Concavity, Core-concavity, Quasiconcavity: A Generalizing Framework for Entropy Measures.

Arthur Américo, Pasquale Malacaria

{a.passosderezende, p.malacaria}@qmul.ac.uk

School of Electronic Engineering and Computer Science Queen Mary University of London

34th IEEE Computer Security Foundations Symposium 23 June 2021

Introduction

• A secret X (random variable) is fed to a System K

- A secret X (random variable) is fed to a System K
- There is an adversary that wishes to obtain information about X, and has some prior knowledge p_X

- ► A secret X (random variable) is fed to a System K
- There is an adversary that wishes to obtain information about X, and has some prior knowledge p_X
- ► K produces an output Y = y according to the conditional probability: K(y|x) = p(y|x).

- ► A secret X (random variable) is fed to a System K
- There is an adversary that wishes to obtain information about X, and has some prior knowledge p_X
- ► K produces an output Y = y according to the conditional probability: K(y|x) = p(y|x).
- The knowledge of the adversary is updated to the conditional $p_{X|y}$

- ► A secret X (random variable) is fed to a System K
- There is an adversary that wishes to obtain information about X, and has some prior knowledge p_X
- ► K produces an output Y = y according to the conditional probability: K(y|x) = p(y|x).
- The knowledge of the adversary is updated to the conditional $p_{X|y}$

 Quantitative Information Flow (QIF): quantifying how much information systems leak

- Quantitative Information Flow (QIF): quantifying how much information systems leak
- **Entropy**: a quantity H, measuring uncertainty, that has two forms

- Quantitative Information Flow (QIF): quantifying how much information systems leak
- **Entropy**: a quantity *H*, measuring uncertainty, that has two forms
 - Unconditional form: H(X), a function of p_X

- Quantitative Information Flow (QIF): quantifying how much information systems leak
- **Entropy**: a quantity *H*, measuring uncertainty, that has two forms
 - Unconditional form: H(X), a function of p_X
 - Conditional form: H(X|Y), a function of p_Y , $\{p_{X|y}\}_y$

 Quantitative Information Flow (QIF): quantifying how much information systems leak

Entropy: a quantity *H*, measuring uncertainty, that has two forms

- Unconditional form: H(X), a function of p_X
- Conditional form: H(X|Y), a function of p_Y , $\{p_{X|y}\}_y$
- ▶ Information Leakage: $I_H(X;Y) = H(X) H(X|Y)$

Different functions for the unconditional form reflect different attack scenarios:

Different functions for the unconditional form reflect different attack scenarios:

► Min-entropy: guessing secret in one try

$$H_{\infty}(X) = -\log\max_{x} p(x)$$

Different functions for the unconditional form reflect different attack scenarios:

Min-entropy: guessing secret in one try

$$H_{\infty}(X) = -\log\max_{x} p(x)$$

Guessing entropy: brute-force scenarios

$$H_G(X) = \sum_i ip(x_{[i]})$$
 where $p(x_{[i]}) \ge p(x_{[2]}) \ge \dots$

Different functions for the unconditional form reflect different attack scenarios:

Min-entropy: guessing secret in one try

$$H_{\infty}(X) = -\log\max_{x} p(x)$$

Guessing entropy: brute-force scenarios

$$H_G(X) = \sum_i ip(x_{[i]})$$
 where $p(x_{[i]}) \ge p(x_{[2]}) \ge \dots$

Shannon Entropy: expected number of "yes or no" questions

$$H_1(X) = -\sum_x p(x) \log p(x)$$

Different functions for the unconditional form reflect different attack scenarios:

Min-entropy: guessing secret in one try

$$H_{\infty}(X) = -\log\max_{x} p(x)$$

Guessing entropy: brute-force scenarios

$$H_G(X) = \sum_i ip(x_{[i]})$$
 where $p(x_{[i]}) \ge p(x_{[2]}) \ge \dots$

Shannon Entropy: expected number of "yes or no" questions

$$H_1(X) = -\sum_x p(x) \log p(x)$$

... and many more

Moreover, given a unconditional form, there are different ways of obtaining a conditional form, depending on the scenario at hand

Moreover, given a unconditional form, there are different ways of obtaining a conditional form, depending on the scenario at hand

Averaging (AVG):

$$H(X|Y) = \sum_{y} p(y)H(X|y)$$

 Quantifies the expected leakage: large leakage is acceptable if it happens with low probability (e.g. password checker)

Moreover, given a unconditional form, there are different ways of obtaining a conditional form, depending on the scenario at hand

Averaging (AVG):

$$H(X|Y) = \sum_{y} p(y)H(X|y)$$

 Quantifies the expected leakage: large leakage is acceptable if it happens with low probability (e.g. password checker)

Minimum (MIN):

$$H(X|Y) = \min_{y} H(X|y)$$

 A worst-case scenario: useful when large leakage is unacceptable, even if unlikely (e.g. privacy)

What choices of unconditional and conditional forms are entropies that "make sense"?

- What choices of unconditional and conditional forms are entropies that "make sense"?
- To solve this problem, Alvim et al¹ considered the following intuitively-reasonable properties

¹M.S. Alvim et al, Axioms for Information Leakage (CSF 2016)

- What choices of unconditional and conditional forms are entropies that "make sense"?
- To solve this problem, Alvim et al¹ considered the following intuitively-reasonable properties
 - ► Conditioning reduces entropy (CRE): H(X|Y) ≤ H(X) (observing Y does not increase uncertainty)

¹M.S. Alvim et al, Axioms for Information Leakage (CSF 2016)

- What choices of unconditional and conditional forms are entropies that "make sense"?
- To solve this problem, Alvim et al¹ considered the following intuitively-reasonable properties
 - ► Conditioning reduces entropy (CRE): H(X|Y) ≤ H(X) (observing Y does not increase uncertainty)
 - ▶ Data-Processing Inequality (DPI): If $X \to Y \to Z$, $H(X|Y) \le H(X|Z)$ (postprocessing the output does not reduce uncertainty)

¹M.S. Alvim et al, Axioms for Information Leakage (CSF 2016)

- What choices of unconditional and conditional forms are entropies that "make sense"?
- To solve this problem, Alvim et al¹ considered the following intuitively-reasonable properties
 - ► Conditioning reduces entropy (CRE): H(X|Y) ≤ H(X) (observing Y does not increase uncertainty)
 - ▶ Data-Processing Inequality (DPI): If $X \to Y \to Z$, $H(X|Y) \le H(X|Z)$ (postprocessing the output does not reduce uncertainty)

¹M.S. Alvim et al, Axioms for Information Leakage (CSF 2016)

► They proved the following:

► They proved the following:

▶ If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is concave (CV) over p_X

► They proved the following:

- ▶ If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is concave (CV) over p_X
- ▶ If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave (QCV) over p_X

► They proved the following:

- ▶ If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is concave (CV) over p_X
- ▶ If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave (QCV) over p_X
- This characterises two important families of entropy

They proved the following:

- ▶ If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is concave (CV) over p_X
- ▶ If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave (QCV) over p_X
- This characterises two important families of entropy
 - The ones that satisfy averaging and concavity: CAVG

They proved the following:

- ▶ If the conditional form of H is averaging, then H satisfies DPI and CRE iff H(X) is concave (CV) over p_X
- ► If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave (QCV) over p_X
- This characterises two important families of entropy
 - ► The ones that satisfy averaging and concavity: C_{AVG}
 - The ones that satisfy minimum and quasiconcavity: Q_{MIN}

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{y} p(y) \max_{x} p(x|y)$$

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{y} p(y) \max_{x} p(x|y)$$

 In a recent work² in collaboration with MHR Khouzani, we extended the results from Alvim et al

²Arthur Américo, MHR Khouzani and Pasquale Malacaria, *Conditional Entropy and Data Processing: an Axiomatic Approach Based on Core-Concavity* (2020)

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{y} p(y) \max_{x} p(x|y)$$

 In a recent work² in collaboration with MHR Khouzani, we extended the results from Alvim et al

• Entropies are pairs $H = (\eta, F)$ such that η is increasing and $H(X) = \eta(F(X))$

²Arthur Américo, MHR Khouzani and Pasquale Malacaria, *Conditional Entropy and Data Processing: an Axiomatic Approach Based on Core-Concavity* (2020)

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{y} p(y) \max_{x} p(x|y)$$

 In a recent work² in collaboration with MHR Khouzani, we extended the results from Alvim et al

• Entropies are pairs $H = (\eta, F)$ such that η is increasing and $H(X) = \eta(F(X))$ (note: any unconditional H can be described this way, by the pair (id, H))

²Arthur Américo, MHR Khouzani and Pasquale Malacaria, *Conditional Entropy and Data Processing: an Axiomatic Approach Based on Core-Concavity* (2020)
Core-concave Entropies

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{x} p(y) \max_{x} p(x|y)$$

 In a recent work² in collaboration with MHR Khouzani, we extended the results from Alvim et al

- Entropies are pairs $H = (\eta, F)$ such that η is increasing and $H(X) = \eta(F(X))$ (note: any unconditional H can be described this way, by the pair (id, H))
- Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X

²Arthur Américo, MHR Khouzani and Pasquale Malacaria, *Conditional Entropy and Data Processing: an Axiomatic Approach Based on Core-Concavity* (2020)

Core-concave Entropies

▶ However, many entropies in the literature are not in C_{AVG} or Q_{MIN}

$$H_{\infty}(X) = -\log \max_{x} p_X(x) \quad H_{\infty}(X|Y) = -\log \sum_{x} p(y) \max_{x} p(x|y)$$

 In a recent work² in collaboration with MHR Khouzani, we extended the results from Alvim et al

- Entropies are pairs $H = (\eta, F)$ such that η is increasing and $H(X) = \eta(F(X))$ (note: any unconditional H can be described this way, by the pair (id, H))
- Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X
- η -Averaging (EAVG): $H = (\eta, F)$ satisfies EAVG if

$$H(X|Y) = \eta\left(\sum_y p(y)F(X|y)\right)$$

²Arthur Américo, MHR Khouzani and Pasquale Malacaria, *Conditional Entropy and Data Processing: an Axiomatic Approach Based on Core-Concavity* (2020)

• Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X

• η -Averaging (EAVG): The pair $H = (\eta, F)$ satisfies EAVG if

$$H(X|Y) = \eta\left(\sum_y p(y)F(X|y)\right)$$

Theorem (Alvim et al, 2016)

If the conditional form of H is averaging, then H satisfies ${\it DPI}$ and ${\it CRE}$ iff H(X) is concave

If the conditional form of H is minimum, then H satisfies ${\it DPI}$ and ${\it CRE}$ iff H(X) is quasiconcave

• Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X

• η -Averaging (EAVG): The pair $H = (\eta, F)$ satisfies EAVG if

$$H(X|Y) = \eta\left(\sum_y p(y)F(X|y)\right)$$

Theorem (Alvim et al, 2016 and Américo et al, 2020)

If the conditional form of $H = (\eta, F)$ is η -averaging, then H satisfies DPI and CRE iff $H = (\eta, F)$ is core-concave If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave

• Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X

• η -Averaging (EAVG): The pair $H = (\eta, F)$ satisfies EAVG if

$$H(X|Y) = \eta\left(\sum_y p(y)F(X|y)\right)$$

Theorem (Alvim et al, 2016 and Américo et al, 2020)

If the conditional form of $H = (\eta, F)$ is η -averaging, then H satisfies DPI and CRE iff $H = (\eta, F)$ is core-concave If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave

• We denote the family of entropies satisfying EAVG and CCV by \mathcal{H}_{EAVG} .

• Core-concavity (CCV): $H = (\eta, F)$ satisfies CCV if F is concave over p_X

• η -Averaging (EAVG): The pair $H = (\eta, F)$ satisfies EAVG if

$$H(X|Y) = \eta\left(\sum_y p(y)F(X|y)\right)$$

Theorem (Alvim et al, 2016 and Américo et al, 2020)

If the conditional form of $H = (\eta, F)$ is η -averaging, then H satisfies DPI and CRE iff $H = (\eta, F)$ is core-concave If the conditional form of H is minimum, then H satisfies DPI and CRE iff H(X) is quasiconcave

- We denote the family of entropies satisfying EAVG and CCV by \mathcal{H}_{EAVG} .
- ▶ Notice that $C_{AVG} \subset \mathcal{H}_{EAVG}$, by taking $\eta = id$.

Entropies in QIF are thus divided into two distinct families

• The ones in \mathcal{H}_{EAVG} , defined by a core-concave (η, F) and η -averaging. We refer to them as core-concave entropies

- The ones in $\mathcal{H}_{\text{EAVG}}$, defined by a core-concave (η, F) and η -averaging. We refer to them as core-concave entropies
- ► And the ones in Q_{MIN}, defined by a quasiconcave H(X) and minimum, which represents the worst-case leakage ones. We refer to them as worst-case entropies

- ► The ones in $\mathcal{H}_{\text{EAVG}}$, defined by a core-concave (η, F) and η -averaging. We refer to them as core-concave entropies
- ► And the ones in Q_{MIN}, defined by a quasiconcave H(X) and minimum, which represents the worst-case leakage ones. We refer to them as worst-case entropies
- Can we find some generalising definition that includes both families?

- ▶ The ones in $\mathcal{H}_{\text{EAVG}}$, defined by a core-concave (η, F) and η -averaging. We refer to them as core-concave entropies
- ► And the ones in Q_{MIN}, defined by a quasiconcave H(X) and minimum, which represents the worst-case leakage ones. We refer to them as worst-case entropies
- Can we find some generalising definition that includes both families?
- ► Yes, we can!

• Let $\{H^i = (\eta_i, F_i)\}_i$ be a sequence in $\mathcal{H}_{\text{EAVG}}$, such that $\eta_i \circ F_i$ converges uniformly. We define the limit of $\{H^i\}$ to be the entropy H defined as

▶ Let $\{H^i = (\eta_i, F_i)\}_i$ be a sequence in $\mathcal{H}_{\text{EAVG}}$, such that $\eta_i \circ F_i$ converges uniformly. We define the limit of $\{H^i\}$ to be the entropy H defined as ▶ $H(X) = \lim_{i \to \infty} \eta_i(F_i(X))$

• Let $\{H^i = (\eta_i, F_i)\}_i$ be a sequence in $\mathcal{H}_{\text{EAVG}}$, such that $\eta_i \circ F_i$ converges uniformly. We define the limit of $\{H^i\}$ to be the entropy H defined as

•
$$H(X) = \lim_{i \to \infty} \eta_i(F_i(X))$$

$$\blacktriangleright H(X|Y) = \limsup_{i \to \infty} \eta_i \left(\sum_y p(y) F_i(X|y) \right).$$

- Let $\{H^i = (\eta_i, F_i)\}_i$ be a sequence in $\mathcal{H}_{\text{EAVG}}$, such that $\eta_i \circ F_i$ converges uniformly. We define the limit of $\{H^i\}$ to be the entropy H defined as
 - $\blacktriangleright \quad H(X) = \lim_{i \to \infty} \eta_i(F_i(X))$
 - $\blacktriangleright \quad H(X|Y) = \limsup_{i \to \infty} \eta_i \left(\sum_y p(y) F_i(X|y) \right).$
- We denote by Q the set of all limits of sequences of entropies in H_{EAVG}. We call these entropies limit entropies

- Let $\{H^i = (\eta_i, F_i)\}_i$ be a sequence in $\mathcal{H}_{\text{EAVG}}$, such that $\eta_i \circ F_i$ converges uniformly. We define the limit of $\{H^i\}$ to be the entropy H defined as
 - $\blacktriangleright \quad H(X) = \lim_{i \to \infty} \eta_i(F_i(X))$
 - $\blacktriangleright \quad H(X|Y) = \limsup_{i \to \infty} \eta_i \left(\sum_y p(y) F_i(X|y) \right).$
- We denote by Q the set of all limits of sequences of entropies in H_{EAVG}. We call these entropies limit entropies

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

▶ That $\mathcal{H}_{EAVG} \subset \mathcal{Q}$ is immediate, by taking constant sequences in \mathcal{H}_{EAVG} .

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q} \text{ and } \mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

- ▶ That $\mathcal{H}_{EAVG} \subset \mathcal{Q}$ is immediate, by taking constant sequences in \mathcal{H}_{EAVG} .
- ▶ Proving $Q_{MIN} \subset Q$ is a bit more tricky

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

- ▶ That $\mathcal{H}_{EAVG} \subset \mathcal{Q}$ is immediate, by taking constant sequences in \mathcal{H}_{EAVG} .
- ▶ Proving $Q_{MIN} \subset Q$ is a bit more tricky
- ▶ A first obstacle is that, in general, for a quasiconcave H(X), there is no $(\eta, F) \in \mathcal{H}_{\text{EAVG}}$ such that $H(X) = \eta(F(X))$

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

- ▶ That $\mathcal{H}_{EAVG} \subset \mathcal{Q}$ is immediate, by taking constant sequences in \mathcal{H}_{EAVG} .
- ▶ Proving $Q_{MIN} \subset Q$ is a bit more tricky
- ▶ A first obstacle is that, in general, for a quasiconcave H(X), there is no $(\eta, F) \in \mathcal{H}_{\text{EAVG}}$ such that $H(X) = \eta(F(X))$
- ► This has been first discovered by Bruno de Finetti in the paper *Sulle stratificazioni* convesse (1949), motivated by the study of utility functions in microeconomics

Theorem

 $\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q} \text{ and } \mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

Thankfully, in the more recent paper Concavifying the Quasiconcave (2012), Connell and Rasmussen proved that any quasiconcave function is the limit of a uniformly convergent sequence of core-concaves.

Theorem

$\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

- Thankfully, in the more recent paper Concavifying the Quasiconcave (2012), Connell and Rasmussen proved that any quasiconcave function is the limit of a uniformly convergent sequence of core-concaves.
- Moreover, in the work in which we extended Alvim et al's results, we also proved that for all $(\eta, F) \in \mathcal{H}_{\text{EAVG}}$, there is a sequence (η_i, F_i) in $\mathcal{H}_{\text{EAVG}}$ such that

$$\lim_{i \to \infty} \eta_i \left(\sum_y p(y) F_i(X|y) \right) = \min_y \eta(F(X|y))$$

Theorem

$\mathcal{H}_{\textit{EAVG}} \subset \mathcal{Q}$ and $\mathcal{Q}_{\textit{MIN}} \subset \mathcal{Q}$

- Thankfully, in the more recent paper Concavifying the Quasiconcave (2012), Connell and Rasmussen proved that any quasiconcave function is the limit of a uniformly convergent sequence of core-concaves.
- Moreover, in the work in which we extended Alvim et al's results, we also proved that for all $(\eta, F) \in \mathcal{H}_{\text{EAVG}}$, there is a sequence (η_i, F_i) in $\mathcal{H}_{\text{EAVG}}$ such that

$$\lim_{i \to \infty} \eta_i \left(\sum_y p(y) F_i(X|y) \right) = \min_y \eta(F(X|y))$$

 \blacktriangleright By combining these results, we were able to prove that $\mathcal{Q}_{\tt MIN} \subset \mathcal{Q}$

Applications

Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI
- ▶ All symmetric and expansible $H \in Q$ satisfy some interesting information-theoretical properties:

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI
- ▶ All symmetric and expansible $H \in Q$ satisfy some interesting information-theoretical properties:
 - Additional information increases entropy: $H(X,Y) \ge H(X)$, $H(X,Y|Z) \ge H(X|Z)$

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI
- ▶ All symmetric and expansible $H \in Q$ satisfy some interesting information-theoretical properties:
 - Additional information increases entropy: $H(X,Y) \ge H(X)$, $H(X,Y|Z) \ge H(X|Z)$
 - A weaker form of subadditivity: $H(X,Y) \leq H(\tilde{p})$ where $\tilde{p}(x,y) = p_X(x)/|\mathcal{Y}|$

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI
- ► All symmetric and expansible H ∈ Q satisfy some interesting information-theoretical properties:
 - Additional information increases entropy: $H(X,Y) \ge H(X)$, $H(X,Y|Z) \ge H(X|Z)$
 - A weaker form of subadditivity: $H(X,Y) \leq H(\tilde{p})$ where $\tilde{p}(x,y) = p_X(x)/|\mathcal{Y}|$
 - Shannon's perfect secrecy: a symmetric encryption scheme in which a message M is encrypted using a key K can only be perfectly secret and correct if $H(M) \le H(K)$

- Many properties of core-concave entropies can be straightforwardly generalised to limit entropies:
- ► All entropies in *Q* satisfy CRE and DPI
- ▶ All symmetric and expansible $H \in Q$ satisfy some interesting information-theoretical properties:
 - Additional information increases entropy: $H(X,Y) \ge H(X)$, $H(X,Y|Z) \ge H(X|Z)$
 - A weaker form of subadditivity: $H(X,Y) \leq H(\tilde{p})$ where $\tilde{p}(x,y) = p_X(x)/|\mathcal{Y}|$
 - Shannon's perfect secrecy: a symmetric encryption scheme in which a message M is encrypted using a key K can only be perfectly secret and correct if $H(M) \le H(K)$
 - ► A bound in terms of probability of error, that generalises Fano's inequality:

$$H(X|Y) \le H\left(1 - \hat{e}, \frac{\hat{e}}{n-1}, \dots, \frac{\hat{e}}{n-1}\right)$$

where $\hat{e} = \sum_{y} p(y)(1 - \max_{x} p(x|y))$

Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other conditional forms

- Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other conditional forms
- An entropy $H = (\eta, F)$ satisfies η -geometric mean (EGM), if $H(X|Y) = \eta \left(\prod_y (F(X|y))^{p(y)} \right)$.

Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other conditional forms

An entropy
$$H = (\eta, F)$$
 satisfies η -geometric mean (EGM), if $H(X|Y) = \eta \left(\prod_y (F(X|y))^{p(y)} \right)$.

Proposition

If $H = (\eta, F)$ satisfies EGM, CCV and if F is nonegative, $H \in \mathcal{Q}$

- Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other conditional forms
- An entropy $H = (\eta, F)$ satisfies η -geometric mean (EGM), if $H(X|Y) = \eta \left(\prod_y (F(X|y))^{p(y)} \right)$.

Proposition

If $H = (\eta, F)$ satisfies EGM, CCV and if F is nonegative, $H \in \mathcal{Q}$

► These CCV+EGM entropies have never been considered in QIF.
New Conditional Forms: η -Geometric Mean

- Besides generalising entropies that satisfy MIN or EAVG, Q also subsumes other conditional forms
- An entropy $H = (\eta, F)$ satisfies η -geometric mean (EGM), if $H(X|Y) = \eta \left(\prod_y (F(X|y))^{p(y)} \right)$.

Proposition

If $H = (\eta, F)$ satisfies EGM, CCV and if F is nonegative, $H \in \mathcal{Q}$

- ► These CCV+EGM entropies have never been considered in QIF.
- ► However, our results guarantee that they satisfy CRE, DPI, and the other aforementioned information-theoretical inequalities.

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties
 - derived a new subfamily inspired on the geometric mean

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties
 - derived a new subfamily inspired on the geometric mean
 - investigated some applications of limit entropies on channel orderings, making connections with some recent results from Chatzikokolakis et al³

³Comparing Systems: Max-case Refinement Orders and Application to Differential Privacy (CSF 2019)

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties
 - derived a new subfamily inspired on the geometric mean
 - investigated some applications of limit entropies on channel orderings, making connections with some recent results from Chatzikokolakis et al³
- Future work:

³Comparing Systems: Max-case Refinement Orders and Application to Differential Privacy (CSF 2019)

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties
 - derived a new subfamily inspired on the geometric mean
 - investigated some applications of limit entropies on channel orderings, making connections with some recent results from Chatzikokolakis et al³
- Future work:
 - ▶ Most QIF results concern entropies in C_{AVG}. Is it possible to generalise these to Q, which will as a consequence have Q_{MIN} as a particular case?

³Comparing Systems: Max-case Refinement Orders and Application to Differential Privacy (CSF 2019)

- ► In this work, we
 - introduced a new generalizing family Q, subsuming the core-concave and worst-case-scenario entropies used so far in the QIF literature
 - established that limit entropies satisfy CRE, DPI and other important information-theoretic properties
 - derived a new subfamily inspired on the geometric mean
 - investigated some applications of limit entropies on channel orderings, making connections with some recent results from Chatzikokolakis et al³
- Future work:
 - ▶ Most QIF results concern entropies in C_{AVG}. Is it possible to generalise these to Q, which will as a consequence have Q_{MIN} as a particular case?
 - ► Are there other families with interesting conditional forms to be derived from *Q*?

³Comparing Systems: Max-case Refinement Orders and Application to Differential Privacy (CSF 2019)