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I. PUBLICATION INFORMATION

Our research has been published in the proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
2024 [7]. Several media outlets have also covered our findings,
including The Hacker News [2], HPC Wire [4], and Cyber
Security News [3].

II. INTRODUCTION

Microarchitectural side-channel attacks exploit processor
architectural state to leak information from one process or
protection domain to another, when there should be no com-
munication between them. Side-channel attacks can be used
standalone to leak information, but are also often critical build-
ing blocks for more sophisticated attacks. For example, Spectre
attacks [6] use side channels both to trigger a controlled
misspeculation and to transfer data back to the attacker via
transient microarchitectural state. Microarchitectural attacks
can exploit various shared units within the processor such as
caches, branch predictors, and address translation buffers.

While there have been several control-flow based side
channel attacks on the branch predictor, they are hampered
by limited knowledge of the associated addressing techniques.
In particular, attacks targeting the conditional branch predictor
(CBP) exclusively target the simplest structure in the predictor,
which only enables extracting or injecting coarse control-flow
information.

III. OUR CONTRIBUTIONS

In this work, we demonstrate a new class of control flow
attacks which exploit detailed knowledge of every aspect of
modern CBPs [8]. We show that due to recent research that
fully exposed the internal structure of modern Intel branch
predictors, prior limitations no longer exist, making condi-
tional branch predictors a powerful and dangerous medium
for attack. We create primitives that make it as easy (from a
programmer’s perspective) to read from and write to the tables
of the conditional branch predictor, or the path history register
(PHR, a precise record of the last taken branches), as it is to
read and write memory. No prior work has used the PHR as
an attack vector. We show that the ability to read and write the

PHR precisely is a particularly powerful primitive that enables
two new attack capabilities.

A. Full Control-Flow Recovery

Reading the path history register (PHR) provides several ad-
vantages over previous side-channel attacks exploiting branch
predictors and caches, as it records the complete control flow
history of recent branches including branch addresses and
precise ordering. We can target each individual execution of a
branch that is executed many times, where prior CBP attacks
could only influence the first few, or capture the bias of the last
few instances. We can detect the outcome of every instance of
each branch directly, regardless of the cache footprint of the
executed code or even whether any memory data was touched.

In this paper, we describe the key primitives that allow us to
read and write the PHR, and to read and write the prediction
history tables (PHTs) of the CBP. We further describe more
advanced techniques. The first of those allows us to go beyond
just the recovered PHR and capture control flow history of
nearly unlimited length, allowing us to track extremely large
swaths of branch history. Previous attacks that can precisely
track the entire program’s control flow require elevated priv-
ilege (i.e., root access), which makes them practical against
the specific threat model of untrusted OS (e.g., against Intel
SGX), but not valid for other threat models.

Finally, we also describe a tool that transforms the PHR
(a series of heavily folded bits of branch address and target
history) into a (nearly always) unambiguous control flow graph
(CFG) which includes the full history (series of taken/not taken
decisions) of every branch. This can be done both for the
physical PHR (194 taken branches and all intervening not-
taken branches), but also for our extended path history. Please
refer to the full paper [7] for more details.

B. High-Resolution Spectre Attack

Beyond just capturing a complete control flow history,
writing to the PHR gives us the ability to launch extremely
high resolution poisoning (e.g., Spectre) attacks. Prior Spectre-
style attacks typically only influence the first instance (or the
first few, all in the same direction) of a branch at a given
address, such as boundary checking ‘if” statements. However,
as mentioned, with complete control over the PHR and the



PHTs, we can now influence an arbitrary instance of a branch
executed many times, inducing sophisticated patterns of branch
mispredictions, for example, at specific iterations of a ‘for’
loop. For example, we can cause an iterative encryption or
decryption algorithm to complete and return after any number
of iterations (both more and less than intended). This allows
us, for example, to observe the results of every incremental
step in the algorithm, which also reveals the key.

We demonstrate the implications of these attack primitives
with two case studies: (1) We demonstrate a speculative
execution attack against AES that returns intermediate values
at multiple steps to recover the AES key, which requires
both the reading and writing primitives. (2) We also steal
secret images by capturing the complete control flow (up to
tens of thousands of branches) of libjpeg routines. Finally,
we demonstrate that our attack primitives, and thus also the
attacks built upon them, work across virtually all protection
boundaries and in the presence of all recent control-flow
mitigations from Intel.

IV. RESPONSIBLE DISCLOSURE

We communicated the security findings outlined in the paper
to both Intel and AMD in November 2023. Intel has informed
other affected hardware/software vendors about the issues.

Intel has shared their plans to address the concerns raised
in the paper through a Security Announcement, INTEL-2024-
04-26-001-Pathfinder [5]. AMD addressed the concerns raised
in the paper through a Security Bulletin, AMD-SB-7015 [1].

V. ATTACK RESULTS

A. Image Recovery Attack: libjpeg

We use the Read PHR attack primitive in conjunction with
Pathfinder to uncover the precise runtime control flow of the
image decompression process, particularly within the IDCT
function. This enables us to identify which rows/columns are
constant within each block. Additionally, we know that the
number of constant rows/columns in a block corresponds to
the block’s relative complexity. We use this insight to recover
the original image, as we assign each 88§ block a value based
on the normalized number of constant rows/columns within
it. Consequently, the recovered image frequently exhibits a
high similarity to the results of edge detection, particularly in
blocks positioned along the image’s edges, which tend to be
more complex than others.

We conducted an evaluation using a test set of 15 JPEG
images. To create a diverse collection, we included a range of
images, including high-resolution photographs, simpler logo-
style images, QR codes, captchas, and more. Figure 1 presents
three examples of successful image recovery using our attack
method. The first example demonstrates the recovery of a QR
code from the ASPLOS website, which remains scannable
despite some noise. The second and third examples showcase
the recovery of the ASPLOS logo and website background
image, respectively.
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Fig. 1. Examples of Recovered Images by Pathfinder.

B. Leaking AES Keys

We developed a new Spectre-style attack on the widely
used AES algorithm to extract encryption keys. We show that
reduced-round ciphertexts can be captured via speculative ex-
ecution channels, and used in conjunction with the full-round
ciphertext to recover the AES key, even from constant-time
implementations that leverage AES-NI hardware extension.

We use the Intel-IPP AES ECB Encryption function as our
victim model, utilizing a 128-bit key for encrypting a 128-byte
data block. As previously mentioned, our attack is capable
of speculatively terminating the victim loop at any iteration,
in this case ranging from the first to one less than the total
number of rounds. We rigorously test all of these, leaking the
ciphertext and subsequently verifying the correctness of the
recovered reduced-round ciphertext.
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