
Poster: SyzTrust: State-aware Fuzzing on Trusted
OS Designed for IoT Devices

Abstract—Trusted Execution Environments (TEEs) embedded
in IoT devices provide a deployable solution to secure IoT appli-
cations at the hardware level. By design, in TEEs, the Trusted
Operating System (Trusted OS) is the primary component. It
enables the TEE to use security-based design techniques, such
as data encryption and identity authentication. Once a Trusted
OS has been exploited, the TEE can no longer ensure security.
However, Trusted OSes for IoT devices have received little
security analysis, which is challenging from several perspectives:
(1) Trusted OSes are closed-source and have an unfavorable
environment for sending test cases and collecting feedback. (2)
Trusted OSes have complex data structures and require a stateful
workflow, which limits existing vulnerability detection tools.

To address the challenges, we present SYZTRUST, the first
state-aware fuzzing framework for vetting the security of
resource-limited Trusted OSes. SYZTRUST adopts a hardware-
assisted framework to enable fuzzing Trusted OSes directly on
IoT devices as well as tracking state and code coverage non-
invasively. SYZTRUST utilizes composite feedback to guide the
fuzzer to effectively explore more states as well as to increase the
code coverage. We evaluate SYZTRUST on Trusted OSes from
three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud.
These systems run on Cortex M23/33 MCUs, which provide
the necessary abstraction for embedded TEEs. We discovered
70 previously unknown vulnerabilities in their Trusted OSes,
receiving 10 new CVEs so far. Furthermore, compared to the
baseline, SYZTRUST has demonstrated significant improvements,
including 66% higher code coverage, 651% higher state coverage,
and 31% improved vulnerability-finding capability. We report all
discovered vulnerabilities to vendors and open source SYZTRUST.

I. INTRODUCTION

Trusted Execution Environments (TEEs) are essential to
securing important data and operations in IoT devices. Glob-
alPlatform, the leading technical standards organization, has
reported a 25-percent increase in the number of TEE-enabled
IoT processors being shipped quarterly, year-over-year [1].
Recently, major IoT vendors such as Samsung have designed
TEEs for low-end Microcontroller Units (MCUs) [2], [3]
and device manufacturers have embedded the TEE in IoT
devices such as unmanned aerial vehicles and smart locks, to
protect sensitive data and to provide key management services.
A TEE is composed of Client Applications (CAs), Trusted
Applications (TAs), and a Trusted Operating System (Trusted
OS). Among them, the Trusted OS is the primary component
to enable the TEE using security-based design techniques, and
its security is the underlying premise of a reliable TEE where
the code and data are protected in terms of confidentiality and
integrity. Unfortunately, implementation flaws in Trusted OSes
violate the protection guarantees, bypassing confidentiality and
integrity guarantees. These flaws lead to critical consequences,

including sensitive information leakage (CVE-2019-25052)
and code execution [4]. Once attackers gain control of Trusted
OSes, they can launch critical attacks, such as creating a
backdoor to the Linux kernel [5] and extracting full disk
encryption keys of Android’s KeyMaster service [6].

While TEEs are increasingly embedded in IoT devices, the
security of Trusted OS for IoT devices remains under studied.
Considering the emerging amount of diversified MCUs and
IoT devices, manual analysis, such as reverse engineering,
requires significant expert efforts and is therefore infeasible
at scale. Recent academic works use fuzzing to automate TEE
testing. However, unlike Trusted OSes for Android devices,
Trusted OSes for IoT devices are built on TrustZone-M with
low-power and cost-sensitive MCUs, including NuMicro M23.
Thus, Trusted OSes for IoT devices are hardware-dependent
and resource-constrained, complicating the development of
scalable and usable testing approaches. Below, we identify two
challenges in fuzzing IoT Trusted OSes.
Challenge I: The inability of instrumentation and re-
stricted environment. Most Trusted OSes are closed-source.
Additionally, TEE implementations, especially the Trusted
OSes are often encrypted by IoT vendors, which implies the
inability to instrument and monitor the code execution in the
secure world. Accordingly, classic feedback-driven fuzzing
cannot be directly applied to the scenario of testing TEEs
including TAs and Trusted OSes. Existing works either rely on
on-device binary instrumentations [7] or require professional
domain knowledge and rehosting through proprietary firmware
emulation [8] to enable testing and coverage tracking. How-
ever, as for the Trusted OSes designed for IoT devices, the
situation is more challenging due to the following two reasons.
First, IoT devices are severely resource-limited, while existing
binary instrumentations are heavy-weight for them and con-
siderably limit their execution speed. Second, as for rehosting,
IoT devices are mostly hardware-dependent, rendering the
reverse engineering and implementation effort for emulated
software and hardware components unacceptable. In addition,
rehosting faces the limitation of the inaccuracy of modeling
the behavior of hardware components. To our best knowledge,
the only existing TEE rehosting solution PartEmu [8] is not
publicly available and does not support the mainstream TEE
based on Cortex-M MCUs designed for IoT devices.
Challenge II: Complex structure and stateful workflow.
Trusted OSes for IoT devices are surprisingly complex. Specif-
ically, Trusted OSes implement multiple cryptographic algo-
rithms, such as AES and MAC, without underlying hardware
support for these algorithms as would be present on Cortex-

A processors. To implement these algorithms in a secure
way, Trusted OSes maintain several state diagrams to store
the execution contexts and guide the execution workflow.
To explore more states of a Trusted OS, a fuzzer needs to
feed syscall sequences in several specific orders with different
specific state-related argument values. Without considering
such statefulness of Trusted OSes, coverage-based fuzzers are
unlikely to explore further states, causing the executions to
miss the vulnerabilities hidden in a deep state. Unfortunately,
existing fuzzing techniques lack state-awareness for Trusted
OSes. Specifically, they have trouble understanding which
state a Trusted OS reaches since there are no rich-semantics
response codes to indicate it. In addition, due to the lack of
source code and the inability of instrumentation, it is hard to
infer and extract the state variables by program analysis.
Our solution. To address the above key challenges, we
propose and implement SYZTRUST, the first fuzzing frame-
work targeting Trusted OSes for IoT devices, supporting state
and coverage-guided fuzzing. Specifically, we propose an on-
device fuzzing framework and leverage a hardware-in-the-
loop approach. To support in-depth vulnerability detection,
we propose a composite feedback mechanism that guides the
fuzzer to explore more states and increase code coverage.

SYZTRUST necessitates diverse contributions. First, to
tackle Challenge I, we propose a hardware-assisted fuzzing
framework to execute test cases and collect code coverage
feedback. Specifically, we decouple the execution engine from
the rest of the fuzzer to enable the direct execution of test cases
in the protective TEE secure world on the resource-limited
MCU. To support coverage tracking, we present a selective
trace collection approach that enables tracing instructions on
a target MCU instead of costly code instrumentation. In partic-
ular, we leverage the ARM Embedded Trace Macrocell (ETM)
feature to collect raw trace packets by monitoring instruction
and data buses on MCU with a low-performance impact. We
offload heavy-weight tasks to a PC and carefully schedule
the fuzzing subprocesses in a parallel way. Furthermore, we
present an event- and address-based trace filter to handle the
noisy trace packets that are not generated by the Trusted OS.

Second, as for the Challenge II, the vulnerability detection
capability of coverage-based fuzzers is limited, and a more
effective fuzzing strategy is required. Therefore, we propose a
composite feedback mechanism that enhances code coverage
with state feedback. Specifically, we utilize state variables that
control the execution contexts to present the states of a Trusted
OS. However, such state variables are usually stored in closed-
source and customized data structures within Trusted OSes.
Existing state variable inference methods either use explicit
protocol packet sequences [9] or require source codes of target
software [10], [11], which are unavailable for Trusted OSes.
Therefore, to identify the state-related members from those
complex data structures, SYZTRUST collects some heuristics
for Trusted OS and utilizes them to perform an active state
variable inference algorithm. After that, SYZTRUST monitors
the state variable values during the fuzzing procedure as the
state feedback. Finally, SYZTRUST is the first end-to-end

solution capable of fuzzing Trusted OSes for IoT devices.
Moreover, the design of the on-device fuzzing framework and
modular implementation make SYZTRUST more extensible.
With several MCU-specific configurations, SYZTRUST scales
to Trusted OSes on different MCUs from different vendors.
Evaluation. We evaluate SYZTRUST on real-world Trusted
OSes from three leading IoT vendors Samsung, Tsinglink
Cloud, and Ali Cloud. The evaluation result shows that
SYZTRUST is effective at discovering new vulnerabilities and
exploring new states and codes. As a result, SYZTRUST
has discovered 70 new vulnerabilities. Among them, vendors
confirmed 28, and assigned 10 CVE IDs. The vendors are still
investigating others. Compared to state-of-the-art approaches,
SYZTRUST finds more vulnerabilities, hits 66% higher code
branches, and 651% higher state coverage.
Summary and contributions.
• We propose SYZTRUST, the first fuzzing framework tar-

geting Trusted OSes for IoT devices, supporting effective state
and code coverage guided fuzzing. With a carefully designed
hardware-assisted fuzzing framework and a composite feed-
back mechanism, SYZTRUST is extensible and configurable
to different IoT devices.
• With SYZTRUST, we evaluate three popular Trusted OSes

on three leading IoT vendors and detect several previously
unknown bugs. We have responsibly reported these vulnerabil-
ities to the vendors and got acknowledged from vendors such
as Samsung. We release SYZTRUST as an open-source tool
for facilitating further studies at https://github.com/SyzTrust.

This poster builds on work accepted for publication at the
44th IEEE Symposium on Security and Privacy.

REFERENCES

[1] GlobalPlatform, “GlobalPlatform TEE spec adoption to reach 10 bil-
lion,” https://globalplatform.org/latest-news/globalplatform-tee-spec-a
doption-to-reach-10-billion.

[2] Samsung, “mTower,” https://github.com/Samsung/mTower.
[3] “About Alibaba Cloud Link TEE,” https://iot.aliyun.com/products/tee.
[4] G. Beniamini, “TrustZone kernel privilege escalation,” http://bits-pleas

e.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html.
[5] G. Beniamini, “Hijacking the linux kernel from QSEE,” https://bits-p

lease.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html.
[6] G. Beniamini, “Extracting Qualcomm’s keymaster keys - breaking

android full disk encryption,” https://bits-please.blogspot.com/2016/06/
extracting-qualcomms-keymaster-keys.html.

[7] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and M. Payer,
“TEEzz: Fuzzing Trusted Applications on COTS Android devices,” in
Proceedings of IEEE Symposium on Security and Privacy (S&P), 2023.

[8] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
“PARTEMU: Enabling dynamic analysis of real-world TrustZone soft-
ware using emulation,” in Proceedings of USENIX Security Symposium
(SEC), 2020.

[9] C. McMahon Stone, S. L. Thomas, M. Vanhoef, J. Henderson, N. Bail-
luet, and T. Chothia, “The closer you look, the more you learn: A grey-
box approach to protocol state machine learning,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2265–2278.

[10] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. Butler, A. Bianchi, and
D. J. Tian, “FUZZUSB: Hybrid stateful fuzzing of USB gadget stacks,”
in Proceedings of IEEE Symposium on Security and Privacy (S&P),
2022.

[11] B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian, and C. Zhang,
“StateFuzz: System call-based state-aware linux driver fuzzing,” in
Proceedings of USENIX Security Symposium (SEC), 2022.

SyzTrust: State-aware Fuzzing on Trusted OS

Designed for IoT Devices
Qinying Wang, Boyu Chang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao,

Gaoning Pan, Chenyang Lyu, Mathias Payer, Wenhai Wang, Raheem Beyah

Evaluation

TEE Use-cases in IoT Devices

Key Challenges

Smart Card

Fingerprint

SensorSmart Lock

FIDO Security Key

Normal World

Secure World

(Authentication)

Normal World

Secure World

(Identities)

USBHost SD Card

Fingerprint

Sensor

SPI
LCM

Display

The Security of Trusted OS Matters

Manager

Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable

Inference

State coverage

Code coverage

Initial

Seeds

State Variables

Monitor

Hardware-assisted

Controller

Trace Collector

Execution Engine

(on MCU)Test cases

A composite

feedback

Test

cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g
 P

ro
b

e

Test

cases

FeedbackSyscall

Templates

mTower

TinyTEE

Link TEE Air

Overview of SyzTrust

Key Observations towards A Solution

• SyzTrust is the first fuzzing

framework targeting IoT Trusted OSes.

• With SyzTrust, we discovered 70

unknown vulnerabilities.

Summary

Accepted at IEEE S&P 2024

• A hardware-assisted fuzzing framework

• Decouple execution offload heavy-weight tasks

• Utilize the ETM feature to track coverage

unintrusively

• An active state variable inference algorithm

• A composite feedback mechanism, leveraging

both code and state coverage

Overhead breakdown

Branch coverage State coverage

Unique vulnerabilities

Tsinglink
Cloud

TEE Client APIs

Rich OS

(e.g., FreeRTOS)
Trusted OS

TEE Internal APIs

Normal World Secure World

Switch

Instructions

Trusted Applications (TAs)

TA TA TA

Client Applications (CAs)

CA CA CA

Trusted OS is the primary component to enable the TEE to

use security-based design techniques.

struct TEE_OperationHandle{

 uint32_t algorithm,

 uint32_t operationState, …

}

4. Complex structure

Operation

allocated

Operation

key set Cipher

initialized

Operation

freed

Cipher

updated

3. Stateful workflow

State variables

1. Inability of instrumentation 2. Constrained resources

Normal World

Secure World

Minimal Fuzzer (466 KB)

RAM

96 KB

Cannot be loaded

to the MCU!

FLASH (512 KB)

TEE (448KB)

Attack

payload

Attack

payload

Gaining control

Extracting secrets

Causing system-

wide crashes

All components
can be exploited!

	syztrust_paper
	sp24-syztrust-poster1

