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Abstract—Software verification is a useful tool for demonstrat-
ing the absence of bugs in software. Unlike other techniques,
verification methods, such as symbolic execution, allow develop-
ers to consider all possible cases of input that their software
could face, providing a comprehensive proof of proper behavior.
However, software verification has historically been regarded
as too difficult or unnecessary for many applications. Recently,
innovations in software verification tools have allowed developers
inexperienced with verification to utilize these tools in their own
projects. In this work, we present our experience using Kani,
a symbolic execution engine for Rust, to verify portions of the
smoltcp network stack. We have verified some of the lower layers
of the network stack, specifically Ethernet and IP protocols and
parts of UDP, and commonly used storage and time keeping
structures used by many layers. In this work, we found 60 bugs
in smoltcp as a demonstration of how effective verification can
be in embedded systems. This work can continue to be expanded
to more protocols and higher layers of the network stack.

I. INTRODUCTION

Faulty software can have catastrophic consequences, but
bugs can make their way into software as frequently as
every forty lines [1]. In the simplest case, these bugs can
be introduced by simple programming mistakes. However,
the complexities of real hardware and software can introduce
faulty behavior that is difficult for humans to detect. The most
common bugs are memory bugs [2], where a program uses
memory in a way that violates assumptions of the program,
such as by writing to a location that it does not have access to
or failing to free unused memory. As software developers, it
can be difficult to catch every single potential erroneous behav-
ior given the scale of modern software systems. Nearly every
piece of software written has some amount of untested code,
allowing unexpected behavior to sneak into the codebase. This
is especially a problem for highly critical, real-time software,
on which mission success depends.

A number of approaches can be used to identify bugs
prior to releasing a software system, the most common being
testing. Writing representative unit tests, while a useful tool to
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demonstrate proper opertation of software, does not provide
full coverage of all possible inputs. Because unit testing
software relies on more software development, many common
bugs can pass tests because the developers have simply not
thought of them. Similar to unit testing is fuzzing, which tests
randomly generated test cases. However, this still cannot cover
all possible combinations of inputs that a piece of software
could see. If a particular bug is only triggered by a very small
part of the input-space, then statistical odds of detecting such
a bug are low.

Another approach is verification. The goal of verification is
to prove the correct behavior of a piece of software. Some
examples of verification methods include theorem proving,
abstract interpretation, and symbolic execution. Using theorem
proving techniques, a developer can mathematically prove that
the desired result of a program is a consequence of the program
itself, leaving no room for unexpected behavior. Abstract in-
terpretation reasons about the semantics of a program without
actually running the program to gain insight on what could
potentially cause faulty behhavior.

In this work, we utilized symbolic execution, so that will be
the focus of the remainder of this work. In symbolic execution,
the inputs to a piece of software are treated as symbolic values.
Then, the symbolic execution engine runs through the program
and determines how the symbolic values change the state of
the variables in the software. Potential bugs in the software can
be detected as violations to certain constraints in the variable
state. This means that only bugs that exist within a program’s
state-space (not side channel or logical bugs) can be detected
by symbolic execution. For example, any violation of data type
bounds can be detected by ensuring that there is no possible
value for the symbolic variables that will result in the bounds
of a variable being exceeded. We chose symbolic execution
because it is simpler to use than theorem proving, but can still
accurately represent the language, which abstract interpretation
struggles with.

II. WORK COMPLETED

The goal of this work is to assess symbolic execution as
a tool for checking commercially developed or open-source
software. To do this, we selected the task of verifying the
open-source smoltcp network stack [3] as a case-study. This is



Overflow Division by 0 Memory Panic
29 2 26 3

TABLE I
DIFFERENT TYPES OF BUGS FOUND USING VERIFICATION.

a desireable target for verification because it was designed for
bare-metal, real-time systems, making it ideal for embedded or
IoT applications [4], [5]. We used the Kani verifier [6], which
takes Rust Mid-level Intermediate Representation (MIR), con-
verts that to Goto-C, then uses the C Bounded Model Checker
(CBMC) [7] to run symbolic execution over the code. The
CBMC is a desirable tool for this job because it has a long
legacy of use in many different verification projects [8], [9],
[10]. Our goal is not to prove compliance to a specification,
but prove the absence of certain bugs. In particular, we wanted
to verify that the network stack would not cause any out-
of-bounds memory accesses, arithmetic overflows, or other
panics. With this in mind, we developed verification harnesses,
which are functions that symbolically test a portion of the
code, for this software to assess the feasibility of using
software verification for other projects.

Of the smoltcp software, we focused on the lower layers
of the network stack and storage structures used by multiple
layers. Specifically, Ethernet and IP layers of the stack have
been verified, with some higher layer protocols (such as UDP)
having incomplete verification. So far, we have focused on
writing verification harnesses, with corrections to code pushed
to future work. In total, 3227 lines of code have been covered
by verification harnesses, with 60 bugs detected. The specific
breakdown of what types of bugs were found can be seen in
Table I. This took 2551 lines of code dedicated to verification,
and a total of 120,834.97 seconds (33 hours, 33 minutes, and
54.97 seconds) to verify.

The most interesting finding from this work was in the cal-
culation of checksums for IP packets. Because the checksum
loops over all bytes in a packet, this is a very difficult process
to verify with symbolic execution due to the large number of
operations with symbolic variables. Loops must be unrolled
for a symbolic execution engine to reason about, meaning
that looping through an entire packet is very difficult for a
symbolic execution engine. We estimate that Kani would run
up to 150 days to check the original implementation of the
checksum calculation.

So, we explored an alternative approach. The function that
performed the checksum calculation was converted into six
functions that could be verified separately. The first function
handles setup and final computations in the checksums. The
next three functions are loops that only run sixteen times
each, calling the next function inside the loop. These functions
are able to calculate checksums of increasingly large packets,
with each function being used by the previous. The final
two functions handle checksums for either exactly thirty-two
bytes or less than thirty-two bytes, respectively, with the first
one able to utilize vector operations. In addition to checking
each of these functions for the previously listed bugs, these

functions were also verified to have a maximum possible return
value, enabling them to be stubbed out of other functions. With
this method of reducing loops, verification time was reduced
to a mere five minutes.

III. LESSONS LEARNED/CONCLUSION

Kani has provided a simple interface to verify code using
symbolic execution. Installation and the commandline inter-
face are both simple, and the additional code required for
verification is intuitive. Kani is especially useful for trying
to detect anything that would cause a runtime panic because
these checks are implicitly done, while explicit user assertions
require some additional development. The main drawbacks of
Kani is its overhead. For the amount of code verified, nearly
the same amount of code had to be written. Additionally, the
amount of time required to run this verification is significantly
longer than how long testing would take. So, for highly
critical software, verification is worthwhile, but the additional
development time required is a serious consideration for any
project that uses Kani.

In this poster, we present our experience using Kani to verify
Rust code, specifically the smoltcp network stack. We have
found that simple verification techniques can be utilized for
commercial or open-source projects, though it might require
modification to how long loops are coded to make verification
feasible. Future work on this project includes continuing to
develop verification harnesses for the smoltcp stack and to
begin the process of integrating many small patches into the
codebase to pass verification.
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