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Introduction: The Basic Setting

I A secret X (random variable) is fed to a System K

I There is an adversary that wishes to obtain information about X, and has some
prior knowledge pX

I K produces an output Y = y according to the conditional probability:
K(y|x) = p(y|x).

I The knowledge of the adversary is updated to the conditional pX|y
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Introduction: Quantifying Information

I Quantitative Information Flow (QIF): quantifying how much information systems
leak

I Entropy: a quantity H, measuring uncertainty, that has two forms

I Unconditional form: H(X), a function of pX
I Conditional form: H(X|Y ), a function of pY , {pX|y}y

I Information Leakage: IH(X;Y ) = H(X)−H(X|Y )
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Entropies: Unconditional Forms

I Different functions for the unconditional form reflect different attack scenarios:

I Min-entropy: guessing secret in one try

H∞(X) = − logmax
x

p(x)

I Guessing entropy: brute-force scenarios

HG(X) =
∑
i

ip(x[i]) where p(x[i]) ≥ p(x[2]) ≥ . . .

I Shannon Entropy: expected number of “yes or no” questions

H1(X) = −
∑
x

p(x) log p(x)

I ... and many more
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Entropies: Conditional Forms

I Moreover, given a unconditional form, there are different ways of obtaining a
conditional form, depending on the scenario at hand

I Averaging (AVG):

H(X|Y ) =
∑
y

p(y)H(X|y)

I Quantifies the expected leakage: large leakage is acceptable if it happens with low
probability (e.g. password checker)

I Minimum (MIN):
H(X|Y ) = min

y
H(X|y)

I A worst-case scenario: useful when large leakage is unacceptable, even if unlikely
(e.g. privacy)



6

Entropies: Conditional Forms

I Moreover, given a unconditional form, there are different ways of obtaining a
conditional form, depending on the scenario at hand

I Averaging (AVG):

H(X|Y ) =
∑
y

p(y)H(X|y)

I Quantifies the expected leakage: large leakage is acceptable if it happens with low
probability (e.g. password checker)

I Minimum (MIN):
H(X|Y ) = min

y
H(X|y)

I A worst-case scenario: useful when large leakage is unacceptable, even if unlikely
(e.g. privacy)



6

Entropies: Conditional Forms

I Moreover, given a unconditional form, there are different ways of obtaining a
conditional form, depending on the scenario at hand

I Averaging (AVG):

H(X|Y ) =
∑
y

p(y)H(X|y)

I Quantifies the expected leakage: large leakage is acceptable if it happens with low
probability (e.g. password checker)

I Minimum (MIN):
H(X|Y ) = min

y
H(X|y)

I A worst-case scenario: useful when large leakage is unacceptable, even if unlikely
(e.g. privacy)



7

Characterisation of Entropies

I What choices of unconditional and conditional forms are entropies that “make
sense”?

I To solve this problem, Alvim et al1 considered the following intuitively-reasonable
properties

I Conditioning reduces entropy (CRE): H(X|Y ) ≤ H(X) (observing Y does not
increase uncertainty)

I Data-Processing Inequality (DPI): If X → Y → Z, H(X|Y ) ≤ H(X|Z)
(postprocessing the output does not reduce uncertainty)

1M.S. Alvim et al, Axioms for Information Leakage (CSF 2016)
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Alvim et al’s Characterisation of Entropies

I They proved the following:

I If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is
concave (CV) over pX

I If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is
quasiconcave (QCV) over pX

I This characterises two important families of entropy

I The ones that satisfy averaging and concavity: CAVG
I The ones that satisfy minimum and quasiconcavity: QMIN
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Core-concave Entropies

I However, many entropies in the literature are not in CAVG or QMIN

H∞(X)=− logmax
x

pX(x) H∞(X|Y )=− log
∑
y

p(y)max
x

p(x|y)

I In a recent work2 in collaboration with MHR Khouzani, we extended the results
from Alvim et al

I Entropies are pairs H = (η, F ) such that η is increasing and H(X) = η(F (X))

(note: any unconditional H can be described this way, by the pair (id, H))

I Core-concavity (CCV): H = (η, F ) satisfies CCV if F is concave over pX
I η-Averaging (EAVG): H = (η, F ) satisfies EAVG if

H(X|Y ) = η

(∑
y

p(y)F (X|y)

)
2Arthur Américo, MHR Khouzani and Pasquale Malacaria, Conditional Entropy and Data

Processing: an Axiomatic Approach Based on Core-Concavity (2020)
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Extension to Core-concave

I Core-concavity (CCV): H = (η, F ) satisfies CCV if F is concave over pX
I η-Averaging (EAVG): The pair H = (η, F ) satisfies EAVG if

H(X|Y ) = η

(∑
y

p(y)F (X|y)

)

Theorem (Alvim et al, 2016)

If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is
concave
If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is
quasiconcave

I We denote the family of entropies satisfying EAVG and CCV by HEAVG.

I Notice that CAVG ⊂ HEAVG, by taking η = id.
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I Entropies in QIF are thus divided into two distinct families

I The ones in HEAVG, defined by a core-concave (η, F ) and η-averaging. We refer to
them as core-concave entropies

I And the ones in QMIN, defined by a quasiconcave H(X) and minimum, which
represents the worst-case leakage ones. We refer to them as worst-case entropies

I Can we find some generalising definition that includes both families?

I Yes, we can!
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I Let {H i = (ηi, Fi)}i be a sequence in HEAVG, such that ηi ◦ Fi converges
uniformly. We define the limit of {H i} to be the entropy H defined as

I H(X) = limi→∞ ηi(Fi(X))

I H(X|Y ) = lim supi→∞ ηi

(∑
y p(y)Fi(X|y)

)
.

I We denote by Q the set of all limits of sequences of entropies in HEAVG. We call
these entropies limit entropies

Theorem

HEAVG ⊂ Q and QMIN ⊂ Q
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HEAVG ⊂ Q and QMIN ⊂ Q

Theorem

HEAVG ⊂ Q and QMIN ⊂ Q

I That HEAVG ⊂ Q is immediate, by taking constant sequences in HEAVG.

I Proving QMIN ⊂ Q is a bit more tricky

I A first obstacle is that, in general, for a quasiconcave H(X), there is no
(η, F ) ∈ HEAVG such that H(X) = η(F (X))

I This has been first discovered by Bruno de Finetti in the paper Sulle stratificazioni
convesse (1949), motivated by the study of utility functions in microeconomics
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HEAVG ⊂ Q and QMIN ⊂ Q

Theorem

HEAVG ⊂ Q and QMIN ⊂ Q

I Thankfully, in the more recent paper Concavifying the Quasiconcave (2012),
Connell and Rasmussen proved that any quasiconcave function is the limit of a
uniformly convergent sequence of core-concaves.

I Moreover, in the work in which we extended Alvim et al’s results, we also proved
that for all (η, F ) ∈ HEAVG, there is a sequence (ηi, Fi) in HEAVG such that

lim
i→∞

ηi

(∑
y

p(y)Fi(X|y)

)
= min

y
η(F (X|y))

I By combining these results, we were able to prove that QMIN ⊂ Q
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Properties of Limit Entropies

I Many properties of core-concave entropies can be straightforwardly generalised to
limit entropies:

I All entropies in Q satisfy CRE and DPI

I All symmetric and expansible H ∈ Q satisfy some interesting
information-theoretical properties:

I Additional information increases entropy: H(X,Y ) ≥ H(X),
H(X,Y |Z) ≥ H(X|Z)

I A weaker form of subadditivity: H(X,Y ) ≤ H(p̃) where p̃(x, y) = pX(x)/|Y|
I Shannon’s perfect secrecy: a symmetric encryption scheme in which a message M is

encrypted using a key K can only be perfectly secret and correct if H(M) ≤ H(K)
I A bound in terms of probability of error, that generalises Fano’s inequality:

H(X|Y ) ≤ H
(
1− ê, ê

n− 1
, . . . ,

ê

n− 1

)
where ê =

∑
y p(y)(1−maxx p(x|y))
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n− 1
, . . . ,

ê
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n− 1
, . . . ,

ê
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New Conditional Forms: η-Geometric Mean

I Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other
conditional forms

I An entropy H = (η, F ) satisfies η-geometric mean (EGM), if

H(X|Y ) = η
(∏

y (F (X|y))
p(y)
)
.

Proposition

If H = (η, F ) satisfies EGM, CCV and if F is nonegative, H ∈ Q

I These CCV+EGM entropies have never been considered in QIF.

I However, our results guarantee that they satisfy CRE, DPI, and the other
aforementioned information-theoretical inequalities.
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Conclusion and Future Work

I In this work, we
I introduced a new generalizing family Q, subsuming the core-concave and

worst-case-scenario entropies used so far in the QIF literature

I established that limit entropies satisfy CRE, DPI and other important
information-theoretic properties

I derived a new subfamily inspired on the geometric mean
I investigated some applications of limit entropies on channel orderings, making

connections with some recent results from Chatzikokolakis et al3

I Future work:

I Most QIF results concern entropies in CAVG. Is it possible to generalise these to Q,
which will as a consequence have QMIN as a particular case?

I Are there other families with interesting conditional forms to be derived from Q?

3Comparing Systems: Max-case Refinement Orders and Application to Differential Privacy (CSF
2019)
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