
Poster: Enhancing Symbolic Execution with LLMs for Vulnerability Detection

Muhammad Nabel Zaharudin
University of Texas at Arlington

muhammad.zaharudin@mavs.uta.edu

Muhammad Haziq Zuhaimi
University of Texas at Arlington

muhammad.zuhaimi@mavs.uta.edu

Faysal Hossain Shezan
University of Texas at Arlington

faysal.shezan@uta.edu

Abstract—Memory-related software vulnerabilities pose sig-
nificant risks, allowing attackers to crash systems, execute
unauthorized code, or steal sensitive data. Traditional symbolic
execution tools like KLEE, effective in vulnerability analysis,
face challenges like path explosion and scalability issues, partic-
ularly in large codebases. Conversely, Large Language Models
(LLMs), skilled in parsing natural language and code, often
struggle with pinpointing specific vulnerabilities. We propose a
hybrid architecture that integrates KLEE’s analytical precision
with LLMs’ pattern recognition capabilities. This approach
utilizes LLMs to identify and refine critical code sections
before symbolic execution by KLEE, enhancing accuracy and
efficiency. Our method detected 27 out of 30 memory-related
vulnerabilities, achieving 90% accuracy and reducing analysis
time by 71.4%, from 3.5 hours to just 1 hour. This model not
only improves efficiency in analyzing Linux kernel vulnerabili-
ties but also offers potential for broader applications in diverse
software environments.

1. Introduction

Software vulnerabilities, especially memory-related
bugs, pose a critical threat to the safety and security of
our digital infrastructure. These flaws can open avenues
for attackers to cause system crashes, execute unauthorized
code, or steal sensitive data. The need for robust and efficient
vulnerability discovery methods is thus paramount in today’s
software development landscape.

Symbolic execution tools like KLEE offer a powerful
way to analyze software for potential vulnerabilities. How-
ever, they often suffer from path explosion – the exponential
growth of possible execution paths – and scalability issues
when dealing with large, complex codebases. Cadar et al.
investigated that KLEE takes approximately 89 hours to
successfully process over 141,000 lines of code [1]. On the
other hand, LLMs excel in understanding natural language
and code patterns, but their confidence in pinpointing spe-
cific vulnerabilities is less than ideal.

To address these challenges, we introduce our hybrid
tool that leverages the strengths of both symbolic execution
and LLMs. LLM is used to intelligently narrow down poten-
tially problematic code sections within a large codebase and
extract definitions of complex data structures. The extracted
code fragments and data structure definitions are then fed

int afu_mmio_region_get_by_offset(struct dfl_feature_platform_data *pdata,
u64 offset, u64 size, struct dfl_afu_mmio_region *pregion) {

struct dfl_afu_mmio_region *region;
struct dfl_afu *afu;
int ret = 0;
mutex_lock(&pdata->lock);
afu = dfl_fpga_pdata_get_private(pdata);
for_each_region(region, afu) {

if (region->offset <= offset &&
region->offset + region->size >= offset + size) {

*pregion = *region;
goto exit;

}
}
ret = -EINVAL;

exit:
mutex_unlock(&pdata->lock);
return ret;

}
Figure 1: Successful LLM-Generated KLEE Code

into KLEE for focused, in-depth symbolic execution. This
approach aims to mitigate path explosion, improve scalabil-
ity, and increase the accuracy of vulnerability detection.

Our hybrid approach, blending LLMs with KLEE, iden-
tified 27 out of 30 memory-related vulnerabilities, achieving
a 90% accuracy. Despite challenges with complex integer
overflows, it significantly improved CVE analysis efficiency,
cutting down the computation time from 3.5 hours to just
1 hour—a 71.4% reduction. Our method not only boosts
efficiency in Linux kernel vulnerabilities but also promises
broader application in diverse software environments.

2. Background

For our research, we are utilizing KLEE as our sym-
bolic execution engine to identify vulnerabilities in our
code. KLEE requires that any given code is compiled to
bytecode under the circumstance of the LLVM compilation
framework. After compiling the program to bytecode, KLEE
is able to execute and map instructions to variables as
symbols for testing. KLEE would generate execution paths
that would test these symbols for any errors and bugs. A
user can declare which variable to store as a symbol and
tests its symbolic states with function klee make symbolic()
provided by the KLEE header. Based on the program being
tested, the amount of test cases that are generated can vary.

3. Motivating Scenario

Our intuition is to utilize LLMs to automate and ef-
fectively reduce the effort for the KLEE by summarizing
key areas of vulnerability in a large-scale program would
overcome the challenges when handling large applications
and avoiding path explosion problem. Figure 1 showcases

Figure 2: System Overview

that ChatGPT is able to generate correct KLEE code which
pinpoints key symbols that pertain to the vulnerability in the
given function. Capitalizing on ChatGPT-4’s rapid response
time, we would significantly reduce the expected runtime
for KLEE when dealing with an extensive project.

4. Dataset

We collect 30 CVEs focused on memory-related vulner-
abilities in C or C++ environments from the CVE database
www.cvedetails.com. For each CVE, we locate the corre-
sponding GitHub repositories containing both the vulnerable
and patched code. By analyzing the differences, we identify
the specific lines where vulnerabilities are present. These
identified lines, along with the surrounding vulnerable code
snippets, are then processed by our tool for further analysis.

5. System Design

In our study, we employ KLEE as a symbolic execution
engine to detect vulnerabilities in code, generating execution
paths that test for errors and bugs (Figure 2). We comple-
ment this with ChatGPT (V4-1106-Preview) and Gemini AI
(V1.5) to leverage their enhanced capabilities over previous
versions. For initial vulnerability detection, we used Gemini
and for the later rounds we used ChatGPT. From our manual
investigation, we found that this combination worked the
best in our scenario. The research involves creating prompts
that challenge the AI to identify general and specific vulner-
abilities, including memory-related issues, in code snippets.
Initial queries aim to detect any potential vulnerabilities,
which may include excess or irrelevant data. For example,
we provide the prompt ‘What vulnerability exists in the
following code?’ to list any detected vulnerable lines in
the given code snippet. Subsequent prompts refine this by
pinpointing exact lines of code where vulnerabilities may
exist, enabling us to assess the AI’s ability to provide precise
and actionable insights. For example, ‘Can you find the line
in the code snippet which might cause a vulnerability?’,
followed by ‘Can you find the line in the code snippet
which might cause a specific vulnerability?’ with the specific
vulnerability (e.g., memory-related) stated to narrow the
focus to the desired type.

Furthermore, the AI modifies vulnerable code snippets
to include necessary KLEE function calls for static analysis.
If KLEE encounters errors due to complex data structures
or unknown functions within these snippets, the AI is tasked

Task Component Used Time
Potential Vulnerability Detection LLM 5 minutes
KLEE Code Generation LLM 15 minutes
Debugging KLEE+LLM 30 minutes
KLEE Execution KLEE 1 minute

TABLE 1: Task Completion Times (average).

with resolving these by modifying the code or defining
missing elements. This iterative process allows KLEE to
reattempt the analysis, enhancing its ability to successfully
identify vulnerabilities or clarify its inability to do so, thus
refining our understanding of both the AI’s and KLEE’s
diagnostic capabilities in real-time coding scenarios.

6. Evaluation & Result

Our hybrid approach successfully identified 27 out of
30 memory-related vulnerabilities in selected CVEs (90%
accuracy). Whereas, using only KLEE we were able to
detect only 12 vulnerabilities. While effective, our tool has
limitations when input files contain complex integer over-
flows that obscure data structures within the code. Despite
this, we saw significant efficiency gains: our method reduced
average CVE analysis time from 3.5 hours to 1 hour (71.4%
reduction). In Table 1, we illustrate the time required for
major This improvement stems from the LLM’s ability
to automate dependency declaration, macro definition, and
symbolic value handling, tasks that were previously time-
consuming and required substantial human effort.

The core principles behind our approach hold promise
for broader applications beyond memory-related issues in
the Linux kernel. The combination of an LLM’s code com-
prehension capabilities with KLEE’s symbolic execution
offers a powerful foundation for vulnerability detection in
diverse software and vulnerability types

7. Case Study

In Figure 3, we have illustrated a KLEE executable code
that we have generated using our tool for CVE-2023-38427.

static __le32 deassemble_neg_contexts(struct ksmbd_conn *conn,

struct smb2_negotiate_req *req, int len_of_smb) {

ksmbd_debug(SMB, "decoding %d negotiate contexts\n", neg_ctxt_cnt);

if (len_of_smb <= offset) {

ksmbd_debug(SMB, "Invalid response: negotiate context offset\n");

return status;

}

len_of_ctxts = len_of_smb - offset;

//...

return status;

}

int main() {

int len_of_smb;

...

{klee_make_symbolic(&len_of_smb, sizeof(len_of_smb), "len_of_smb");}

deassemble_neg_contexts(&conn, &req, len_of_smb);

return 0;

}

Figure 3: KLEE Executable Code

References

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
2008. Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs.
OSDI (2008).

www.cvedetails.com

Enhancing Symbolic Execution with LLMs for Vulnerability Detection
Muhammad Nabel Zaharudin, Muhammad Haziq Zuhaimi, Faysal Hossain Shezan

muhammadnabel45@gmail.com | haziqzuhaimi@ymail.com | faysal.shezan@uta.edu
University of Texas at Arlington – College of Engineering

Introduction

References

Conclusion

Motivation

System Design Experiment Design and Evaluation
• Many open-source software projects are built with

memory-unsafe programming languages.
• Memory-related vulnerabilities are a prevalent issue

in software.
• Symbolic execution (e.g., KLEE) is a technique used

to find code vulnerabilities.
• KLEE faces challenges with large codebases and

path explosion.
• Our research introduces a hybrid solution combining

Large Language Models (LLMs) and KLEE to
detect memory vulnerabilities.

• Identifying memory vulnerabilities poses a tough
challenge for programmers and tools (e.g., KLEE) for
large code base.

• According to research on KLEE's capabilities, Cadar et
al. provided that KLEE roughly takes approximately
~89 hours to successfully process over 141,000 lines of
code and provide effective test coverage.[1]

• LLMs automate and reduce effort for KLEE by
summarizing vulnerable areas

• Our hybrid solution improves KLEE's usability and
accessibility. .

int afu_mmio_region_get_by_offset(void *pdata, uint64_t offset, uint6
4_t size, dfl_afu_mmio_region_t *pregion) {

 ...
 for_each_region(region, afu)
 if (region->offset <= offset &&
 region->offset + region->size >= offset + size){
 *pregion = *region;
 goto exit; }
 ret = -1; // Symbolic return value
... }
int main() {
 // Symbolic inputs
 uint64_t offset, size;
 // Make symbolic
 klee_make_symbolic(&offset, sizeof(offset), "offset");
 klee_make_symbolic(&size, sizeof(size), "size");

// Function call
 return afu_mmio_region_get_by_offset(&pdata, offset, size, &pregio
n);
...}

Figure 1: Successful LLM-Generated KLEE Code

Case Study

Figure 6: LLM-Generated KLEE Test Code. LLM Modifies Code to be Compatible with KLEE Figure 7: KLEE Generated Test Cases for CVE-2023-38427
which Targets Vulnerabilites and Simultaneously Reports Them

• The results demonstrate that the LLM is capable of
identifying vulnerable code within a program.

• Our approach further streamlines the process, reducing
average time by 71.4%.

• These results highlight the potential for automation in
vulnerability detection.

Future Plans:
• Effectiveness of this approach to evaluate across a broader

range of vulnerabilities.
• Thorough assessment required to understand potential

performance implications of using larger and more complex
datasets.

• The approach's potential for zero-day vulnerability detection

• KLEE generates execution paths to test symbols for errors and bugs.
• We utilize ChatGPT (V4) and Gemini AI (V1.5) due to their improved capabilities.

Task Time
Vulnerability Detection 5 minute

KLEE Code Generation 15 minute

Debugging 30 minute
KLEE Execution 1 minute

Figure 5: Computational Overhead

• Our approach successfully detected 27 out of 30
CVEs, achieving 90% accuracy.

• Using KLEE alone, we were able to detect 12
vulnerabilities.

• Our method reduced average CVE analysis time
from 3.5 hours to 1 hour (a 71.4% reduction).

1.Cadar, C., Dunbar, D., & Engler, D. R. (2008, December). Klee:
unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI (Vol. 8, pp. 209-224).

Code

1

2

End

3

Unable to
Detect
Vulnerability

Unable to
Detect
Vulnerability

*Mentions
Vulnerability

Type

No

No

Yes

Error in Code

Error in
Code

Vulnerability
Confirmed

Vulnerability
Not Found

Code LLM LLMVulnerable Function
and Line

KLEE

LLM Provides
Code Summary

With
Vulnerability

Prompt LLM to
Define Macros,
Function, and

KLEE Interaction

LLM Provides Modified
Code With Vulnerable
Function and KLEE

Function Call

User Provides KLEE-
Ready Code To
KLEE

KLEE Detects
Memory-Related

Vulnerability

KLEE Fails to Detect

Memory-Related

Vulnerability

//…
ktest file : 'klee-last/test000001.ktest'
args : ['klee_cve6.bc']
num objects: 1
object 0: name: 'len_of_smb'
object 0: size: 4
object 0: data: b'\x00\x00\x00\x00'
object 0: hex : 0x00000000
object 0: int : 0
object 0: uint: 0
object 0: text:
…//
//…
ktest file : 'klee-last/test000002.ktest'
args : ['klee_cve6.bc']
num objects: 1
object 0: name: 'len_of_smb'
object 0: size: 4
object 0: data: b'\xff\xff\xff\xff'
object 0: hex : 0xffffffff
object 0: int : -1
object 0: uint: 4294967295
object 0: text:
…//

LLM
Prompts

Purpose

1. "What
vulnerability exists
in the following
code”

LLM will list various
possible
vulnerabilities it can
detect in the code
snippet.

2. "Can you find
the line in the code
snippet which
might cause a
vulnerability?"

LLM will list possible
lines that may
cause vulnerability
in the code based
on the previous lists
of vulnerabilities it
could detect.

3. "Can you find
the line in the code
snippet which
might cause a
memory-related
vulnerability?”

LLM will further
narrow down the
previous lists of
lines to only lines
that may cause a
memory-related
vulnerability.

User
Provides
Code File

Figure 2: Series of prompts given to LLM to identify the line(s) of
vulnerability Figure 3: Conversation Between User and LLM

Vulnerable Code
static __le32 deassemble_neg_contexts(struct
ksmbd_conn *conn,struct smb2_negotiate_req
*req,int len_of_smb)
{
 struct smb2_neg_context *pctx = (struct

smb2_neg_context*)req;
 int i = 0, len_of_ctxts;
 int offset = le32_to_cpu(req-

>NegotiateContextOffset);
 int neg_ctxt_cnt = le16_to_cpu(req-

>NegotiateContextCount);

if (len_of_smb <= offset) { //vulnerable line
 ksmbd_debug(SMB, "Invalid response: negotiate

context offset\n");
 return status;

}
 len_of_ctxts = len_of_smb - offset;
 ...

 return status;
}

KLEE Ready Code
static __le32 deassemble_neg_contexts(struct
ksmbd_conn *conn,struct smb2_negotiate_req *req,int
len_of_smb){
 ksmbd_debug(SMB, "decoding %d negotiate

contexts\n", neg_ctxt_cnt);
 if (len_of_smb <= offset) {

 ksmbd_debug(SMB, "Invalid response: negotiate
context offset\n");

 return status;
 }
 len_of_ctxts = len_of_smb - offset;
 //...

 return status;
}
int main() {

 int len_of_smb;
 ...
 klee_make_symbolic(&len_of_smb,sizeof(len_of_sm

b), "len_of_smb");
 // Call the function of interest
 deassemble_neg_contexts(&conn, &req,

len_of_smb);
 return 0;

}

Acknowledgments
We want to thank the UTA Departmental REU program for their
support. We also want to thank Microsoft Azure for providing Azure
credits and the anonymous reviewer for their constructive feedback.

