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Abstract—In this paper we present a quantitative evaluation
of state-of-the-art differentially private algorithms aimed at
privatizing users’ mobile trajectories. We provide guidelines on
the design of differentially private (DP) algorithms for trajectory
release based on rigorous evaluations of three classes of DP
algorithms; (a) Markov-model based, (b) Grid-or clustering
based, and (c) Graph-based DP algorithms; using real-world
wireless trace data. We identify properties of a mobile trajectory,
that when preserved, increase the utility of privatized trajectories
for downstream analysis tasks. We also identify deficiencies
in current state-of-the-art DP algorithms in preserving spatio-
temporal user-privacy. We show using real-world wireless trace
data, that most well-known DP algorithms fall short in the
following aspects (a) preserving first and second-order statistical
measures of utility (b) lack of an appropriate threat model when
evaluating DP algorithms for varying privacy budgets, and finally,
(c) the lack of error metrics, and downstream use-cases using
privatized trajectories when applied to representative, real-world
user mobility data.

I. INTRODUCTION

Mobile user trajectories provide a rich source of data,
including peoples’ daily activities, travel history, health and
activity data, and even co-traveller information [1]. Most tra-
jectory data includes Personally Identifiable Information (PII),
that if exposed, can cause significant harm to the end-user [1].
Differential Privacy (DP) [2], offers a formal guarantee of
privacy by injecting a tunable amount of random “noise” to
a query over a sensitive dataset, such that a precise statistical
trade-off is met between data-utility and user-privacy.

While there have been many efforts at privatizing mobile
user trajectories [1], [3]–[5], we lack both standardized error
metrics and comparison of their utility for downstream analy-
sis tasks in order to compare and evaluate thee DP algorithms.

More critically, there are no recent, or representative user
mobility datasets that have been used to measure the utility
(or the privacy afforded) of most DP algorithms. Real-world
user mobility exhibits a power-law distribution [6] – users are
often present at a small subset of locations, and have a long
tail of hardly visited (infrequent) locations.

We apply state-of-the-art DP algorithms to the KTH wire-
less trace dataset [7] – a dataset that captures fine-grained
mobility of users across the KTH campus across one year.
We show that most state-of-the-art DP algorithms exhibit poor
utility compared to their reported utility across popularly used
datasets including the NYC Taxi Dataset, the Geolife dataset
and Brinkoff simulator [1].

In the following sections, we provide insights into per-
formance of different classes of DP algorithms for private
trajectory release, and guidelines on generating synthetic priva-
tized trajectories that are both representative of real-world user
mobility, while also preserving end-user privacy. We discuss a
set of on the downstream utility measures and error analysis
needed to benchmark and evaluate DP trajectory publication
algorithms, to select an algorithm best suited for a given
downstream analysis task.

In the rest of this paper we provide examples using a
representative set of DP algorithms when applied to the KTH
wireless trace dataset. We refer the reader to our report for
a more extensive set of error analysis describing the privacy-
utility trade-offs across a wide-range of DP algorithms [8].

II. GUIDELINES FOR PRIVACY-PRESERVING TRAJECTORY
PUBLICATION

Intuitively, DP algorithms applied to privatize mobile user
trajectories, aim to publish a privatized and synthetic set of
trajectories, that when compared to the sensitive dataset across
their first and second-order distributions, are “close” while
protecting any one user from re-identification in the dataset.
We now present the definition of ϵ−DP in the context of
privatized trajectories.
A randomized differentially private algorithm A provides ϵ-
differential privacy (ϵ ∈ R, ϵ > 0) if, for all neighboring
datasets D1 and D2 of a set of user trajectories which differ
by one row (or one trajectory) and for all possible outputs O
of A, we have

Pr[A(D1) = O] ≤ eϵ × Pr[A(D2) = O] (1)

Several variations of DP have been proposed, that relax the
privacy guarantees of ϵ-DP. Two in-particular that satisfy the
composition theorems of ϵ-DP include (ϵ, δ)-DP and zero-
concentrated-DP. We refer the reader to [2] and references
therein, for these definitions.

A. Trajectory Characterization

In this section, we provide insights on designing DP al-
gorithms that preserve three critical properties of a mobile
trajectory – (a) visit counts at each location (b) transition
probabilities amongst visited locations and (c) path-length
distributions. Below, we elaborate on the trade-offs, across the
classes of DP algorithms, across these metrics of interest.



Visit Counts: Providing privatized visit counts can often
be sufficient metric for capacity planning, measuring disease
spread, and hotspot monitoring [1]. We note that, DP trajectory
publication algorithms are a poor fit for this task. DP trajectory
publication algorithms aim to preserve sequences of visits
to locations, using either Markov-based estimates, or grid
and clustering based approximations or using graph-based
methods [1]. These methods often require nuanced noise-
apportioning mechanisms to prevent a single user being re-
identified across a sequence of visited locations, and often
introduce significantly more noise. As we have shown in pre-
vious work, privatized range and count query DP algorithms
offer high utility for stringent privacy budgets (ϵ = {1, 5}) [9].
DP Design Guidelines: We make the observation, that splitting
the privacy budget(ϵ), to release visit counts at each node, in-
dependently of trajectory publication can significantly improve
utility.

Transition Probabilities: As we show in our poster, most
DP algorithms to-date, have significantly struggled with pro-
viding accurate transition probabilities using real-world traces.
Markov-based DP algorithms suffer from a state-space explo-
sion for large L. Grid and clustering based DP algorithms
aim to reduce the state-space by grouping or discretizing
geographic regions, but as we show using a representative DP
algorithm, AdaTrace [4], this often results in the generation
of spurious locations that are uniformly distributed across
the discretized state-space, and as we show in our poster,
often resulting in trivial filtering attacks [1]. Graph-based DP
algorithms have orthogonal drawbacks –trajectories often don’t
easily translate to graphs – time information, and directionality
is lost, and it’s unclear how a noisy edge weight between two
vertices in a graph, can translate to separate distinguishable
trajectories.

We additionally provide the following key insight in our
poster – even across extremely relaxed privacy budgets ϵ =
20, DP-algorithms that are Markov-based and Grid-based still
introduce significant noise or error in the resulting synthetic
trajectories. We make the observation that the noise or error
introduced is stochastic modelling error rather than tunable
DP noise further increasing the complexity of evaluating these
DP algorithms.

DP Design Guidelines: We note that user mobility model-
ing is a rich and mature field, and rather than introducing
modelling error, that is hard to distinguish from tunable DP
noise added, DP algorithm design should incorporateLSTM
and RNN based trajectory generation algorithms prior to
introducing DP noise. Our preliminary results show that
LSTM and RNN based trajectory modeling, along with DP
noise added at each layer of the RNN provide higher utility
compared to Markov-based and Grid-based approaches.

Trajectory Path Lengths: A related goal in trajectory
characterization, is preserving path-length distributions. As
we show in our poster, most synthetic paths generated by
Markov-based and Graph-based algorithms are significantly
smaller (by a factor of 3 or more). Apart from the weaknesses
identified in the previous section, we also note that most DP

algorithms have been evaluated on a constrained set of open-
source datasets [1]. We show that these datasets lack consistent
measures of fine-grained mobility over a set of users, across
time and similar geographic regions. As we show in our poster,
the Brinkoff trace generator generates paths, that lack the
power-law distribution that characterizes user mobility, and
similar issues exist in the NYC Taxidataset and the geolife
dataset. DP Design Guidelines: By leveraging the power-law
distribution exhibited by user mobility, we can both reduce the
error introduced by the state-space explosion observed in most
trajectory modeling, and can also allow us to use less samples
(therefore reducing the privacy budget) when training LSTM
and RNN-based DP algorithms.

B. Evaluation

Finally, we note the lack of a standardized set of error met-
rics used to evaluate DP algorithms. We provide a preliminary
set of standardized results in our poster, and show that the
lack of both comparable evaluation, and comparable privacy
budgets, increases the ambiguity in evaluating the goodness-
of-fit of the DP algorithm for the downstream analysis task.
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• Mathematical guarantee of ε-differential privacy, where ε is the
privacy-budget.

• Differential Privacy adds quantifiable “noise” to queries over
the data, to mask the presence/absence of an individual row
in a database.

Figure 4. Data Exploration Tree Example used in 
Markov-based Models [2]

Comparative Analysis Using Real-world Datasets

Compare utility-vs-privacy trade-offs in state-of-the-art 
differentially private algorithms for sequential user mobility data. 
Goals:

1) maximize accuracy across metrics in Table 1.
2) mitigate reconstruction attacks against trajectories.
3) preserve individuals’ spatio-temporal privacy.

Anonymized Trajectories Leak Sensitive Information

NGram 
Markov-
based

AdaTrace
 Grid-
based

Privatizing 
Points of 
Interest

Path-length 
distribution 

preservation
✖ ✖ ✖

Accurate visit counts 
at each location ✖ O ✔

Reconstruction attack ✖ ✖ O

Privatized trajectories 
across multiple 

instances of the same 
user 

✖ ✖ ✖

DP Algorithm Evaluation on Utility

✔ : meets the guideline.
✖ : no attempts and fails to meet the guideline.
O : attempts to meet the guideline but fails.

N-gram Analysis of Trajectory Lengths

N-gram [2] fails to preserve length distribution of
KTH trajectories over a single day, with n_max=5,
l_max=20, and epsilon=5.

AdaTrace Error Analysis

Introduction

• Anonymization schemes expose unique user mobility
patterns.

• As shown in Figure 2, anonymized traces are susceptible to
linkage and reconstruction attacks.

Figure 10. Original (top) and reconstructed (bottom) 
trajectories of AdaTrace algorithm [3] ran on KTH 
data for March 3rd, 2014 with epsilons 1 and 5. 

Utilizes the Markov assumption and 
transition probabilities to generate 
synthetic trajectories. 

• KTH campus in Sweden, Access Point (AP) connection data
from January 2014 to January 2015.

Dataset: Wireless Campus Mobile Trajectories 

Figure 1: APs on the KTH Campus
(from Crawdad KTH/Campus)

 Figure 2: Sample Reconstructed 
Individual Trajectory
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Figure 7. Original 
Trajectory Lengths

Figure 8. Noisy 
Trajectory Lengths

Transforms geographic regions into 
multi-scale grids, adding noise to cell 
counts to privatize trajectories.

Relies on injecting local noise into location 
input and encrypting that data to share with 
the data processing algorithm.

Table 1. Evaluating  [2][3][4]

Figure 5. Overview of the DPT Synthetic 
Generation [4]

Markov-based Trajectory Models Privatizing Points of InterestGrid-based Dimensionality Reduction

Figure 3. Conceptual Illustration of Differential Privacy
(from Sharing Data with Differential Privacy: a Primer by Anshu Singh)

Figure 6. Simplified diagram for zero knowledge range 
proof using encrypted location information [1].
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Epsilon = 5

• Analyze more DP algorithms to refine our utility guidelines.
• Build quantitative evaluation metrics for our guidelines.
• Identify essential algorithmic components that align with our

guidelines.
• Use those components to construct a new DP algorithm that

satisfies our guidelines.
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