
Poster: Rayls: A Novel Design for CBDCs
Mario Yaksetig and Mahdi Nejadgholi and Stephen Yang and Nicholas Zanutim

Parfin

Introduction

Central Bank Digital Currencies (CBDCs) are currencies issued from a central bank with a

direct liability to such bank. The goal of a CBDC is to improve on the inefficiencies of money.

Getting a CBDC right is a hard challenge. For example, the most popular commercial bank in

India has 500 million users.

Approaches that rely on a single monolithic blockchain are doomed to fail. No single

blockchain can support the throughput for that bank, let alone for a big country.

The intuition for layer-2 scaling is partially correct, yet is lacking privacy.

Why not a token on a public blockchain?

A CBDC cannot simply be instantiated on a public blockchain.

Why:

Privacy The entire transaction data of a nation should not be available for everyone to see.

Scalability - No blockchain can process the transactions to fulfil the needs of a nation.

L2 scaling

Each bank can be a rollup (or validium). This, however, reveals the balance sheets of all the banks

in real-time, which is not acceptable.

Improvements vs PreviousWork

Zether [1] provides no auditability of transactions without revealing the spending key.

zkLedger [3] provides an off-chain solution and relies on zero-knowledge proofs with linear

verification time and linear proof size.

Our contributions

We introduce a design that provides:

Privacy - Balances of commercial banks are private. Transactions between commercial

banks are also private.

High performance - Each PL processes the transactions from their users. This allows for

high throughput and modularity.

Decentralized Verifier - We use ZK-SNARKs (i.e., Groth16 [2]) and a smart contract verifier

Auditability - A central bank can audit the transactions that take place.

SystemArchitecture

Users (U) - Clients of each financial institution (i.e., PL).

Privacy Ledger (PL) - Single node blockchain with a private state.

Relayer (R) - Connects PL to Commit Chain. Each relayer has a wallet address on the CC.

Commit Chain (CC) - Public chain to which all the privacy ledgers connect to.

Admin (A) - Issuer of the CBDC on the public chain.

U PL R

CC

RPLU

A

Figure 1. Rayls Simplified Architecture with two banks

Results

RaylsZetherzkLedger
0

0.2

0.4

0.6

0.8

1

·104

Tx Size (kB) Verification Cost (in kgas units)

Protocol Overview

Setup - PLs generate Diffie-Hellman key pairs (sk, pki).

Registration - PLs register a Diffie-Hellman public key.

Key Agreement - Perform a Diffie-Hellman key agreement with all the other PLs in the

system.

Sending Transactions - Using the shared secret, the sending PL generates a private

transaction along with a private message signaling tag.

Receiving Transactions - Each PL performs a private information retrieval lookup from the

blocks, which are stored locally.

Auditing - Optionally, the commercial banks can share view keys with the admin. This

allows the central bank to see who is transacting, but no spending on behalf of any

commercial bank.

Private Transactions

Each entity in the system has a public key pki and a private balance as a (Pedersen)

commitment Ci.

To make a transaction, the sender submits a list of commitments along with a zero-knowledge

proof π and a nullifier nf. These commitments represent either a debit or a credit. The nullifier
ensures that the same sender is not able to double spend.

The random factors used in the Pedersen commitments originate from the shared secrets and

ensure that each party can quickly check if there are funds for them.

(pk1, C1) (pk2, C2) (pk3, C3)

tx C∗
1 C∗

2 C∗
3 (π, nf)

tx1 −vG − (r2 + r3)H vG + r2H 0G + r3H (π1, nf1)

...

txn 100G + r′
1H −200G − (r′

1 + r′
3)H 100G + r′

3H (πn, nfn)

Table 1. Overview of a private transaction. The commit chain acts as a (decentralized) verifier.

References

[1] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a smart contract world. In Financial

Cryptography and Data Security: 24th International Conference, FC 2020 , Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected

Papers, page 423–443, Berlin, Heidelberg, 2020. Springer-Verlag.

[2] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Paper 2016/260, 2016.

[3] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: privacy-preserving auditing for distributed ledgers. In Proceedings of the 15th

USENIX Conference on Networked Systems Design and Implementation, NSDI’18, page 65–80, USA, 2018. USENIX Association.

https://www.parfin.io 45th IEEE Symposium on Security and Privacy, San Francisco (2024) firstname.lastname@parfin.io

https://www.parfin.io
mailto:mario.yaksetig@parfin.io

Poster: Rayls: A Novel Design for CBDCs
Mario Yaksetig

Parfin
George Town, Cayman Islands

mario.yaksetig@parfin.io

Mahdi Nejadgholi
Parfin

Montreal, Canada
mahdi.nejadgholi@parfin.io

Stephen Yang
Parfin

São Paulo, Brazil
stephen.yang@parfin.io

Nicholas Zanutim
Parfin

São Paulo, Brazil
nicholas.zanutim@parfin.io

Abstract—We introduce a new CBDC design that—similarly
to rollups—leverages the use of separate (private) ledgers to
allow for higher throughput. In this case, commercial banks can
each run their own ledger. We also introduce a new protocol
that allows for efficient anonymous transactions between banks.
Therefore, the sender, receiver(s), and amount of the transactions
are hidden within a variable anonymity set. Our protocol
supports ‘double’ batching. Since each transaction consists of a
set of commitments and a zero knowledge proof, each transaction
can pay more than 1 bank at once and each of these individual
commitments can contain an aggregated transfers from multiple
users. For example, a bank can transfer $1M to a different bank
and that amount is actually a sum of multiple users making
transfers to that bank.

Index Terms—CBDCs, Privacy, Blockchain

I. INTRODUCTION

A blockchain is an immutable distributed chain of blocks,
each containing a new state update. Blockchains can be
permissionless or permissioned.

Presently, most popular blockchains are permissionless and
allow for any entity to join the system. This, however, implies
that all the information contained in these blocks is made pub-
lic for all network participants. Financial institutions, however,
hold and regularly process sensitive information. As a result,
it is not in the interest of a financial institution to be part of a
public network and reveal all their sensitive data. Therefore,
these institutions need a solution that allows them to preserve
such information private, while allowing for a connection with
existing blockchain ecosystems.

II. SYSTEM MODEL

We now describe our architecture and adversarial model.

A. System Architecture

We describe a system that consists of a set of users, a set
of privacy ledgers, and a blockchain.

Consider a privacy ledger (PL) with a secret internal state.
This ledger is equivalent to a single node blockchain that
is managed (and validated) by an individual operator from
a financial institution. The state of this blockchain is kept
private and is exclusive to the financial institution. Customers
of this financial institution are directly connected to the PL
that banks them. Each privacy ledger is connected to a public
blockchain, which we denote as commit chain (CC). Each user
has a wallet address on their corresponding privacy ledger.

Each privacy ledger has a wallet address and a balance on
this public blockchain.

We also assume an admin role present in the commit
chain. For example, a central bank issues a private token and
distributes the balance to each PL accordingly. This is omitted
from the diagram below.

PL

PL

PLPL

PL

PL

PL

PL

U

U

U

U

U

U

U

U

CC

Fig. 1. Simplified System Architecture. We assume a commit chain (CC)
and a set of privacy ledgers (PLs). Each privacy ledger is controlled by a
commercial bank and can offer high performance to its end users. To perform
transactions between PLs, each bank uses a novel privacy protocol.

B. Adversarial Model

We assume an honest admin (e.g., Central Bank), and a set
of malicious PLs. The goal of each is to try to perform a
double spend or spend more money than their balance sheet.

The adversary is motivated to break the privacy of the
transactions in the system. Moreover, we assume that the
state of the commit chain is public to everyone. Therefore,
no sensitive information should be posted on the blockchain.

Even though it may be reasonable to assume that the
PLs are expected to act honestly and rationally due to the
legal repercussions attached to conducting fraud as a financial
institution, we assume a stronger adversarial model to capture,
for example, settings where a financial institution may about

to implode financially and may try to perform malicious mints
and/or malicious transactions.

III. PROTOCOL DESCRIPTION

We extend on the previously exposed architecture and add
an additional role: the relayer. As a result, between each
privacy ledger and the public blockchain, there is a relayer that
performs read/write operations involving the privacy ledger
and the public blockchain. The separation, however, allow
for further potential decentralization of different infrastructure
components and for a clearer analysis of the system.

We assume that all operators must register on the blockchain
to then be able to start transacting.

A. Setup Phase

First, node operators initiate their own private ledger and
generate an elliptic-curve key pair.

Second, the relayer initiates their own instance that acts
as a listener for events that take place in the private ledger.
The relayer also generates a post-quantum key pair to be used
for non-interactive key exchanges (NIKE) with other relayers
in the network. We note that this step is extremely sensitive
as the wrong choice of post-quantum primitive can result in
catastrophic failure [1]. We also note that the recent results
from Chen [2] may lead to a re-evaluation of these algorithms.

B. Joining the network

To join the network, the commit chain enforces their own
set of acceptance rules. This is orthogonal to our design.
For example, agreements involving financial institutions, such
as banks, may involve the signing of legal contracts. This
set of rules is very flexible and depends on the application.
Therefore, this is outside the scope of our design. The key
part is that privacy ledgers are able to register a public-key
pair to be used as a wallet address and for different Diffie-
Hellman key exchanges with other privacy ledgers.

C. Transacting in the network

Private ledgers can perform two types of transactions:
internal and external.

Internal transactions are transactions signed by the wallets
of the users that hold accounts in the private ledger. These can
be seen as traditional day to day payments. These transactions
are private as the private ledger operator never exposes this
information to any external entities.

External transactions represent moving funds from one
privacy ledger to another ledger. Essentially, a bank wants to
send funds to a different bank. We assume a private token
issued on the commit chain where each balance is shielded
and turned into a Pedersen commitment. A bank can aggregate
multiple transactions from users to a specific bank. We explain
this type of transaction in the next section.

IV. PRIVATE TRANSACTIONS

Each privacy ledger in the system has a public key identifier
pki and a corresponding private balance as a (Pedersen)
commitment Ci. To make a transaction, the sender submits a
list of commitments along with a zero-knowledge proof π and
a nullifier nf. These commitments represent either a debit or
a credit. The nullifier ensures that the same sender is not able
to double spend. This generic transaction type is described in
tx, the first transaction row.
In tx1, we denote entity 1 sending an arbitrary balance v
to entity 2 and a 0 balance to entity 3. We note that these
commitments are indistinguishable from the perspective of an
outsider (i.e., anyone not sending/receiving funds). Moreover,
we highlight that the random factors used in the Pedersen
commitments originate from the Diffie-Hellman key agree-
ments and are used in the Pedersen commitments to ensure
that each party can quickly check if there are funds for them by
removing the corresponding random factor. The used r values
are different for every new block.
In txn, we show a concrete transaction of 200 from entity 2
to both entity 1 and 3 to highlight that the system supports
transactions to multiple entities simultaneously. For simplicity,
we show below only three entities in this example. This
approach can support an arbitrary number of involved parties.

(pk1, C1) (pk2, C2) (pk3, C3)

tx C∗
1 C∗

2 C∗
3 (π, nf)

tx1 −vG− (r2 + r3)H vG+ r2H 0G+ r3H (π1, nf1)

...
...

...
...

...

txn 100G+ r′1H −200G− (r′1 + r′3)H 100G+ r′3H (πn, nfn)

TABLE I
OVERVIEW OF A RAYLS PRIVATE TRANSACTION.

V. IMPLEMENTATION

We implemented an initial ZK implementation using
Zokrates. Elliptic curve operations use the Baby Jubjub curve.
Creating a transaction with an anonymity set of 6 using an
AWS c5.2xlarge takes approximately 2 seconds. We expect
this number to go down significantly. We also note that this
is an affordable instance that costs less than $0.5 per hour.

VI. CONCLUSION

Using zkLedger [3] as inspiration, we introduce a new
design that paves the way for financial institutions to move
their existing infrastructure to blockchain rails and connect to
existing blockchain ecosystems and conduct efficient private
transactions without leaking their sensitive data.

REFERENCES

[1] W. Castryck and T. Decru, “An efficient key recovery attack on sidh,”
Cryptology ePrint Archive, Paper 2022/975, 2022. [Online]. Available:
https://eprint.iacr.org/2022/975

[2] Y. Chen, “Quantum algorithms for lattice problems,” Cryptology
ePrint Archive, Paper 2024/555, 2024. [Online]. Available:
https://eprint.iacr.org/2024/555

[3] N. Narula, W. Vasquez, and M. Virza, “zkledger: privacy-preserving
auditing for distributed ledgers,” in Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’18. USA: USENIX Association, 2018, p. 65–80.

