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I. PROBLEM STATEMENT

Byzantine-fault tolerant (BFT) state machine replica-
tion (SMR) [8], [2] protocols solve the problem of repli-
cating the same state consistently among a distributed
system of n nodes, called replicas, while tolerating up to
f of them being Byzantine. Here, Byzantine replicas be-
have arbitrarily (including the possibility of crash faults).
A secure BFT SMR protocol achieves safety, where
replicas output consistent transaction logs, and liveness,
where transactions input to a sufficient number of correct
replicas are eventually output by correct replicas. SMR
utilizes total order broadcast or atomic broadcast (ABC)
or consensus primitives to order transactions submitted
by clients. In an asynchronous network, consensus is
impossible with a deterministic protocol, even in the
presence of a single crash failure [5].

One approach [2], [10], [6] to circumventing this im-
possibility is to relax the network asynchrony assumption
to partial synchrony, where there is a known bound on
message delivery after some unknown global stabiliza-
tion time (GST). But BFT SMR is still impossible for
more than one-third of faults in partially-synchronous
networks. Set f = dn3 e − 1 and let the actual number
of Byzantine faults be fa. When fa > f , both safety
and liveness violations can arise. Previous works have
focused on safety violations and studied accountability
for BFT protocols in this setting.

Accountability informally means that all correct repli-
cas eventually identify a set of faulty parties with a
proof of culpability, when correct replicas equivocate and
commit to contradicting outputs. In setting fa ≤ n− 2,1

Civit et al. [4] propose a generic algorithm achiev-
ing accountability for general decision task protocols,
including Byzantine agreement. This general approach
incurs at least an O(n2) multiplicative communication
complexity overhead, and triples the round complexity.

1Note that the problem is not well-defined for fa ≥ n− 1.

Civit et al. [3] later improves on communication over-
head by adding two extra rounds to the base protocol,
after which an output is finally committed.

The open problem is then in setting fa ≤ n − 2,
whether we can embed accountability in general non-
synchronous BFT SMR protocols more efficiently with-
out altering the committing rules in normal executions,
and further, whether replicas can recover from equivocat-
ing states safely. We first study the feasibility and com-
plexity of fault detection in general partially-synchronous
BFT SMR protocols for fa ≤ n − 2. We then discuss
achieving safety and liveness under a stronger commit
rule by recovering from safety violations in quorum-
based SMR protocols while considering excessive alive-
but-corrupt (ABC) faults [7]. Here, ABC faults target at
compromising safety but not liveness.

II. APPROACH TO SOLVE THE PROBLEM

The first challenge is to achieve sound and effectively
complete failure detection in setting (fa ≥ d 2n3 e).
Effective completeness means identifying at least (f+1)
faulty replicas in case of safety violations among correct
replicas. Soundness is satisfied if correct replicas are
never identified as culpable. The difficulty of ensuring
both effective completeness and soundness in this setting
is that the faulty replicas can already write arbitrary
history (except for f < 2) and lead correct replicas to
send specific messages. Here, they can generate arbitrary
history because a secure SMR protocol achieves liveness,
and (n− f) replicas can make progress. We tackle this
challenge by preserving evidence of malicious behaviors
among correct replicas, by letting correct replicas only
accept a message with sufficient causal histories.

The second challenge is to recover from equivocations
while achieving safety and preserving past progress.
SMR protocols are not one-shot and replicas continu-
ously process client requests and commit outputs. In
case of equivocations, naı̈vely rolling back to the last
agreed location and remove faulty replicas disregard



TABLE I
GENERIC APPROACHES FOR REALIZING ACCOUNTABILITY. (THE MESSAGE IN A PROTOCOL IS OF SIZE O(z).)

Methods # Faults Communication
overhead

Round
overhead

Client
aid

[9] Protocol-dependent algorithms that analyze existing messages 2f - - Yes
[4] Reliable-broadcast each outgoing message piggybacked with
newly received messages n− 2 × O(n2) × 3 No

[3] Add two extra confirmation rounds to any consensus protocol n− 2 + O(n2) + 2 No

This work: Indicate causal history in outgoing messages n− 2
Black-box: × O(zn)
Non-black-box: + O(n3)

- No

past progress and does not ensure that replicas have the
same view on which replicas are to blame. We repair
equivocating logs while preserving past progress via a
deterministic recovery algorithm. We adopt a weaker
safety and liveness definition called “safety and liveness
under strong commit” for fa > f . Here, “strong commit”
for a block informally means that sufficient number of
replicas votes for it or its children but not contradicting
sibling blocks. For liveness, we consider ABC faults that
only intend to break safety.

The third challenge is to ensure small communication,
computation, and storage overhead, which facilitates
adoptions of protocols. Forming proofs of culpability
or recovering from faults in a non-synchronous network
requires the preservation and dissemination of previously
received messages, and computation on those messages.
To reduce overhead, we study in-place fault detec-
tion that utilizes the existing communication rounds,
adopt simple detection and recovery routines, and devise
garbage collection routines for recycling storage.

III. PRELIMINARY RESULTS

First, we uncover sufficient conditions for a general
BFT SMR protocol to allow for effectively complete
and sound fault detection upon safety violations when
fa ≤ n − 2. This means blaming at least (f + 1)
faulty parties when the equivocating replicas provide
all pertinent data, and never blaming correct replicas.
Second, we provide a deterministic recovery algorithm
for fixing equivocations in quorum-based SMR while
preserving past progress. It is built upon a fault detector
and a strictly monotone branch selector which picks one
of the contradicting history branches. By running the
recovery algorithm locally, correct replicas eventually
adopt the same transaction log and expels the same set
of faults. We instantiate the theory in Tendermint [1]
and HotStuff [10] by adding fault detection and recovery
routines to the two protocols.

The fault detection and recovery algorithms can treat
an SMR protocol as a black box. The fault detection
algorithm can also utilize existing communication rounds
in the original protocol, reducing its communication
complexity overhead. The instantiated fault detection
routines have O(n2) additive authenticator complexity
and O(κn3) additive bit complexity if the protocol ter-
minates in O(n) rounds. Our recovery algorithm carries
over the complexity of the fault detection algorithm and
has an extra O(n) additive authenticator complexity for
repairing equivocations. To reduce storage overhead, we
provide garbage collection routines: in recovery, logs up
to the last strongly committed block can be recycled.
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