Chike Abuah

Alex Silence David Darais Joe Near

DDUO: General-Purpose **Dynamic Analysis** for Differential Privacy

UVM PLAID Galois Inc.

DDUO makes it easy to automatically enforce privacy

def dp gradient descent(iterations, alpha, epsilon): eps i = epsilon/iterations theta = np.zeros(X train.shape[1]) for i in range(iterations): = gradient_sum(theta, X_train, y_train, sensitivity) grad_sum noisy_grad_sum = duet.renyi_gauss_vec(grad_sum, α =alpha, ϵ =eps_i) noisy_avg_grad = noisy_grad_sum / X_train.shape[0] theta = theta - noisy avg grad return theta

- Usable
- For non-experts
- Capable of complex algorithms

DDUO is prototyped in Python

- DDUO provides a dynamic analysis for enforcing differential privacy, embedded in a general purpose language (Python).
- Expresses privacy concepts such as sequential composition naturally in Python with pythonic idioms such as with blocks.

```
with dduo.Eps0dometer() as odo:
    _ = dduo.laplace(df.shape[0], ε = 1.0)
    _ = dduo.laplace(df.shape[0], ε = 1.0)
    print(odo)
```

The DDUO Analysis System

Sensitivity Analysis: Object Proxies

from dduo import pandas as pd
df = pd.read_csv("data.csv")
df

no change to sensitivity environment
df + 5

doubles the sensitivity
df + df

(df * 5, df * df)

>>> Sensitive(<'DataFrame'>, data.csv \mapsto 1, $L\infty$)

>>> Sensitive(<'DataFrame'>, data.csv \mapsto 1, L_{∞})

>>> Sensitive(<'DataFrame'>, data.csv \mapsto 2, L_{∞})

>>> (Sensitive(<'DataFrame'>, data.csv → 5, L∞), Sensitive(<'DataFrame'>, data.csv → ∞, L∞))

Conditionals

if df.shape[0] == 10: return df.shape[0] else: return df.shape[0] * 10000

```
if dduo.gauss(ε=1.0, δ=1e-5, x) > 5:
    print(dduo.gauss(ε=1.0, δ=1e-5, y))
else:
    print(dduo.gauss(ε=10000000000.0, δ=1e-5, y))
```

- Branching on sensitive values is disallowed

- Adaptive privacy analysis requires use of odometers/filters

Privacy Analysis: Filters and Odometers

dduo.laplace(df.shape[0], ε=1.0)

with dduo.EpsOdometer() as odo:

- $= dduo.laplace(df.shape[0], \epsilon = 1.0)$
- _ = dduo.laplace(df.shape[0], ε = 1.0)
 print(odo)

with dduo.EdFilter($\epsilon = 1.0$, $\delta = 10e-6$) as odo: print('1:', dduo.gauss(df.shape[0], $\epsilon=1.0$, $\delta=10e-6$)) print('2:', dduo.gauss(df.shape[0], $\epsilon=1.0$, $\delta=10e-6$)) >>> 9.963971319623278

>>> $Odometer_{\varepsilon}(data.csv \mapsto 2.0)$

>>> 1: 10.5627 Traceback (most recent call last):

dduo.PrivacyFilterException

...

Loops, Composition, Variants

sequential composition
with dduo.EpsOdometer() as odo:
 for i in range(20):
 dduo.laplace(df.shape[0], ε = 1.0)
 print(odo)

advanced composition
with dduo.AdvEdOdometer() as odo:
 for i in range(20):
 dduo.gauss(df.shape[0], ε = 0.01, δ = 0.001)

variant mixing

with dduo.EdOdometer(max_delta = 1e-4) as odo: with dduo.RenyiDP(1e-5): for x in range(200): noisy_count = dduo.renyi_gauss(α = 10, ε=0.2, df.shape[0]) print(odo) - sequential composition

- advanced composition

- variant mixing

Gradient Descent in DDUO

def dp_gradient_descent(iterations, alpha, epsilon):

eps_i = epsilon/iterations

theta = np.zeros(X_train.shape[1])

```
for i in range(iterations):
```

grad_sum = gradient_sum(theta, X_train, y_train, sensitivity)
noisy_grad_sum = duet.renyi_gauss_vec(grad_sum, α=alpha, ε=eps_i)
noisy_avg_grad = noisy_grad_sum / X_train.shape[0]
theta = theta - noisy_avg_grad
return theta

Case Studies: Dynamic Enforcement of Privacy

Algorithm	Libraries Used	Baseline	Instrumented Version	Overhead (% increase)
Noisy Gradient Descent	NumPy	5.922s	6.302s	6.42%
Multiplicative Weights (MWEM)	Pandas	0.725s	0.833s	14.90%
Private Naive Bayes Classification	DiffPrivLib	2.155s	2.423s	12.44%
Private Logistic Regression	DiffPrivLib	2.022s	3.161s	56.33%

DDUO: General-Purpose Dynamic Analysis for Differential Privacy

- Enforcement for differential privacy is important: Buggy programs silently violate your privacy
- Automated enforcement of privacy can be practical

Contributors

Chike Abuah, Alex Silence, Vanessa White, David Darais, Joe Near