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Abstract—HTML5 changes many aspects in the browser world
by introducing numerous new concepts; in particular, the new
HTML5 screen sharing API impacts the security implications of
browsers tremendously. One of the core assumptions on which
browser security is built is that there is no cross-origin feedback
loop from the client to the server. However, the screen sharing
API allows creating a cross-origin feedback loop. Consequently,
websites will potentially be able to see all visible content from
the user’s screen, irrespective of its origin. This cross-origin
feedback loop, when combined with human vision limitations, can
introduce new vulnerabilities. An attacker can capture sensitive
information from victim’s screen using the new API without the
consensus of the victim. We investigate the security implications of
the screen sharing API and discuss how existing defenses against
traditional web attacks fail during screen sharing. We show that
several attacks are possible with the help of the screen sharing
API: cross-site request forgery, history sniffing, and information
stealing. We discuss how popular websites such as Amazon and
Wells Fargo can be attacked using this API and demonstrate the
consequences of the attacks such as economic losses, compromised
account and information disclosure. The objective of this paper
is to present the attacks using the screen sharing API, analyze
the fundamental cause and motivate potential defenses to design
a more secure screen sharing API.

I. INTRODUCTION

Web browsers have evolved from applications that render
simple web pages to application platforms that handle complex
media, which often require installation of plugins, such as
the Google voice and video chat plugins [1]. Recently, the
Web Real-Time Communications (RTC) Working Group [2]
proposed APIs that allow real time communication between
browsers using only HTML5 APIs via JavaScript. Audio and
video communication, including screen sharing, can be set up
using this RTC platform [3]. The Google Chrome browser
supports screen sharing as an experimental feature. It is also
available in Mozilla Firefox’s nightly build. Moreover, this API
is interoperable between Google Chrome and Firefox Nightly
with a slight modification to the calling site [4].

The screen sharing API could be utilized to build interactive
media tools and applications, however, the possibility of sharing
the screen with other web browsers and servers raises various
security and privacy concerns. Specifically, the screen sharing
API creates a cross-origin feedback loop that continuously
transmits the screen back to the screen sharing website which
belongs to other domains. This loop allows other users and the
screen sharing website to see the user’s confidential information.
The fundamental assumption for the web is that this cross-

origin feedback loop does not exist by default; in most cases,
what is shown to the user is only accessible to that user and
the same-origin site. With the loop, however, an attacker can
exploit this information and launch attacks against the user
sharing the screen. The integrity and confidentiality of the
user’s information are severely threatened.

The attacker who has access to the victim’s screen is very
analogous to a shoulder-surfer [5] but with the additional power
of opening and viewing the web pages of the attacker’s choice
inside the user’s browser without the user’s consent. Since
the browser automatically sends authentication information
(e.g. HTTP cookies), the newly opened pages that are only
supposed to be seen by an authenticated user can now be seen
by the attacker. We show that the attacker can steal sensitive
information such as personal messages and bank statements
from the attacker-opened pages. Even worse, we show that
cross-site request forgery (CSRF) tokens can be stolen from
the page source, which can then be used to mount further
attacks against the user.

In this paper, we discuss the extensions to the getUserMe-
dia() API introduced by Google to enable screen sharing and
their potential impact on user security. We present multiple
attacks using this API that can compromise a user’s confiden-
tiality and integrity. We show how an attacker can steal a user’s
data from the screen to modify the user’s accounts on popular
websites. Since the attackers have the ability to see the entire
content of the user’s screen, the attack can not be restricted by
the same-origin policy. Because of the limitations of human
sensing, a clever attacker can steal cross-origin page content by
forcefully opening cross-origin pages on the victim’s browser
or embedding cross-origin content inside an iframe. Making
the attacks unobservable such as flashing content quickly or
using translucent color, the attacker can eavesdrop cross-origin
information without drawing attention. We also discuss how
the attacker can steal browser resources such as autocomplete
and autofill history [6] since these resources are shared across
origins for the user’s convenience. These attacks can lead to
serious consequences such as loss of money from bank accounts,
personal information disclosure and identity theft. Simply put,
the attacker can not only see what the user wants him to see
but also force to user to show other sensitive information.

With the knowledge of the fundamental causes of these
attacks, we analyze the possibility of preventing them by a fine-
grained screen sharing, use of incognito mode, and blocking
third-party cookies. We compare these solutions with a focus on



security and usability. Since the paper is primarily concerned
about attacks using the screen sharing API, we leave the
implementation and evaluation of these defenses as promising
future work.

Summary of Contributions

• We have analyzed the possible impact of the screen
sharing API on user privacy and security. Based on our
experiments and understanding about the current design
of the screen sharing API, we present the security
implications and vulnerabilities that this API could
possibly introduce.

• Based on the vulnerabilities that we have discovered,
we show how malicious screen sharing websites can
steal cross-origin content from the user’s browser,
thus affecting privacy, confidentiality and integrity. We
demonstrate how an attacker can perform a CSRF
attack even if the target website has employed CSRF
defenses, and how the attacker can steal other sensitive
user information. We also discuss how these attacks
can be made imperceptible to human by exploiting the
limitations of human sensing.

• We raised an alarm to the browser vendors about
the perils of view-source links. In particular, we
highlighted the risk of malicious screen sharing
websites gaining unauthorized access to security
credentials by viewing the source of cross-origin
websites. As a result of our security report, Google
[7] patched the Chrome browser, which prevents
view-source links to be opened inside iframes.

Organization. The rest of the paper is organized as follows.
In Section II, we discuss various screen sharing techniques
along with their security implications. We present the threat
model in Section III, and demonstrate attacks using the screen
sharing API in Section IV. In Section V, we analyze the
deficiencies of existing defenses and propose possible defenses
to mitigate the attacks using the screen sharing API. We
discuss related work in Section VI and conclude in Section VII.

II. SCREEN SHARING TECHNIQUES

Various solutions have been developed to achieve screen
sharing functionality in browsers. We classify these solutions
into three categories:

• Techniques that Require Installation of Plugins or
Extensions: Popular products such as Google+ allow
their users to share their screens with others after
installing the Google voice and video chat plugin
[1]. Additionally, the screen can be shared using the
Chrome extension API and WebSockets [8]. The API
continuously captures the screenshots as images and
transmits the images to other sites via WebSocket. The
Chrome extension API chrome.desktopCapture is only
accessible to whitelisted extensions with whitelisted
origins.

• Techniques that Clone the Document Object Model
(DOM) to Simulate Screen Sharing: Another option
to share a user’s tab is transmitting an HTML DOM
object to other sites. In [9], the author describes two
methods to do so: using Mutation Observers to monitor
the changes of DOM objects, and mirroring the entire
HTML DOM.

• New HTML5 Screen Sharing API: The extension
of the getUserMedia() API built on WebRTC allows a
user’s screen to be shared via JavaScript as illustrated
in Figure 1. The detailed usage of the getUserMedia()
API is introduced in [10]1. We use Chrome 26 imple-
mentation as an example to explain the screen sharing
API here. Figure 2 shows the initiation of a screen
sharing session. There are two things to note. One is
that the API can work only over SSL connections. The
other is that the browser asks for the user’s permission
before it starts capturing the screen. After the user
grants the permission to share the screen, the API will
capture the entire visible area of the screen including
the area outside the browser. Also, the browser flashes
a red notification on the tab icon to alert the user that
his screen is currently being shared in this tab, as
illustrated in Figure 3.

var share = function share () {
var constraints = {
video: {

mandatory: {
chromeMediaSource: 'screen'

}
}

};
navigator.getUserMedia =
navigator.webkitGetUserMedia ||
navigator.getUserMedia;

navigator.getUserMedia(constraints,
onSharingSuccess, onSharingError);

};

Fig. 1. The usage of the screen sharing API: Google Chrome exposes the

chromeMediaSource constraint for developers to specify the video source. The

constraint is used as an argument of getUserMedia(). If the media source is

set as ’screen’, getUserMedia() would capture the entire screen into the media

stream.

Security Implications. Due to the fundamental differences
among screen sharing implementations, the new HTML5 API
has a very different security implication from the traditional
screen sharing techniques. In comparison to the screen sharing
techniques that require the user to download a plugin or an
extension, the site that uses the screen sharing HTML5 API
runs inside the browser and has the ability to control its own
page as well as open cross-origin content inside an iframe
or a new window. Although the browser’s same-origin policy
prevents the malicious site from accessing cross-origin content

1In Chrome 26, the user needs to enable screen capture support by setting

“Enable screen capture support in getUserMedia()” in chrome://flags.



Fig. 2. The browser requests the user’s permission for sharing his screen

with the host website. The screen sharing does not begin until the user grants

the permission.

Fig. 3. Once the user provides permission to capture the screen, the browser

flashes a red notification on the tab.

directly using JavaScript, using the new screen sharing API, the
malicious site can see the content belonging to cross-domains.
The malicious site can misuse this ability and force the browser
to open sensitive resources such as an email inbox page or
a victim’s bank account statement page inside iframes or in
new windows and capture the cross-origin content rendered
inside these new windows. Since the browser automatically
sends cookies for the respective sites, if the user is already
logged into those sites, the iframes embedded inside attacker’s
screen sharing website or new windows opened by the attacker
will reveal sensitive user information to the screen. Although
sensitive user information can be collected by an attacker’s
server, this information stealing may be imperceptible to victims
because of the limitation of human vision. For example, the
attacker can hide the malicious behavior by playing tricks such
as making content almost transparent or fairly small or flash
content fast. As is illustrated in Figure 4, the user’s vision
is different from the attacker’s capture. Note that even if the
user notices the attack, they cannot prevent against the attack
because the sensitive data has been stolen by the attacker when
the user sees the attack.

Fig. 4. The limitation of human vision allows the attacker to hide the

information stealing process.

III. THREAT MODEL

In-Scope Threats. In this paper, we are concerned with the
security impact of the new screen sharing API. We discuss
attacks which can be launched when a user is using a screen
sharing website to share his screen with other users. The attacker
could be the malicious screen sharing website or the other user
with whom your screen is shared.

As illustrated in Figure 5(a) and Figure 5(b), we consider
two threat models. In the first model, a malicious screen sharing
website attempts to steal the user’s sensitive information from
other target sites and the browser and to affect the integrity of
the user’s account state. Then, the user is using their browser
with accounts from target websites logged in, and screen sharing
with other users from an attacker’s screen sharing website is
initiated. The malicious screen sharing website embeds pages
of target websites in iframes or pop-ups and makes these
pages invisible to the user. In the second threat model, the
attacker is a malicious receiver. While they are sharing screens
together by a screen sharing service, the malicious receiver
sends some malicious links which embeds sensitive information
to the victim. As the malicious receiver can use tricks to hide
sensitive information and record the shared screen to extract
content invisible to human eyes, the victim might not be aware
of the attack. Even if the victim user finds something suspicious
and quits the screen sharing session, his sensitive information
has already been collected by the attacker. To provide a clear
outline of the threat models, we identify six roles involved and
define their abilities below.

• Malicious website: A malicious website is a web at-
tacker who hosts a website with a valid SSL certificate
and uses the screen sharing API to view the user’s
screen. The attacker lures the user to visit the site and
convinces the user to share the screen. Once the user
starts using screen sharing on the malicious website, the
web attacker displays the user’s sensitive information
on the screen. Since the content on the user’s screen
is sent to the screen sharing server during the screen
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(b) Malicious screen sharing user/receiver: The malicious user/receiver tricks the

benign user to click some malicious links during a screen sharing session. When the

benign user clicks on the links, sensitive information is disclosed to the malicious

user. Note that in this threat model, the screen sharing website is benign.
Fig. 5. Two threat models of attacks with the screen sharing API.

sharing session, the attacker can collect the user’s
sensitive information. Furthermore, the web attacker
can utilize the security credentials he gets from the
screen to launch more sophisticated attacks such as
CSRF attacks with the CSRF token, which is collected
from the user’s screen.

• Screen sharing website: Screen sharing website is
a website which provide screen sharing service. It
captures the screen from one user and forwards it to
another user.

• Benign user: A user visiting the malicious website
authorizes screen sharing with the attacker. The website
does not request the user to enter any sensitive data
when sharing the screen. Also, the user does not open
any browser tabs or windows that will reveal the user’s
personal data to the attacker. We assume that the user
does not log out of target sites such as Gmail, Wells
Fargo and Amazon. We argue that the assumption is
reasonable because most popular sites do not invalidate
the user’s session until the user logs out. Users might
believe that the attacker’s site cannot access their data
on other sites since the browser’s same-origin policy
prevents cross-origin data access. Therefore, the user
may not feel it is necessary to log out of services
before starting screen sharing. We also assume that
the user is an ordinary human with common vision
limitations such as not being able to catch content
which is flashing fast or see content which is almost
transparent. This means that if the attacker exploits
these human vision limitations to hide the process of
collecting sensitive information, the user cannot notice
it. Even if the user indeed notices the attack, it is
done almost instantly and their sensitive information
is already stolen by the attacker.

• Malicious User/Receiver: Malicious user/receiver re-
ceives the shared screen from the victim user and tries
to collect sensitive information from the victim user.
They steal the sensitive information by tricking the
user to click some malicious links during the screen
sharing session. After the victim user clicks through
the malicious links, the malicious user/receiver will
be able to look at the sensitive content such as user’s
account information, browsing history and CSRF token
from the shared screen.

• User’s Browser: We assume that the user uses
browsers that are patched for vulnerabilities allowing
history sniffing and autocomplete history stealing
reported in the past [11] [12] [13]. The web attacker
cannot bypass the same-origin policy enforced by the
browser, but can execute any JavaScript within the
context of the attacker’s domain, while still honoring
the same-origin policy.

• Target Sites: Target sites contain sensitive information
that an attacker wants to steal. Our threat model
assumes that target sites defend against cross-site
scripting (XSS) and CSRF attacks. These sites use
secret validation tokens to protect against CSRF attacks
and these tokens cannot be stolen by traditional web
attackers without screen sharing because they cannot
access cross-origin page sources.

Overall, the first threat model contains the following roles:
the malicious screen sharing website, the benign user, the
user’s browser, and the target website. The malicious screen
sharing website collects the user’s information by using invisible
iframe or pop-ups to steal user’s sensitive information. In the
second threat model, we consider the following parties: screen
sharing website, user, malicious user/receiver, user’s browser,



targeted websites. During a screen sharing session, and the
malicious user/receiver tricks the benign user to click some
pages with sensitive information. In this threat model, the attack
works even when the screen sharing website is benign. Note
that a malicious user/receiver and a malicious screen sharing
website can also collude to collect information. The screen
sharing attacks we proposed would work in HTML5-compliant
browsers (including mobile web browsers) without installing
additional software.

Out-of-Scope Threats. We do not consider the network
attacker. We assume that network attackers cannot steal any
sensitive information by acting as a man-in-the-middle (e.g., if
all of the target sites operate over HTTPS).

IV. ATTACKS USING SCREEN SHARING

A. Overview of Attacks

Screen sharing aims to provide a real-time communication
channel that allows users to share the visual contents of their
entire computer screen with other users. The visual channel
opens up capabilities of the screen sharing website to collect
information from different origins. The screen sharing website
can utilize some visual effects to make the content seen by
the user different from the real information displayed in the
screen. For example, the website can flash sensitive information
quickly or make an iframe look transparent. By combining
screen sharing with other tricks, the malicious screen sharing
website can collect sensitive information without users’ consent.
This idea inherently breaks the same-origin policy that restricts
web documents from leaking information to other domains.
Unfortunately, the current design of modern browsers does not
take screen sharing into account, thereby introducing multiple
security holes. In the following sub-sections, we describe how
an attacker can exploit these security holes and compromise
the user’s security. We show that it is possible to attack
several popular websites, such as Wells Fargo, Gmail and Bing,
using the screen sharing API thereby affecting the integrity
and confidentiality of the user’s session. A brief summary is
provided in Table I.

Steps of Attacks. Attacks listed in the table take two steps as
are illustrated in Figure 6. In the first stage, a user starts to
share his/her screen with the screen sharing website provided
by the attacker. The sensitive information from the user will be
collected, such as CSRF tokens and personal information. In the
second stage, the attacker server will send attack packets back
to their victim’s browser based on the information collected
in the first step. For example, the attacker server can send
forms with stolen CSRF tokens back to the browser to launch
the CSRF attack. For attacks on confidentiality, attackers only
need to get information from the user, hence they just need
to go through the first step. For attacks on integrity, attackers
need to implement the second step to send packets from a
user’s browser to victim websites. Due to the simplicity of this
process, the attacks can be easily automated and finished in a
short period. Detailed descriptions about attack processes will
be provided in the next section.

Security Principles Vulnerabilities
Integrity CSRF

Confidentiality Autocomplete history sniffing
User account history sniffing
Personal information theft
Browsing history sniffing

TABLE I. THE SCREEN SHARING API DISRUPTS THE INTEGRITY AND

CONFIDENTIALITY PRINCIPLES.

User�on�Malicious�Screen�
Att k Ssharing�Website Attacker�Server

1) Collect sensitive1)�Collect�sensitive�
information

2)�Send�
attack�flow

Fig. 6. The steps of launching attacks using Screen Sharing. 1. A victim

user starts to share his/her screen with the screen sharing website provided

by the attacker, and the attacker collects sensitive information from the user’s

screen. 2. The attacker sends packets from the user’s browser based on the

information collected in the first step.

B. Attacks on Integrity

Session integrity is essential for users and the websites
they trust to exchange data. If the attackers can compromise
session integrity, they can obtain unrestricted access to the
target site and perform actions on behalf of the user. One such
attack that affects the integrity of the user’s session is the
CSRF attack. In this attack, the attacker disrupts the integrity
of the user’s account state by forging a request with the user’s
credentials. A commonly adopted defense against CSRF attacks
relies on the trusted site setting secret validation tokens that
are only known by the user’s browser and sent back with the
request to authenticate the sender. However, the defense is
vulnerable in a situation where the content of the target site is
likely to be leaked to third parties [14]. Particularly, in the use
case of screen sharing, the user’s secret validation tokens are
accessible to the attacker hosting attacker.com with malicious
screen sharing services (see Figure 7). Once the user clicks
on a button to authorize screen sharing, the attacker could
inject code to embed an iframe with view-source links into
the DOM. If the target site (say, bank.com) doesn’t enable
X-Frame-Options [15], the view-source link will expose the
entire page source including the secret validation tokens to
the attacker2. Once the attacker obtains the secret token, the
attacker can send forged requests from the user’s browser. The
trusted site accepts this request since it contains the expected

2iframes can no longer render view-source links in Google Chrome and

Mozilla Firefox [7], [16].



Fig. 7. Steps of a CSRF attack. 1. attacker.com requests a page with secret validation tokens from bank.com. 2. The screenshots with the source code and secret

validation tokens are transmitted to the attacker’s server via the screen sharing API. 3. The attacker sends a form with a post request and the secret validation

tokens to attacker.com to transfer money. 4. The post request is sent from the user’s browser to bank.com and accepted by bank.com.

authentication information: the HTTP cookie and the secret
validation tokens.

Retrieving secret validation tokens from target sites is a
crucial step in a CSRF attack. The following piece of code
worked in our CSRF attack experiments. First, we used an
iframe with the view-source link to expose the source code on
the screen. The view-source link syntax is different between
Google Chrome and Firefox. For Google Chrome, the code is
implemented as follows:

<iframe viewsource="viewsource"
src="https://bank.com" ... />

For Firefox, the code has slight changes:

<iframe src=
"view-source:https://bank.com" ... />

Next, we exploit relative positioning of CSS to locate the
lines containing the secret validation tokens inside the iframe.
By using a negative value for top along with the position
property, we are able to scroll the iframe to a specific position.
For example,

<div
style="position:absolute;top:-2000px">
<iframe

style="width:800px;height:10000px"
viewsource="viewsource"
src="http://bank.com" />

</div>

With this technique, we can collect the CSRF token or other
security credentials from a size-limited window.

Using the code mentioned above, we test on multiple
popular websites that adopt secret validation tokens to defend
against CSRF. Below, we describe one case study of Wells
Fargo where we are able to break its defense mechanism
through screen sharing.

Wells Fargo. Wells Fargo uses session arguments extensively
in their websites. One usage is passing a session argument as
a URL parameter in the page to send money. The mechanism
impedes an attacker’s advances toward hacking; however, it
will not work while the user is sharing the screen because
the attacker can retrieve the URL from the source code. For
example, in Figure 8 the source code of the “Transfer” page
reveals the URL of “Send & Receive Money” which is supposed
to be secured by the session argument. Since the Transfer page
doesn’t enable X-Frame-Options, the attacker is able to use
iframes and view-source links mentioned above to extract the
URL.

When the attacker successfully lands on the “Send &
Receive Money” page, the attacker is able to perform a variety
of severe and persistent CSRF attacks because this page
contains multiple critical session arguments and URLs that
allow the attack to send forged requests. For example, in
Figure 9, the source code exposes the session arguments and
URLs for requests to update recipients, add recipients, and
manage contacts. The attack can expose critical information
to manipulate the user’s recipient and contact lists. Worse,
attackers can transfer money to their own accounts because the
page also provides a link to transfer money. In Figure 10, the
attacker sends a post request to wellsfargo.com which contains
the stolen session arguments and URLs to transfer money to
his account. Note that these attacks no longer work on Google
Chrome [7] and Mozilla Firefox [16] since these browsers do



Fig. 8. Secret session arguments can be retrieved from the source code by the

attacker during a screen sharing session, and these arguments can be applied

to mount further attacks.

not display page source using view-source links inside iframes.

C. Attacks on Confidentiality

Confidentiality of web sites guards users’ sensitive
information, such as email addresses and credit card
numbers, from being disclosed to third parties. To guarantee
confidentiality, many websites adopt encrypted communication
channels such as HTTPS to transmit data between servers
and clients. However, with the screen sharing functionality,
a malicious screen sharing website can collect cross-domain
content from victim websites by displaying target websites on
the screen. Therefore, HTTPS defense is entirely broken when
the screen sharing API is involved.

In the following discussion, we illustrate four attack methods
that can disrupt the confidentiality of trusted websites using
the screen sharing API: auto-complete history sniffing, framing
target websites, opening target websites in a new window and
browsing history sniffing. For auto-complete history sniffing,
attackers utilize the auto-complete feature of the browser to
collect history with characters invisible to the user. For framing
target websites, attackers navigate iframes to websites which
contain sensitive information and do not have X-Frame-Options
enabled. For websites which have X-Frame-Options turned on,
attackers open them in new windows. For browsing history
sniffing, attackers embed URLs to test if users have visited
certain websites. Through these approaches, attackers collect
information in three categories: personal information, account
activity, browsing history. Personal information includes the
user’s account name, password, email, address, and bank
account number. Account activities are the records of user
behaviors for one account, including purchase history, search
history, and transaction history. Browsing history is formed by

Fig. 10. The attacker can create a post request to send money with the stolen

arguments during screen sharing.

the sites the user has visited before.
We summarize how the attackers applying the four methods to
collect data from the three categories in Figure 11. In the next
few sections, we display the results from these attacks.

1) Autocomplete History Sniffing: Autocomplete is a
browser feature designed to save the user’s effort from typing
the same input repeatedly. User-supplied form values for text
fields are shared across different websites by the “name”
attribute. Take the Gmail login form for example. As shown in
Figure 12(a), the username entered into the Gmail login page
will automatically populate the autocomplete history for all
subsequent input fields bearing the same name as that on the
Gmail login page, which is “Email”.

The browser shares the same autocomplete database across
all websites. The only exception to this rule is that the browser
does not populate the input field if the type is set to “password”.
More specifically, the browser provides the password history
only to the page where the user had manually entered his/her
password initially. This prevents malicious websites from
stealing the saved passwords for other websites. Generally, the
user enters the same information for fields such as email, phone
numbers and address because this information that identifies
the user does not depend upon the website.

Though the browser saves the autocomplete history, the
browser prevents websites from directly accessing the auto-
complete history. For example, there is no DOM element
associated with the autocomplete history, which could be
accessed programmatically using JavaScript. However, Jeremiah
Grossman has discovered multiple vulnerabilities which can
allow a malicious website to steal the autocomplete history
by manipulating the autocomplete functionality [11]. Browsers
have patched the vulnerabilities that allow stealing personal
data [12].

Since the browsers have patched these issues, a malicious
website cannot access the autocomplete history programmati-
cally. Firefox resolved this issue by restricting the web pages
to programmatically send input to the text fields [13]. Google
Chrome 30, however, still allows passing inputs programmat-
ically to the text fields using JavaScript. This vulnerability
combined with the screen sharing feature enables the attacker
to brute force the autocomplete history for text-fields with
common “name” attributes such as name, email, address, and
age.

To prove this, we use the proof-of-concept from ha.ckers.org,



Fig. 9. Multiple session arguments are exposed in the source code. Therefore, the screen sharing attacker can collect these arguments and use them to generate
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Fig. 11. The attacker can apply the four methods to collect data from the

three categories.

which was used to demonstrate the autocomplete history steal-
ing attack on Safari [17]. This JavaScript code programmatically
supplies all possible characters as single character inputs to
the input text fields for each of the common text field attribute
names such as name, company, city, and email. The browser
automatically populates the autocomplete history, if it exists,
for the combination of the starting letter and the text field
attribute name. The sample result is shown in Figure 12(b).

Using this technique, the attacker forces the browser to
display the autocomplete history on the victim’s own page.

2) Browsing History Sniffing: Browsing history refers to
a list of web pages where a user has visited. Although the
information is secured by the user’s browser, the information
can be stolen in the context of screen sharing.

One attacking approach is to embed target links in the
attacker’s website that provides screen sharing services. The
attacker can infer the browsing history from the colors of
links rendered on the screen. Although vendors hide the render
differences between visited and unvisited links from JavaScript
in order to prevent history sniffing, they still expose the
differences to users for usability reasons; therefore, the screen
sharing attacker can display the links in a way users cannot
easily notice and capture the color of the links to infer the
browsing history of the user.

3) Framing Target Website: For websites that do not enable
X-Frame-Options, attacks can still succeed if attackers frame
pages that expose sensitive information. We demonstrate how
the attackersteal personal information in the following sections.

Account Activity Sniffing. Many websites provide users with
the option of seeing their account activity. For example, on
an e-commerce site, the user can see his transaction history.
Similarly, on a search engine site, the user can check his search
history. The URL of the page that stores the user’s activity
information is often static. Thus, the attacker can attempt to
open these URLs in a new window on the victim’s browser,
and if the victim is logged into these services, the pages will
expose the user’s account history.

Below, we illustrate two popular services that record the
account history at a static URL.

• Amazon:

1) http://www.amazon.com/%20gp/history?ie=
UTF8&ref =ya browsing history

2) https://www.amazon.com/gp/css/
order-history/ref=ya orders css.

These two pages store a user’s browsing and purchase
history. For example, Figure 13 shows the browsing
history of an Amazon account. Since the two pages are



(a) The browser automatically shows the strings from autocomplete history

that start with the letter(s) entered in the text field. For example, the figure

shows what the browser displays on entering the letter “j”.

(b) The attacker’s page enters “j” in the input text field to see the autocomplete

history related to the element that had the name attribute set to “Email”.

Fig. 12. Auto-complete History Sniffing

Fig. 13. The attacker can collect the browsing history of Amazon by displaying

the history page.

not protected by X-Frame-Options, the attacker can
load them inside an iframe on their website.

• Bing:

http://www.bing.com/profile/history. Bing stores a
user’s search history locally, irrespective of whether
the user is currently logged in or not. As illustrated
in Figure 14, the Bing history page keeps the search
history, organizing the terms searched by users in blue
blocks with respect to time. By opening the URL, an
attacker can retrieve the user’s search history from the
screen.

As for Google Search, users are asked to enter their
passwords before they can see their search history. Since our
threat model assumes that the user does not have to enter any
sensitive information on the screen while his screen is being
shared, Google Search history cannot be stolen using this
technique.

Personal Information Theft. These attacks are similar to
account history sniffing expect for the information at risk. The
attacker can get sensitive information from a user if the user
is logged in their account. The attacker can steal information
stored at static URLs with the help of screen sharing by opening

Fig. 14. The attacker can steal the search history of Bing during screen

sharing.

such pages inside the user’s browser. For example, some of
the popular services that store sensitive account information at
static URLs are shown below.

• ebay:
http://my.ebay.com/ws/eBayISAPI.dll?
MyeBay&CurrentPage=MyeBayPersonalInfo&gbh=
1&ssPageName=STRK:ME:LNLK. This URL reveals
sensitive user information such as the user’s address
email, ID and payment methods.

• Amazon:
To purchase goods and deliver them to a user’s address,
the user inputs payment and address information into
their Amazon account page. The attacker can embed
the page that records payment information in the
screen sharing page. Figure 15 is a screenshot for the
information that would be collected by the attacker.



Fig. 15. The attacker can collect payment and address information from

Amazon.

Fig. 16. The attacker displays activity history of Paypal.

4) Open Target Sites in New Browser Windows: Even if
the websites are protected from being loaded inside an iframe,
an attacker can still steal the secret information because the
attacker can see the pages containing sensitive information
by opening them in a new window. The attacker can make it
imperceptible to the user by opening and closing the window
really fast. Similarly, they can also collect personal and
account activity information. We use the following examples
to illustrate such attacks.

Account Activity Sniffing. Websites hosting sensitive account
activity information are vulnerable when X-Frame-Options are
not enabled. Here we chose PayPal as an example.

• Paypal:
https://www.paypal.com/us/cgi-bin/webscr?cmd=

history&nav=0%2e3. Paypal keeps track of transaction
history for users, including email address of senders
and receivers, as well as other detailed information of
the transactions (see Figure 16).

Personal Information Theft

We experimented with popular websites and found that
attackers can steal information from many websites by opening
the target websites in a new window. This is not an exhaustive
list of static URLs that host sensitive content. The aim of this
section is only to demonstrate that it is easy for an attacker to
launch such attacks.

• Google:
Google hosts a variety of services, such as Gmail,
Google Contacts, and Google Calendar. Since these
web pages contain plenty of sensitive information, an
attacker can exploit pop-up windows to open these web
pages. For example, the attacker can steal the user’s
Gmail and Google Doc by opening the following links
during the screen sharing session:

1) https://mail.google.com/mail/#inbox
2) https://drive.google.com/?tab=mo&authuser=

0#my-drive

• PayPal:
PayPal maintains personal information, such as a
user’s SSN, email, phone number and address, in
the profile page ( https://www.paypal.com/webapps/
customerprofile/summary.view?nav=0%2e6). The at-
tacker can collect the user’s information by opening
the profile page using a popup window (see Figure
17).

• Facebook:
For Facebook, the attacker can pop out a window and
navigate to https://www.facebook.com/messages/ and
https://www.facebook.com/friends?ft ref=mni to steal
Facebook messages and other sensitive information.

V. ANALYSIS AND DISCUSSION

With the visual channel created by screen sharing API, the
assumption that websites cannot access the cross-origin content
directly is broken. Therefore, current defenses which are based
on the assumption can be bypassed by the attacks using screen
sharing API. In this section, we first present our analysis about
the practical relevance of the attack, and then demonstrate how
the attacks bypass the current defenses. Finally, we discuss
some potential solutions of the problem for browser vendors,
websites and users and compare their security and usability.

A. Feasibility of Screen Sharing Attacks

The screen sharing attacks are feasible and imperceptible
to users owing to the following reasons. First, the screen
sharing attack becomes more workable when it is combined
with orthogonal attacks such as phishing attacks and social
engineering. The user might be tricked to click on a malicious
website for screen sharing. Even when the user is in the process



Fig. 17. The attacker can collect sensitive personal information from PayPal

by displaying the account information page.

of screen sharing on a benign website, the screen sharing attack
could also be fulfilled. For instance, if the user has a friend
whose account has been compromised, the friend could invite
the user into a screen sharing session and convince the user
to click adversarial links. Generally speaking, once the screen
sharing session starts, the attack becomes possible.

Second, the adversary is capable of playing some tricks
to render the attack invisible to user due to the limitation of
human vision. The user can hardly notice the flashing content
and almost transparent content. Even if the user observes
something suspicious and stops the screen sharing, the attacker
has already captured the sensitive information and finished the
attack. Finally, to make the attack even less observable, the
attacker can combine the timing attacks to determine whether
the user is logged into the target websites. The attacker may
choose to only launch attacks when the user has active sessions
with the target websites.

B. Deficiencies of Current Defenses

In Section IV, we demonstrate a variety of attacks that
could compromise the integrity and confidentiality of trusted
websites. Modern browsers such as Google Chrome and Firefox
may be vulnerable to those attacks because the defenses they
currently adopt do not consider the security implications of the
screen sharing API. Those defenses make certain assumptions
that are no longer valid if screen sharing is being used.

As listed in Table II, the assumptions of the CSRF, history
sniffing, and SSL defenses are not valid in the context of
screen sharing. The CSRF tokens, which is the most widely

implemented CSRF defense, can be stolen by the combination
of the view-source link and the screen sharing API. The defenses
that block JavaScript queries against history sniffing can also
be compromised because an attacker can see a user’s history
directly from the screen. SSL cannot guarantee the integrity
and confidentiality of the user’s session with a trusted website
because the attacker is able to access the raw data that is already
decrypted in the client side.

C. Discussion about Potential Defenses

As we discussed in the last section, current defenses
deployed by browsers and websites are not designed against
the screen sharing API and cannot stop all attacks. This
demonstrates that new defenses need to be developed to secure
the API. Therefore, we propose several potential defenses
against screen sharing atttacks. These defenses can be classified
into 3 categories : security enhancement for browser vendors,
best practices for websites and best practices for users. We
compare the usability and security of the potential defenses
(see Table III) and analyze the details of these methodologies in
the following sections. A privacy-preserving and more usable
solution will require further investigation.

1) Security Enhancement in Browsers: To defend and
mitigate against these attacks, browser vendors can enforce
constraints over screen sharing. We discuss potential defenses
below, and compare the pros and cons of these approaches.

Restrict loading View-source Links The view-source option
is vulnerable because attackers can exploit it to get access to
source code that contains sensitive information such as CSRF
tokens. Browsers should prevent view-source links to be opened
through JavaScript. The page that displays the page-source
should be opened only when the user makes an explicit
request through the browser UI and not programmatically
using JavaScript. This lightweight approach can reduce the
attack surface introduced by screen sharing. Chrome has
removed the access to view-source pages in iframes via
Javascript after this issue was reported. This issue is also
patched in the latest Firefox version. However, these patches
can not defend against viewing the cross-origin page in pop-ups.

Incognito Mode. One of the most intuitive ways to defend
against screen sharing attacks is to enforce incognito mode
when screen sharing is initiated. However, this approach
itself cannot throughly assure privacy during screen sharing.
Before incognito mode is launched, attackers can pop up
windows containing sensitive information and hide them in the
background. Once the screen sharing session starts, attackers
can change the focus of the screen to display those hidden
windows.



Defenses False Assumptions Attacks
CSRF defense using secret
validation tokens

Secret validation tokens are secured by the
browser

Attacker can use the view-source link to expose
the tokens

Block JavaScript queries for
CSS styles

History information is guarded by the browser iframe and window objects can directly expose
an user’s history

SSL Content transmitted via SSL is not readable
to the attacker

Read the data after the browser decrypts it and
renders on the screen.

TABLE II. DEFICIENCIES OF CURRENT DEFENSES FOR SCREEN SHARING ATTACK

Category Approach Usability Security Implementation Effort

For browser vendors

Restrict loading view-
source links

High, no user interac-
tion

Medium, can block
CSRF attacks, but
not the secrecy at-
tacks

Minor, remove a feature

Incognito mode Medium, require ba-
sic user interaction

Medium, cannot
block user from
seeing pre-opened
pages

Medium, add feaure to run
incognito mode when shar-
ing screen

Fine-grained sharing Low, need user to
configure tediously

High, can block most
attacks

Medium, add a feature

Share one-tab at a
time and constrain
cross-origin content

Medium, require ba-
sic user interaction

High, can block most
attacks

Medium, add a feature

For websites
Implement proper
CSRF defenses

High, no user interac-
tion needed

Medium, can not
block secrecy attack

Medium, add a feature

Implement X-Frame-
Options headers

High, no user interac-
tion needed

Medium, can not
block pop-up attacks

Medium, add a feature

For users Log out other web-
sites

Low, need user to
configure tediously

High, can block most
attacks

None

TABLE III. COMPARISON OF POTENTIAL DEFENSES

Fine-grained Sharing. Setting up a fine-grained scope for
screen sharing and/or asking users to specify the domains they
want to share help to confine the capability of attackers. When
users share content at the DOM element level, the attacker can
only obtain the DOM elements the users choose to share. This
presumes that users know which elements contain sensitive
information and they are not tricked into sharing elements
they do not want to share. However, because it is tedious
for users to select the DOM elements every time, they might
tend to select more elements than intended, or even all of the
elements to share. The same usability issues might also arise
when users are asked about what domains they want to share.
Users might end up approving the screen sharing website to
handle information from more origins than needed.

Share one-tab at a time and constrain cross-origin content.
The idea is to only allow sharing content of one tab each time
and set up constraints for cross-origin content, as is illustrated
in Figure 18.

First, we can prevent attacks of collecting information from

Screen Sharing Website 

Cross-
Origin 
Content 

Tab A 
Tab B 

Only  one tab is 
shared at a time 

Prevent cross-
origin content 
from being 
displayed 

Fig. 18. Defense by sharing one-tab at a time and constraining cross-origin

content

other tabs by enforcing users to only share one tab at a time.
Every time the user wants to share another tab, he needs to
choose the new tab and reinitiate screen sharing. The new tab



will be reloaded before it is shared to make sure no historic
information is leaked to the sharing server. The sharing process
will be disabled in the former tab and enabled in the new tab.
By enforcing this approach, the attacks which exploit bugs
to pop out windows or change the focus of screens will be
blocked. Most of the screen sharing use cases involve a single
tab and are not affected by this defense.

Secondly, we constrain the content in the iframe during
screen sharing to prevent attackers from getting useful infor-
mation, such as tokens or other credentials, by framing to
other websites. There are two options to block the cross-origin
information leakage in iframes. One option is to blank out
the cross-origin content in the iframe. If the attacker tries to
embed iframes to other origins, they will only get empty pages.
However, it might bring along some usability issues to the user.
Another is blocking third-party cookies. Even if attackers try
to iframe to victim websites and the user has logged into their
account in the victim website, the attackers can only get the
login page. If they want to collect sensitive personal information
or account information, they will need the user to log in from
the iframe again. This approach will break some applications
which depend on third-party cookies, such as advertisements
and the Facebook Like button. Though the constraints on iframe
content might reduce usability, they improve the security of
the API and they are only enabled when users are sharing the
screen.

Limiting screen sharing to only one tab at a time and using
iframe cross-origin filters will reduce the attack surface and
retain most of the screen sharing use cases. It is the most
promising idea which strikes a balance between security and
usability. Chrome starts to work on tab pickers for screen
sharing, while blocking third party content is still under
discussion.

2) Best Practices for Websites: Websites can defend against
the basic attacks that exploit screen sharing by implementing
controls such as X-Frame-Options and verifying the ORIGIN
header, however they cannot defend against sophiscated screen
sharing attacks such as stealing information by opening new
windows. In the following sections, we discuss about these
standard defenses which can be used to reduce the attack surface
and their deficiencies.

Implement CSRF defenses with ORIGIN header. Websites
can prevent CSRF attacks in which the attacker steals the secret
token by viewing it in the source by verifying the ORIGIN
header. So even if the attacker gets the token via the shared
screen, he would not be able to complete the attack if the server
verifies the ORIGIN. Note that ORIGIN header should not be
used as an alternative to CSRF tokens but should be used as an
additional defense, since the ORIGIN header is only supported
in WebKit-based browsers, not Firefox or Internet Explorer..

Implement X-Frame-Options headers. Websites can prevent
their sensitive pages to be loaded inside malicious websites,
thus preventing the attacker to view-source inside an iframe.
However, the attacker can still get around this defense by
opening the target webpage in a new pop-up window.

Avoid using Double Submit Cookies. Instead of generating
a new token, the double submit cookies technique [18] uses
a session ID as a random token. The session ID present in
the cookie is copied in the page source and is submitted as
a CSRF token. It assumes that the attacker cannot extract
the session ID, so this ID can act as a random CSRF token.
However, with the assistance of screen sharing, the attacker
can easily read the page source. In such cases, using the
double submit cookies technique will not only break the CSRF
defense but also result in a session hijacking attack.

3) Best Practices for Users: There are a few ways for
users to mitigate screen sharing attacks, such as only using
trusted screen sharing websites with trusted users or logging
out of important accounts, although the latter may sacrifice the
usability of screen sharing. For example, the users need to log
out of their bank accounts before sharing the screen, and log
in again after the screen sharing session is terminated. These
repeated activities are usually not preferable. Therefore, this
approach is not as effective as browser-based or website-based
solutions because it heavily depends on user actions.

VI. RELATED WORK

CSRF Attacks and Defenses. Basic CSRF attacks have been
known to the community for several years. For these sites that
are already vulnerable to basic CSRF attacks, the screen sharing
API is not required to compromise the account. These sites
are out of scope for our paper. Our CSRF attack focuses on
the websites that implement the most popular CSRF defenses.
Past studies show various techniques of stealing the CSRF
tokens; however, these methods have limitations. E. Vela [19]
demonstrates a heavy-load CSS-only attribute reader by using
attribute-selectors. However, it is not practical to read CSRF
tokens with high entropy within a short period. Heiderich et
al. [20] propose another CSS attack by using features such as
web-fonts based on SVG and WOFF, CSS-based animations
and the CSS content property to extract CSRF tokens. This
attack requires around 100 HTTP requests, whereas screen
sharing attacks can steal CSRF tokens easily. In addition, their
attack focuses on CSRF token protected links, so the attack will
not work in the scenario where the CSRF token is not attached
to the links. In contrast, the attack using the screen sharing
API can extract any CSRF tokens, irrespective of whether the
X-Frame-Options are set or not by the target page. A recent
work on CSRF is implemented against Facebook [21]. The
author proposes to frame the Facebook pages not protected by
X-Frame-Options such as plugins, and then generate a captcha
from the CSRF token. The attacker has to trick the user to
input the captcha to get the CSRF token. The attack needs to
interact with the user multiple times such as requesting user
permission for the plugin and asking the user to input the CSRF
token. Note that the screen sharing attack does not need such
information.

There have been multiple proposals for CSRF defenses.
SOMA [22] and App Isolation [23] provide CSRF defenses
by defining valid entry points for the website. This can protect
against the CSRF attacks using the screen sharing API, but



it is infeasible to whitelist every entry point. Moreover, the
web relies heavily on interlinks, so these solutions were not
widely adopted. Gazelle [24] and Tahoma [25] provide cookie
isolation between different apps, which also protect them from
CSRF attacks. However, the strict isolation has some usability
issues. et al. [14] investigate current CSRF defense methods
such as CSRF tokens, Referer header validation, and custom
header, and also propose an approach of checking the origin
of request. According to their study, the CSRF token, which
is the most popular defense, is reliable if well implemented.
However, we find that the CSRF token defense does not work
during screen sharing because the attacker can read the CSRF
token directly. Mao et al. [26] propose a defense by inferring
if a request reflects a user’s intentions. To judge the intentions,
Mao et al. suggest checking Source-set of a request, which
includes its referer and all web pages hosted in ancestor
frames of the referer. However, referer information can be
manipulated by the attacker and sending referer information
also raises privacy concerns.

Frame Busting. Rydstedt et al. [15] propose best practices
for writing frame busting code in JavaScript, which was
used widely before the X-Frame-Options were adopted. A
survey about frame busting techniques show that most of
these techniques are not reliable and can be bypassed. We
find that around 55 percent of the Alexa top 100 websites
are using X-Frame-Options, but it is tricky to add the option
to all the sensitive web pages within a domain. For screen
sharing attacks, even if proper frame busting techniques and
X-Frame-Options are used, we can still use pop-up windows
to open target sites and steal sensitive information.

XSS. XSS is a common approach to stealing a user’s sensitive
information [27]. If malicious JavaScript is allowed to be
executed within target sites, the attacker can access content
from those sites. Many XSS defenses [28] [29] [30] are
adopted to defend against XSS. However, the defenses are
still vulnerable in the context of screen sharing. The defenses
would not hinder the attacker from accessing the user’s
information because the attacker can directly see the user’s
information from the screen.

History Sniffing. History sniffing attacks discovered in
the past were based on reading the difference between the
rendered color of the visited and unvisited links using CSS and
JavaScript [20] [31] [32] [33]. However, the vulnerabilities
that allowed such attacks were fixed by browser vendors
because of the prevalence of the attack vectors. David Baron
from Mozilla [34] proposed a defense such that the true status
of the link, whether it is visited or not, is never revealed to
JavaScript. However, the links are still rendered with different
colors on the screen. It was assumed that this differentiation is
only visible to the user but the screen sharing API enables the
attacker to capture the screen directly to observe the color of
the links.

Screen-Capture Attack. To the best of our knowledge,

previous work related to attacks that steal the user’s screen are
limited to only stealing credentials. For example, [35] talks
about stealing the password while it is being entered through
the virtual on-screen keyboard. However, their assumption
for user is stronger than us. We assume that the user will
not input any sensitive information while his screen is being
shared, which is more reasonable.

Vulnerabilities of other HTML5 APIs Apart from the screen
sharing API, there are other HTML5 APIs utilized to perform
web attacks. One of such vulnerable APIs is the fullscreen API
that allows developers to trigger the web page to be displayed
in a full screen. By using the API, malicious web applications
are able to launch phishing attacks with fake UI of target
sites [36]. Another example is the postMessage API which
aims to provide authenticity and confidentiality for cross-origin
communication. The API is broken because developers fail to
follow its complicated practices [37].

VII. CONCLUSION

The new screen sharing API enables developers to create
rich web applications that can share media in real-time.
However, the new API affects the fundamental browser security
principle of the same-origin policy by creating a feedback loop
from the user to the server. We have analyzed the security
concerns raised this new screen sharing API. We discussed
how it allows viewing cross-origin content and how attackers
can exploit it. As a result, the integrity and confidentiality of
user’s information is at risk since attackers can manipulate
the victim’s session state with a trusted website, and view the
victim’s sensitive information. The browser vendors should
analyze the possible impact on user’s security before releasing
this API in stable versions. Users need to be aware of the
various security and privacy concerns raised by this new API
so that they can protect themselves from leaking information to
malicious screen sharing services. In summary, the capabilities
of the new HTML5 screen sharing API have rendered existing
security methods vulnerable. To counter those vulnerabilities,
this paper provides a new paradigm for understanding screen
sharing attacks. We envision that our study will encourage
further research to find solutions for browser vendors, web
developers, and users to defend against screening sharing attack.
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