
Web Authentication: The next step in the evolving identity eco-system?

Harry Halpin
CSAIL/MIT

World Wide Web Consortium (W3C) Boston, USA
Email: hhalpin@w3.org

Abstract—Currently, the identity eco-system on the Web
is fragmented between a number of different flows for au-
thorization with no standardized high-security authentication
mechanism outside of usernames-passwords. Current identity
solutions such as OpenID Connect and BrowserID are on an
abstract level just two different authorization flows that differ
across a number of criteria such as privacy. We also detail
a number of well-known attacks against each approach. So
the “client offline/server-to-server” authorization flow of the
OAuth-based approach (OpenID Connect) is actually com-
plemented by the “online client-to-server” authorization flow
from BrowserID, each being more or less effective depending
on the particular use-case at hand. Finally, we sketch how
combining either of these flows with the upcoming W3C Web
Cryptography API for public key-based authentication in the
browser will allow for a cross-platform ‘Web Authenticatio n’
that gives users the best of both worlds.

Keywords-authentication, authorization, identity, BrowserID;
OAuth; OpenID; WebAuth

I. I NTRODUCTION

Currently, the identity eco-system on the Web is frag-
mented between a number of different flows for autho-
rization with no standardized cross-platform high-security
authentication mechanism outside of usernames-passwords.
In order to avoid identity on the Web from being further
fragmented, we analyze the various flows on an abstract level
in order to determine the next steps for making identity a
first-class citizen of the Web.

Due to the large amount of terminological confusion over
the vague notion of identity, a clarification of basic terms is
in order. Auser is the human being of which identity claims
are made, where anattribute (sometimes called an “identity
claim”) is an aspect of the user that may be transmitted as a
message, such as “First Name is Bob.” Abrowseris, broadly
construed, a device capable of executing mobile code (Web
Applications) that consists of HTML and Javascript and that
acts on behalf a user. This includes both traditional web
browsers as well devices such as smartphones. Theplatform
is the larger context outside of the browser, including the
operating system, such as MacOS, Windows, Linux, iOs, or
Android. Perhaps the most confused issue in identity systems
is the difference between authentication and authorization.
Authenticationis when a user verifies their identity to a
site (commonly an “identity provider,” as detailed below),
proving that the user matches a given set of attributes (for

example, that the user is a human rather than a robot or has
a certain legal name).Authorizationis when a user allows a
relying party to access all or some of their identity claims.
A credentialis the digital material that allows authentication
(authentication credential) or authorization (authorization
credential). A token is a string that allows verification.
Both symmetricbearer tokenssuch as traditional “shared
secret” strings and asymmetricsigned tokenssuch as digital
signatures are kinds of credentials. On a higher level, the
‘identity eco-system’ consists of arelying party (RP), a
website or service that wishes to access attributes in order
to provide a service to the user. Anidentity provider(IDP)
is then another web service that stores attributes for a user
and allows authorized access to attributes.

A. Properties

In order to evaluate an identity solution, we need to
investigate its performance with respect to a set of desired
properties. Properties of current interest include how does
the userauthenticateto an identity provider, such as using a
user-name and password combination or other authentication
credentials such as public key material? Also, how does the
userauthorizeaccess to their identity, taking into account
questions such as the life-time and revocation of the autho-
rization? Any identity system would ideally bemulti-device,
i.e. able to work across multiple devices.Privacy can be
thought of as how much control does the end-user have over
what information the relying party, the identity provider,
and third parties can observe? In particular, we decompose
privacy into linkability and anonymity.(Un)linkability an-
swers the following: Can users prevent transactions using the
same identity from being correlated across relying parties?
Internally, unlinkability “means that within a particularset of
information, the attacker cannot distinguish whether [items
of interest] are related or not.” [4]. Items of interest might
include multiple transactions using the system, or distinct
sets of attributes. External linkability is when the availability
of auxiliary information allows the linking of internally
unlinkable items.

II. OPENID CONNECT

While the OpenID brand has undergone several major
changes, the latest OpenID Connect [2] is a profile of OAuth
2.0, optimizing certain elements of OAuth for server-side



Figure 1. Flow of OpenID Connect (OAuth 2.0)

exchange of attributes and requires no changes to current
browsers. OpenID Connect uses OAuth 2.0 for the autho-
rization flow, while adding a small number of non-opaque
identifiers for attributes in the response between an identity
provider and relying party. One important point is that
OpenID Connect, as it is a profile of OAuth, does not stan-
dardize any authentication, but only specifies an HTTP redi-
rection flow from the relying party to the identity provider
(a possiblepostMessagealternative has been discussed as
well). In current implementations authentication is usually
done via a username-password combination, although higher
security authentication credentials are allowed, but are not
specified. The flow of OpenID Connect is illustrated in
Figure 1, where the user’s browser is given by an human
icon and the flow of personal data by the green arrow.

A. Flow

1) A user visits a relying party that needs attributes.
2) The relying party makes a request for attributes to the

identity provider.
3) The user is redirected to the identity provider from the

relying party.
4) The user authenticates to the identity provider (typi-

cally using a username-password combination), and is
granted a bearer token.

5) User is redirected back to relying party and grants
authorization token to relying party.

6) The relying party sends the authorization token to the
identity provider and receives an access token (a bearer
token with a scope and limited lifespan).

7) While the access token is valid, the identity provider
sends attributes to the relying party.

B. Properties

Authentication: Authentication is out of scope of this
specification, but the flow usually uses redirects and usually
uses user-names and passwords.Authorization: The details
of the kinds of scope and limits to authorization rely on

OAuth 2.0 and an server-side flow is fully specified that
works even when the user is offline once user has granted
authorization once, which can be a distinct advantage for
use-cases involving aggregation and updating applications.
Thus, OpenID Connect is an “offline client / server-to-
server” authorization flow at heart.Extensibility: Only the
standard attributes given by OpenID Connect are specified
as opposed to a more general metadata framework.Multi-
device: As the redirection flow can use username-passwords
without any change to a browser or device-specific code,
in its most basic form it can be used across devices.
Privacy and Linkability: The identity provider knows all of a
user’s interactions, including which attributes are requested
by which relying parties and when, although this may be
mitigated to some extent by the opportunity to choose among
identity providers.Anonymity: Nothing in the architecture
of OpenID Connect requires that identifiers be persistent or
tied to a stable external identity. The specification does not
require particular user identifiers.

C. Attacks

Phishing Heaven: Redirection attacks are possible with
OpenID Connect. Unless the user is aware of TLS, a
malicious relying party can fool them into redirecting to
a fake identity provider site and then use that redirection
to intercept their real credentials (i.e. usually reusablepass-
words); the malicious party can then use these credentials
to provide a real authorization code to the actual identity
provider, thus “stealing” the user’s identity. There are a
number of variations on this attack, such as a real identity
provider being provided with a malicious redirection URI
to fake relying party.1 Bearer Tokens: While having set life-
spans and one-time authorization codes and tokens should
be common practice, bearer token that can be intercepted
can be used in an attack as typically the credentials used in
OpenID are bearer tokens. As all authorization credentials
are transmitted via HTTP user-agent redirections, these cre-
dentials can be revealed possibly via HTTP referrer headers
and the browser history.Server-side Privacy: Once an access
token is granted, the relying party can talk to the identity
provider without any interaction with the user. The user does
not necessarily know the scope, lifetime, and kinds of access
to their attributes that a token provides. Furthermore, the
identity provider can observe every interaction of the user
with any relying party.Traffic analysis: Even if the user
takes steps to mask their own communications, communi-
cations between relying party and identity provider may be
observable. Traffic patterns may be observable even if the
messages between the identity provider and relying party are
encrypted.

1See Ben Laurie inhttp://www.links.org/?p=187.



Figure 2. Flow of BrowserID

III. B ROWSERID

BrowserID [1] is currently a Javascript library to allow
users to authenticate their identity via a “verified” email,
where an email address is verified via attachment to key
material. Compared to the fully specified OpenID Connect,
BrowserID is still a work in progress. BrowserID can be de-
composed into two primary parts: an authentication scheme
that allows a single email and key combination to be re-used
in multiple contexts and the identity provider can mediate the
transfer of attributes to the relying party via the browser via a
“online client-to-server” authorization flow. Unlike OpenID
Connect that requires trust in the server, BrowserID requires
trust in the browser. The flow of BrowserID is also abstractly
illustrated in Figure 2.

A. Flow

1) The user attempts to identify themselves by giving an
e-mail address, and wants to bind that address to a
particular set of key material (for which the user then
provide a proof of possession) by having the identity
provider attest to that binding.

2) The browser checks to see if a private key is present
in the browser associated with that email address.

3) If no key exists for the email address locally in
browser, the browser generates key material and reg-
isters the public key with the identity provider.

4) The browser sends a signed authentication credential
to the relying party.

5) The relying party checks authentication credentials
with their locally stored database of identity provider
public keys, authenticates the user if verification suc-
ceeds (not shown in diagram as this step does not
happen with every transaction).

6) The user sends signed attributes to the relying party
from browser.

B. Properties

Authentication: As authentication is done by default with
key material as opposed to username-passwords, it is much
more secure. Furthermore, there is no need for redirection.
Authorization: This specification does not explicitly set pa-
rameters for authorization scope to protected resources, but
enables a browser-mediated flow of verified attributes. How-
ever, this only works if the browser is online.Privacy and
Linkability: Although the relying party knows the identity
provider’s key and will have to check at least once with the
identity provider to determine public key of user, it does not
have to check in theory more than once per e-mail (although
updates should be done at set time intervals at a larger-grain
than user transactions). Importantly, using the email address
as identifier enables the linking of transactions.Anonymity:
Email addresses can be pseudonymous or throw-away, but
many are long-term valuable identifiers; using the email
address may make the scope of identification visible to the
user.

C. Attacks

Re-implementing Key Infrastructure in Javascript: While
the Javascript code works and can be deployed, the work
currently relies on Javascript cryptographic operations that
would be better baked directly into the browser, and Mozilla
is planning on doing so.Trusted Verification Service: Cur-
rently also all verification of key material from the browser
is done by a centralized service (http://www.browserid.org),
which would be a major vulnerability if compromised.
Ironically, the registration to the identity provider suchas
http://www.browserid.orgis currently done with username-
passwords. Plans to decentralize this service are yet specified
and Mozilla has claimed this is a “short-gap” measure.Email
Verification: Note that the BrowserID pattern could simply
be considered proof of a “login and check email” capability
(like any other system that relies on emails to reset forgotten
passwords), and thus the security of the system relies on
the security of the identity (email) provider. Given the poor
state of the security of many email providers (for example,
STARTLS not providing warning message if TLS does
not work and thus e-mails being transmitted as cleartext),
the possibility of email address compromise undermines
this system.Traffic Analysis: Although the identity provider
itself will not know which relying party are requesting the
attributes due to the “online client-to-server” authorization
flow, a global passive adversary can still perform timing
attacks between both the browser and the relying party as
well as the browser and the identity provider if the identity
provider stores the attributes and has to transfer them “real-
time” to the browser.

IV. N EXT STEPS: WEB AUTHENTICATION

At the W3C Identity in the Browser workshop [3], par-
ticipants expressed shared belief that the browser could play



Figure 3. Generalized “offline client/server-to-server” and “online client-
to-server” authorization flows plus key-based Web authentication

an important role in identity on the Web by providing more
secure authentication. We propose using native Javascript
cryptography for key-based Web authentication of the kind
done in BrowserID, while allowing both BrowserID and
OpenID authorization flows. For Web Authentication, these
cryptographic operations are being built as a Javascript API
by the W3C Web Cryptography Working Group chartered
to create a common cross-browser Javascript cryptography
library [3]. This avoids the dangerous redirection patternof
most OpenID Connect deployments and replacing the use
of bearer tokens with signed tokens, showing on the W3C
Web Cryptography API can help secure OpenID Connect.

Allowing both authorization flows allow attributes to be
transmitted while the browser is offline, an advantage of
OpenID Connect’s “offline client / server-to-server” flow.
However, the BrowserID “online client-to-server” flow en-
ables high privacy use-case by having “anonymous” at-
tributes such as “over 21 years old” transmitted via the
browser but verified by the identity provider. This would
allow an IDP to tell an RP that a certain user had capabil-
ities while minimizing identity disclosure. The flow of the
combined flow is also abstractly illustrated in Figure 3.

A. Flow

1) User visits relying party, presents authentication cre-
dentials in form of a signed (by identity provider)
authentication credential.

2) If user wishes to enable offline attribute access, user
must register public key material with identity provider
and enable that flow.

3) Identity provider signs authentication credential and
any attributes to be transmitted via browser.

4) If authentication credential signed by identity provider,
relying party verifies signature.

5) If the signature on authentication credential is valid,
then user authenticated and so verified attributes can

be sent via the browser if needed.
6) In the case of offline flow authorized, signed attributes

sent from identity provider to relying party.

V. TENTATIVE CONCLUSIONS

Although lack of space prevents a larger analysis, it seems
this approach helps solve the weaknesses of earlier systems.
This sort of approach would offer identifiers that can be
pseudonymous or throw-away and disclosure of attributes
can be done in a capability-based manner. We would con-
sider email verification to be one possibly authentication
capability amongst many, including transferring only signed
identifiers to the relying party in cases where another form of
high-security (such as smartcard) authentication is needed.
However, even this system would be vulnerable to traffic
analysis. This could be ameliorated through the use of
proxies (Tor included) and messages being sent regularly
and padded.

The primary advantage of OpenID Connect is that
the “redirection-based” authentication based on username-
passwords works easily across multiple browsers, unlike
BrowserID which requires secret key material to be bound
to a browser, which becomes exceptionally problematic
across multiple devices/browsers. It seems this can solvedby
registering public key material for each browser/device toan
identity provider, but from a privacy standpoint the identity
provider would then know all browsers. More research is
necessary in this area in particular.

Username/passwords, are the cornerstone of most current
web identity, are inherently insecure. The development of
secure cross-platform Javascript cryptography in the browser
offers hope for escape from this bind if cross-browser
synchronization were to be solved. However, the long-term
goal should be a browser environment where a user can
chose between different identities, including anonymous
identities and identities with site- or time-limited scope,
and rely on strong cryptography to secure these identities
against misuse. From the side of user experience, we expect
a user should be able to log-in without passwords, by simply
selecting their identity (including an anonymous option) or
automatically logging in using a default identity. These are
difficult requirements, but worth pursuing.

REFERENCES

[1] Mozilla Team. Verified Email Protocol, 2012.
https://wiki.mozilla.org/Identity/VerifiedEmail Protocol.

[2] N. Sakimura et al.OpenID Connect Standard 1.0. 2012.
http://openid.net/specs/openid-connect-standard-10.html.

[3] H. Halpin. Identity in the Browser Final Report. 2011.
http://www.w3.org/2011/identity-ws/report.html.

[4] M. Hansen. Privacy Terminology. 2012.
http://tools.ietf.org/html/draft-hansen-privacy-terminology-
03.


