Poster: Static Malware Detection

Khanh Huu The Dam
LIPN, CNRS and University Sorbonne Paris Nord

Abstract—Malware detection is nowadays a big challenge. The
existing techniques for malware detection require a huge effort
of engineering to manually extract the malicious behaviors. To
avoid this tedious task of manually discovering malicious behaviors,
we propose in this poster two approaches: (1) Apply Information
Retrieval techniques to automatically discover malicious behaviors,
and (2) Apply machine learning to automatically learn malwares.
We use API call graphs to represent programs. API call graphs are
graphs whose nodes are API functions and whose edges represent
the order of execution of the different calls to the API functions
(i.e., functions supported by the operating system). To automatically
learn malwares, we apply well-known learning techniques based
on Random Walk Graph Kernels (combined with Support Vector
Machines). We achieve a high detection rate with only few false
alarms (98.93% of detection rate with 0.73% of false alarms). As
for the automatic extraction of malicious behaviors, we reduce this
problem to the problem of retrieving from the benign and malicious
API call graphs the set of subgraphs that are relevant for malicious
behaviors. We solve this issue by applying and adapting well-known
efficient Information Retrieval techniques based on the TFIDF
scheme. We use our automatically extracted malicious behavior
specification for malware detection using a kind of product between
graphs. We obtained interesting experimental results, as we get
99.04% of detection rate. Using our two approaches, we were
able to detect several malwares that well-known and widely used
antiviruses such as Panda, Avira, Kaspersky, Avast, Qih0o360,
McAfee, BitDefender, ESET-NOD32, F-Secure and Symantec could
not detect.

I. INTRODUCTION

The number of new malwares increased by 36 percent in one
year from 2014 to 2015 according to the annual security threat
report of Symantec. It is estimated that there are more than
one million of new pieces of malwares released everyday. Thus,
malware detection is a big challenge.

Most of the applications for malware detection are based on
the signature matching technique. It consists on searching for
patterns in the form of binary sequences (called signatures) in
the program. Databases of malware signatures can be manually
constructed by experts. A new observed program is declared
as a virus if it contains a signature in the database. However,
it is very easy for virus writers to get around this signature
matching approach by obfuscating the binaries while keeping
the same behaviors.

Another technique for malware detection is dynamic analysis,
where the traces of a program are analysed while we run it
in an emulated environment to look for a malicious behavior.
However, it is hard to trigger the malicious behaviors as the
running time is limited, since these may be hidden behind user
interaction or require delays.

To sidestep the limitations of the above approaches, static
analysis techniques were applied [1]-[4]. Indeed, this technique
allows to analyse the behavior (not the syntax) of the program
without executing it. However, in these works, discovring the

Tayssir Touili
IRIF, CNRS and University Paris Cité

malicious behaviors is done manually after a careful reading and
analysis of the malwares’ binary code. This task is tedious and
necessitates an enourmeous amount of time and of engineering
effort. Thus, one of the main challenges in malware detection is
the automatic discovery of malicious behaviors. We tackle this
problem in this poster. Following [5]-[7], we use API function
calls to specify malicious behaviors. Indeed, it has been widely
observed that malicious tasks are usually performed by calling
sequences of API functions, since API functions allow to access
the system and/or modify it.

mo: lea eax, [esp+108h+FileName]
m1: push 104h
—| GetWindowsDirectory A | et Dush cax

m3: call GetWindowsDirectoryA

my: lea edx, [esp+108h+FileName]
ms: push esi

DeleteFileA me: push edx

my: call DeleteFileA

ms: lea eax, [esp+120h+FileName]
mg: push, 40000000h

mio: push eax

mi1: call CreateFileA

mi: mov esi, eax

——>»| CreateFileA

m13: push esi
mis: call WriteFile

L———————> WriteFile
mig: ...

(a) (b)

Fig. 1: Malicious API graph (a) and a fragment of the assembly code
(b) of the malware Trojan-Dropper.Win32.Small.akd.

Let us consider a typical malicious behavior. Figure 1(b) is
a fragment of the assembly code of the malware Trojan-
Dropper.Win32.Small.akd. This malware drops a file and
deletes a system file in Windows folder. First, the function
GetWindowsDirectoryA is called. This allows the program
to get the location of the Windows’ directory. Then, the function
DeleteFileA is called to delete a system file and the two
functions CreateFileA and WriteFile are called to drop
a file to this directory. This is a common malicious behavior
that exists in several other malwares.

In order to represent this behavior we use a malicious API
graph, which is a graph whose vertices are API functions,
and whose edges (f, f’) express that the API function f
is called before the API function f’. Figure 1(a) represents
the malicious API graph of this malicious behavior. E.g., the
edges (GetWindowsDirectoryaA, DeleteFiled),
(GetWindowsDirectoryaA, CreateFileR) and
(GetWindowsDirectoryA, WriteFile) express that
a call to the function GetWindowsDirectoryA is followed
by the calls to the functions DeleteFileA, CreateFileA
and WriteFile.

II. AUTOMATIC EXTRACTION OF MALICIOUS BEHAVIORS

Our goal is then to automatically extract such a malicious API
graph. For that, we represent programs using API call graphs,

which are graphs whos vertices are pairs (m, f) consisting of an
API function f and a control point m, and whose edges ((m,
,(m’, 7)) express that there is a call to the API function
f at the control point m, followed by a call to the API
function f’ at the control point m'. Using such representations,
checking whether a program is malicious or not can be done
by performing a kind of product between the API call graph
of the program and the malicious API graph. The program is
declared as a malware if the product contains a feasible trace.
It is declared as safe otherwise.

Then, given a set of API call graphs that correspond to
malwares and a set of API call graphs corresponding to benign
programs, we want to extract in a completely automatic way a
malicious API graph that corresponds to the malicious behaviors
of the malwares. This malicious API graph should represent the
parts of the API call graphs of the malwares that correspond
to the malicious behaviors. The best subgraphs that should be
extracted are those able to distinguish the malicious API call
graphs from the benign ones. Thus, our goal is to isolate the
few relevant subgraphs from the nonrelevant ones. This problem
can be seen as an Information Retrieval problem, where the
goal is to retrieve relevant items and reject nonrelevant ones.
The Information Retrieval community has been working on
this problem for a long time. Over the past 35 years, it has
accumulated a large amount of experience on how to efficiently
retrieve information. Thus, it would be interesting to adapt the
knowledge and experience of the Information Retrieval (IR)
community to our malicious behavior extraction problem. This
is the main goal of the first part of this poster. One of the most
popular techniques that was shown to be very efficient in the IR
community is the TFIDF scheme that computes the relevance
of each item in the collection using the TFIDF weight that is
computed from the occurrences of terms in a document and
their appearances in other documents. We show in this poster
how to adapt this approach that was mainly applied for text and
image retrieval for malicious API graph extraction. For that, we
associate to each node and each edge in the API call graphs of
the programs of the collection a weight. Higher weight implies
higher relevance. Then, we compute the malicious API graphs
by taking edges and nodes that have the highest weights.

We implemented our techniques in a tool and obtained
encouraging results: We first applied our tool to automatically
extract a malicious API graph from a training set of malwares
and benign programs. Then, we used this malicious API graph
for malware detection on a test set of malwares and benign
programs. We obtained a detection rate of 99.04%. Moreover,
we used this malicious API graph to detect 180 newly generated
malwares. We were able to detect all these malwares, whereas
none of the well-known and widely used antiviruses such as
Panda, Avira, Kaspersky, Avast, Qihoo-360, McAfee, AVG,
BitDefender, ESET-NOD32, F-Secure, and Symantec were able
to detect all of them.

III. AUTOMATIC LEARNING OF MALICIOUS BEHAVIORS

Using the graph representation above, we apply, in the second
part of this poster, machine learning techniques on graphs
to learn malicious behaviors, and detect malwares. Support
Vector Machine (SVM) is one of the most successful techniques

in machine learning. It has been applied to several fields in
pattern recognition including text analysis and bioinformatics.
In this work, we apply Support Vector Machine based learning
techniques for malware detection. The choice of Support Vector
Machine is motivated by the fact that they are very suitable
for nonvectorial data (graphs in our setting), whereas the other
well-known learning techniques like artificial neural network,
k-nearest neighbor, decision trees, etc. can only be applied to
vectorial data. This SVM method is highly dependent on the
choice of kernels. A kernel is a function which returns similarity
between data. Standard kernels (including linear, polynomial,
etc) handle vectorial data. However, for nonvectorial data such
as graphs, these kernels become non suitable. That is the reason
why we need to use specific kernels for graphs. In this work,
we use a variant of the random walk graph kernel that measures
graph similarity as the number of common paths of increasing
lengths.

The second main contribution of this poster is the application
of graph kernel based learning techniques for malware detection
in a completely static way (no dynamic analysis). As far as we
know, this is the first time that these techniques are applied for
malware detection in a static manner.

We implemented our technique and tested it on a dataset

of 6291 malwares, that are collected from Vx Heavens!, and
obtained encouraging results. Our tool can achieve a high
detection rate with only few false alarms (98.93% for detection
rate with 1.24% of false alarms).
Moreover, we show that our techniques are able to detect several
malwares that could not be detected by well-known and widely
used antiviruses such as Avira, Kaspersky, Avast, Qihoo-360,
McAfee, AVG, BitDefender, ESET-NOD32, F-Secure, Syman-
tec or Panda.

IV. RELATED WORK

This poster is based on extensions of works presented in [8]-
[10].

REFERENCES

[1] J. Bergeron, M. Debbabi, M. Erhioui, and B. Ktari, “Static analysis of
binary code to isolate malicious behaviors,” in WET ICE ’99, 1999.

[2] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” ser. SSYM’03, 2003.

[3] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive

detection of computer worms using model checking,” Dependable and

Secure Computing, 2010.

F. Song and T. Touili, “Ltl model-checking for malware detection,” in

Tools and Algorithms for the Construction and Analysis of Systems, 2013.

M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Syn-

thesizing near-optimal malware specifications from suspicious behaviors,”

ser. SP ’10, 2010.

[6] D. Babi¢, D. Reynaud, and D. Song, “Malware analysis with tree automata
inference,” ser. CAV’11, 2011.

[7] H. Macedo and T. Touili, “Mining malware specifications through static
reachability analysis,” in ESORICS 2013, 2013.

[8] K. Dam and T. Touili, “Extracting malicious behaviours,” Int. J. Inf.
Comput. Secur., vol. 17, no. 3/4, pp. 365-404, 2022.

, “STAMAD: a static malware detector,” in Proceedings of the 14th

International Conference on Availability, Reliability and Security, ARES

2019, Canterbury, UK, August 26-29, 2019. ACM, 2019, pp. 25:1-25:6.

, “Precise extraction of malicious behaviors,” in 2018 IEEE 42nd

Annual Computer Software and Applications Conference, COMPSAC,

2018, pp. 229-234.

[4

=

[5

—_

(9]

[10]

Ihttp://vxheavens.org

Motivation

Symantec reported :
—317M malwares in 2014 vs. 431M malwares in 2015.
— The number of malwares increased by 36% in one year.
— More than 1M new malwares released everyday.

Malware Detection is a big challenge.

Static Malware Detection

Khanh Huu The DAM and Tayssir TOUILI

The Problem is ...

Extracting malicious behaviors requires a huge amount of engineering ef-
fort :

— a tedious and manual study of the code.

—a huge time for that study.

The main challenge is to avoid this manual work.

Our goal is to automatize this step
This can be done by the following two approaches :

1. Extract the malicious behaviors automatically.

2. Apply machine learning to detect malwares without extracting the malicious

behaviors.

n, : push offset Text
ny - push 0
ns : call MessageBoxA
n, : push OFFFFFFF5h
ns : call GetStdHandle
Get the path of the ng : push eax
system folder. n- - call WriteFile
ng : push offset dword 4097A4

Transfer data from no : call GetSystemDirectoryA
Internet into a file. ny - push 0
Execute this ny; - call URLDownloadToFileA
file. nyo - push ebx

nis3 : call WinExec

Fragment of Trojan Downloader.

Modeling Malicious Behaviors

III

An API call graph represents the order of execution of the different API functions in a program.

l : The program is represented by an API call graph.

‘MessageBoxA | 'GetSystemDirectoryA
'GetStdHandle I |
l . | URLDownloadToFileA | :
'WriteFile | |

l ““““ § 'WinExec |

The malicious behavior

The malicious behaviors are represented by a malicious API graph.
that keeps the API functions needed to perform the malicious behaviors.

. GetSystemDirectoryA !

l

. | URLDownloadToFileA |

Behavior

'WinExec

The API call graph of
the program.

l : : Transfer data
from Internet into a file sto-
: red in the system folder,

then execute this file.

Approach 1 : Automatic Extraction of Malicious Behaviors

Our goal : Isolate the few relevant subgraphs
(in malwares) from the nonrelevant ones (in ben-
wares).

This is an Information Retrieval (IR) problem.

We adapt and apply the knowledge and expe-
rience of the IR community to our malicious be-
havior extraction problem.

Experiments

Apply on a dataset of 1980 benwares and 3980 malwares
collected from Vx Heaven.
— Training set consists of 1000 benwares and 2420 mal-
wares — to extract malicious graphs.
— Test set consists of 980 benwares and 1560 malwares
— for evaluating malicious graphs.

We obtained the detection rate of 99.04% with 98.16% for
the precision.

Ela L
malwares graphs N
- s{ Malicious
| . API
Set of L API call L s~

benwares graphs
T T
A new API call Check
program >l graph > common
T

Comparison with well-known antiviruses

Detect new unknown malwares
— 180 new malwares generated by NGVCK, RCWG and VCL32
which are the best known virus generators (from VX Heaven).
Our approach achieves a detection rate of 100%.

Antivirus | Detection Rates| Antivirus | Detection Rates
Our tool 100% Panda 19%
Avira 16% Kaspersky 81%
Avast 87% Qihoo-360 96%
McAfee 96% AVG 82%
BitDefender 87% ESET-NOD32 87%
F-Secure 87% Symantec 14%

Approach 2 : Learning Malicious Behaviors

Our goal : Implement machine learning for malware
detection.

We need to use a learning technique for graphs.

Random Walk Graph Kernel based Support Vec-
tor Machines is the best learning technique that
can be applied for API call graphs.

Experiments

We evaluate this technique on a dataset of 2323 benwares
and 6291 malwares.
— Training set of 2000 malwares and 2000 benwares —
to compute the training model.
— Test set of 4291 malwares and 323 benwares — for
evaluating the performance of the training model.

We obtained the detection rates of 98.93% with 1.24%
false alarms.

Set of J, J APl call H, —

malwares graphs Moo A
N SVM training Training

| | model

Set of J, API call H, —
benwares graphs

A 4

A new API call SVM

program >l graph Classifier
-

Benware

Comparison with well-known antiviruses

Detect new unknown malwares
— 180 new malwares generated by NGVCK, RCWG and VCL32
which are the best known virus generators (from VX Heaven).
Our approach achieves a detection rate of 100%.

Antivirus | Detection Rates| Antivirus | Detection Rates
Our tool 100% Panda 19%
Avira 16% Kaspersky 81%
Avast 87% Qihoo-360 96%
McAfee 96% AVG 82%
BitDefender 87% ESET-NOD32 87%
F-Secure 87% Symantec 14%

