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I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs) leverage vari-
ous sensing modalities to improve situation awareness. One of
those modalities is near-infrared laser light which is leveraged
by Light Detection and Ranging (LiDAR) sensors to provide
high-precision 3D measurements. These measurements are
stored in point clouds, as collections of 3D points. Several
CAV manufacturers already leverage LiDARs and there is
an array of 3D object detectors which can recognise vehi-
cles, pedestrians and cyclists based on LiDAR measurements.
However, prior works have demonstrated the feasibility of
LiDAR spoofing attacks which can be controlled to both inject
ghost objects and hide real objects. These works have pro-
gressively improved the adversarial capability in both software
and hardware, focusing on increasing the adversarial budget
(the number of points that can be reliably spoofed) and the
adversary’s success rate against 3D object detectors.

Nonetheless, no prior study has focused on reducing the
area that the adversary needs to apply their spoofing capa-
bility. Prior works considered the area inside a bounding box
surrounding the target object or even larger areas as the region
of interest. In this work, we are the first to explore whether it is
possible to hide 3D objects from detectors by concentrating the
attack on a sub-region of the bounding box. This comes with
reduced attack complexity and increased stealthiness benefits
for the adversary: it reduces the number of signals needed to
be reliably spoofed for a successful attack and it reduces the
attack’s footprint.

Inspired by prior works on adversarial patches in computer
vision, we introduce the concept of 3D virtual patches (VPs),
a region in a point cloud on which an attack strategy can
be applied. We then introduce VP-LiDAR, a methodology for
analyzing and perturbing measurements in VPs in the digital
domain with the goal of bypassing 3D object detection.

We apply VP-LiDAR in two settings: (a) with manually
crafted VPs (MVPs) and (b) with critical VPs (CVPs) designed
using a novel framework for identifying critical regions in
point clouds. In the first setting, we design four MVPs based
on common shapes covering different parts of the target object.
Applying VP-LiDAR in the second setting is non-trivial as
we first need to identify critical regions. Toward this, we
design a novel method we call Saliency-LiDAR or SALL. SALL

computes point-level contributions to object detection using
Integrated Gradients (IG), an explainability-aware approach.
SALL can aggregate contributions at the voxel level and across
several 3D scenes and objects into a universal saliency map.
Based on SALL’s universal saliency map, we define three
critical VPs (CVPs).

To evaluate VP-LiDAR, we conducted LiDAR relay attacks
simulating the physics of LiDAR operations. Our attacks were
applied on MVPs and CVPs and empirically evaluated on their
ability to hide vehicle objects from popular object detectors.
We found that VP-LiDAR with MVPs can achieve similar
success rates with an effective object removal attack (ORA-
Random) but while attacking a significantly smaller (visually
shown) region of interest. We also found that VP-LiDAR
attacks with SALL-based CVPs are at least 15% more effective
than MVP attacks and require focusing the LiDAR relay attack
on a CVP area which scales better with the size of target
objects (analytically shown) compared to prior work.

II. VIRTUAL PATCHES AND VP-LIDAR METHODOLOGY

We first define virtual 3D patches (VPs) and then introduce
our framework (VP-LiDAR) for simulating LiDAR spoofing
attacks using VPs.

Virtual Patches. A Virtual 3D Patch or simply VP is a
subspace within a 3D object’s point cloud on which A can
apply her perturbations. More formally, a 3D scene is a point
cloud S ∈ Rn×d, where n is the number of 3D points in the
scene. In each scene, there can be a collection of bounding
boxes, one for each detected object. A bounding box B, is
B ∈ Rnb×d, where nb < n. Then, a virtual patch can be
defined as a sub-region V ∈ Rnv×d, where nv ≤ nb < n. The
goal of A is to come up with a perturbed V ′, V ′ ∈ Rnv′×d

where nv′ ≤ nv because some points might be displaced or
shifted outside the VP area.

VP-LiDAR. VP-LiDAR is a 3D adversarial VP analysis
framework that aims to facilitate experimentation with VP-
based attack strategies and defenses. VP-LiDAR consists of
five phases, taking in raw LiDAR point cloud (S) of the scene,
performing perturbation of target objects, and producing the
adversarial point cloud (S′) as its output.
Phase 1: Extraction. VP-LiDAR detects objects from S. Then
it separates S into background points G (G ∈ Rng×d) and



a set of target point clouds T = {T 1, T 2, ..., Tm}. There is
exactly one target point cloud T i for each of the m detected
objects.
Phase 2: 2D Indexing. Each target point cloud T i is further
discretized. We use the approach by Lang et al. to find the cor-
responding indices of each point in pillar format. 2D indexing
is more efficient than voxelisation methods, because it does not
need to convert points to voxels. Also, the corresponding voxel
size is customized and can be set to near point level where
each voxel only contains a few points or even one point.
Phase 3: Virtual Patch Simulation. Based on the indices, we
can apply a 2D virtual patch V . Virtual patches can be defined
manually or using our SALL method (see § III).
Phase 4: Perturbation. Different selection strategies can be
applied to select points from V under an adversarial point bud-
get. For example, VP-LiDAR supports the random selection
strategy similarly to ORA-Random which randomly selects
points within a target bounding box. VP-LiDAR also supports
selecting points according to their criticality - we can calculate
such criticalities using our SALL method (§ III). Due to VP-
LiDAR’s modular architecture, other novel strategies can be
easily incorporated.

To obey the physics of LiDAR, VP-LiDAR shifts points in
accordance with the rays that the LiDAR points fall on. Each
point in the cartesian coordinate system is first transformed
to the spherical coordinates with the radius R and the firing
angle relative to the LiDAR origin. Then a distance Rd is
added to the radius (R). The shifted radius R̂ = R + Rd

along with the firing angle is then transformed back to the
cartesian coordinate. The result is a perturbed virtual patch
V ′ with nv′ perturbed points.
Phase 5: Merge. All V ′s are then merged with G to output
the final adversarial 3D LiDAR scene S′ = G

⊕
V ′. S′ is in

the same format as the original LiDAR scene S, and can be
fed into any LiDAR-based detectors for evaluations.

III. SALIENCY-LIDAR AND CRITICAL VIRTUAL PATCHES

A. Saliency-LiDAR Method

To identify critical regions, we develop a method we call
Saliency-LiDAR (SALL). SALL, inspired by Tan et al leverages
the Integrated Gradient approach to generate saliency maps
of inputs. SALL adapts IG the task of object detection in
autonmous driving scenarios, and can aggregate saliency maps
across instances of an object type within and across scenes to
generate a universal saliency map. Below we describe SALL’s
overall architecture and explain each component.

Preprocessing. SALL takes a raw 3D scene S as input. Before
IG computation, it preprocesses the scene through an extrac-
tion module (E) which identifies regions of interest R, one per
target object. It then extracts target objects T and background
points G. Subsequently, the target objects T are fed into the
IG component to compute point-level contributions.

Integrated Gradient Computation. For each IG step, points
in a T i are perturbed by a perturbation module (P) which

works similarly to VP-LiDAR’s P and outputs T i′. All T i′ in
T ′ are then merged with the background points (G) to produce
the perturbed 3D scene (S′): S′ = T ′ ⊕G. S′ is used for the
gradient computation. It passes through a 3D object detector
(D) which outputs a set of logits Oi for each target object i.
To focus on target objects instead of the whole LiDAR scene,
Intersection of Unions(IOUs) between the focus regions R and
predicted bounding boxes are first computed to identify the
best predictions. Gradients of the best predictions are saved
while other gradients are filtered out in the filter module
(F). Finally, a point-level contribution map Cp

i is generated
per target object. Lastly, an integrator function integrates all
Cp

i across all IG steps, to produce a point-level saliency or
contribution map Cp for objects in a single scene.

Adaptive Indexing (Ṽ). Since R regions have different dimen-
sions and rotations in different LiDAR scenes, to generate a
universal saliency map, point-level saliency maps need to be
downsampled to pixel-level with the same size. To achieve
that, each extracted target point cloud T i is first converted
from LiDAR coordinates to bounding box coordinates. Then,
given the target size of the universal saliency map (2D-pixel
image), Ṽ adaptively computes the voxel size for each target
object based on R’s dimension. After that, indices of each
point in T i can be computed. According to the point-level
saliency map Cp, the contribution of each voxel is summed
up to generate a 2D-pixel matrix Cv in which each element
indicates the contributions of each voxel.

Aggregation Across Scenes (
∑

). For each scene S, we
generate a contribution matrix Cv . Cvs are then aggregated
across all k scenes by simple matrix additions to generate the
universal saliency map Cuv for the target object type.

B. Critical Virtual Patches

Constructing Adversarial Critical Virtual Patches. With
the guidance of the universal saliency map, A can generate
adversarial CVPs by perturbing points in voxels with top
contribution values.



1. Spoofing LiDAR Sensors

4. Identify Critical Regions for LiDAR Objects

5.  Evaluation of Critical Virtual Patches

3. VP-LiDAR with Manual Virtural Patches

2. LiDAR Spoofing Attacks using Virtual Patches

LiDAR signals can be spoofed to hide real objects from autonomous vehicle’s 
perception causing fatal collisions. This study takes the first step to reduce the 
required spoofing area based on virtual patches (VPs) which can further reduce 
attack complexity and increase stealthiness. 

We design a framework Saliency-LiDAR (SALL), which can identify critical regions 
for LiDAR objects. SALL can aggregate saliency maps across instances of an 
object type within and across scenes to generate a universal saliency map.

VPs crafted on critical regions (CVPs) reduce object detection recall by at least 15% 
compared to our baseline with an approximate 50% reduction in the spoofing area.  
CVPs are more effective than current attacks and require focusing the LiDAR
spoofing attack on a small area which scales better with the size of target objects.

We introduce VP-LiDAR for simulating LiDAR spoofing attacks using VPs. VP-
LiDAR is a 3D adversarial VP analysis framework that aims to facilitate 
experimentation with VP-based attack strategies and defenses. VP-LiDAR 
consists of five phases as shown below:

We first manually design VPs (MVPs) and show that VP-focused attacks can 
achieve similar success rates with prior work but with a fraction of the required 
spoofing area.

(Cao et al. ’19)
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