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» Quantitative Information Flow (QIF): quantifying how much information systems
leak

» Entropy: a quantity H, measuring uncertainty, that has two forms
» Unconditional form: H(X), a function of px
» Conditional form: H(X[Y'), a function of py, {px|y}y

» Information Leakage: Iy (X;Y)=H(X)—- H(X|Y)
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H(X) = —logmax p(z)
T
» Guessing entropy: brute-force scenarios

= Zip(x[i]) where p(x(;) > p(xp)) >

» Shannon Entropy: expected number of “yes or no" questions
Zp ) log p(x

» ... and many more
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» Moreover, given a unconditional form, there are different ways of obtaining a
conditional form, depending on the scenario at hand

» Averaging (AVG):
H(X|Y) = ZP H(X|y)

» Quantifies the expected leakage: large Ieakage is acceptable if it happens with low
probability (e.g. password checker)

» Minimum (MIN):
H(X|Y) =min H(X|y)
Yy
» A worst-case scenario: useful when large leakage is unacceptable, even if unlikely
(e.g. privacy)
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» What choices of unconditional and conditional forms are entropies that “make
sense” ?

» To solve this problem, Alvim et al' considered the following intuitively-reasonable
properties

» Conditioning reduces entropy (CRE): H(X|Y) < H(X) (observing Y does not
increase uncertainty)

» Data-Processing Inequality (DPI): If X - Y — Z, H(X|Y) < H(X|2)
(postprocessing the output does not reduce uncertainty)

Ko
= Ky = W Joi=

IM.S. Alvim et al, Axioms for Information Leakage (CSF 2016)
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» If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is
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» This characterises two important families of entropy
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» The ones that satisfy minimum and quasiconcavity: Oyy
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» 1-Averaging (EAVG): The pair H = (1, F') satisfies EAVG if

H(X|Y) —n(Zp X\?J)

Theorem (Alvim et al, 2016 and Américo et al, 2020)

If the conditional form of H= (1), I') is n—averaging, then H satisfies DPI and CRE iff
H = (n, F) is core-concave

If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is
quasiconcave

> We denote the family of entropies satisfying EAVG and CCV by Hgavg.
» Notice that Cpyg C Heave, by taking n = id.
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» And the ones in Qyy, defined by a quasiconcave H(X) and minimum, which
represents the worst-case leakage ones. We refer to them as worst-case entropies
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Theorem
Heave C Q and Quy C 9

» That Heave C Q is immediate, by taking constant sequences in Heaye.
» Proving Ouy C Q is a bit more tricky

» A first obstacle is that, in general, for a quasiconcave H(X), there is no
(7’]7 F) € Heaye such that H(X) = n(F(X))

» This has been first discovered by Bruno de Finetti in the paper Sulle stratificazioni
convesse (1949), motivated by the study of utility functions in microeconomics
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Connell and Rasmussen proved that any quasiconcave function is the limit of a
uniformly convergent sequence of core-concaves.

» Moreover, in the work in which we extended Alvim et al's results, we also proved
that for all (1, F') € Hgave, there is a sequence (7;, F;) in Hgaye such that

lim 7; (Zp Fi(Xy) ) = m;nn(F(X!y))

» By combining these results, we were able to prove that Qumy C 9
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information-theoretical properties:
» Additional information increases entropy: H(X,Y) > H(X),
H(X,Y|Z) > HX|Z)
> A weaker form of subadditivity: H(X,Y) < H(p) where p(x,y) = px(x)/|YV]
» Shannon's perfect secrecy: a symmetric encryption scheme in which a message M is
encrypted using a key K can only be perfectly secret and correct if H(M) < H(K)
» A bound in terms of probability of error, that generalises Fano's inequality:
é é

H(X|Y)§H<1é,n_ R >

1’ "n—1

where é = Zy p(y)(1 — max, p(z|y))
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» An entropy H = (n, F') satisfies 7-geometric mean (EGM), if
H(X[Y) = (IT, (F(X )™ .
Proposition

If H = (n, F) satisfies EGM, CCV and if F' is nonegative, H € Q

» These CCV+EGM entropies have never been considered in QIF.

» However, our results guarantee that they satisfy CRE, DPI, and the other
aforementioned information-theoretical inequalities.
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