi on is considered sa sfied (lead-
ing to the right child) only if the input exceeds a set threshold.

Constraint System Formula on

Input-Threshold Mapping: Maps data inputs to decision thresh-
olds for node comparisons.
Node Evalua on: Assesses condi ons at internal nodes against
thresholds.
Path Traversal: Iden fies the correct leaf node based on path con-
di ons.

Polynomial IOP Implementa on

Framework U liza on: Uses Sonic zk-SNARK [3] to transform de-
cision tree logic into Polynomial IOP with separate tree parameter
and user data input.
Equa on Formula on: Translates constraints into three main poly-
nomial equa ons:
• r[X, Y] - Handles mul plica on constraints.
• s[X, Y] - Manages addi ve constraints.
• t[X, Y] - Final polynomial for verifica on.
Efficiency and Innova on: Reduces computa onal complexity by
op mizing polynomial genera on separate from tree parameters
and data inputs.
Verifica on Process: Implements a zero-knowledge proof by veri-
fying if t[X, Y] has a zero constant term, ensuring system integrity
without compromising privacy.

[1] H. Wang, Y. Deng, and X. Xie, “Public verifiable private decision tree predic on,” in Informa on Security and Cryp-
tology: 16th Interna onal Conference, Inscrypt 2020, Guangzhou, China, December 11–14, 2020, Revised Selected
Papers. Berlin, Heidelberg: Springer-Verlag, 2020, p. 247–256.

[2] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs for decision tree predic ons and accuracy,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communica ons Security, ser. CCS ’20. New
York, NY, USA: Associa on for Compu ng Machinery, 2020, p. 2039–2053.

[3] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-knowledge snarks from linear-size universal
and updateable structured reference strings,” Cryptology ePrint Archive, Paper 2019/099, 2019.

