
Pixel Perfect: Fingerprinting Canvas in HTML5

Keaton Mowery and Hovav Shacham
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California, USA

ABSTRACT
Tying the browser more closely to operating system func-
tionality and system hardware means that websites have
more access to these resources, and that browser behavior
varies depending on the behavior of these resources.

We propose a new system fingerprint, inspired by the ob-
servation above: render text and WebGL scenes to a <can-

vas> element, then examine the pixels produced. The new
fingerprint is consistent, high-entropy, orthogonal to other
fingerprints, transparent to the user, and readily obtainable.

1. INTRODUCTION
Browsers are becoming increasingly sophisticated applica-

tion platforms, taking on more of the functionality tradition-
ally provided by an operating system. Much of this increas-
ing sophistication is driven by the HTML5 suite of specifi-
cations, which make provisions for a programmatic drawing
surface (<canvas>), three-dimensional graphics (WebGL),
a structured client-side datastore, geolocation services, the
ability to manipulate browser history and the browser cache,
audio and video playback, and more.

The natural way for browsers to implement such features
is to draw on the host operating system and hardware. Using
the GPU for 3D graphics (and even for 2D graphics com-
positing1) provides substantial performance improvements,
as well as battery savings on mobile devices. And using
the operating system’s font-rendering code for text means
that browsers automatically display text in a way that is
optimized for the display and consistent with the user’s ex-
pectations.2

This paper proceeds from the following simple observa-
tion: Tying the browser more closely to operating system
functionality and system hardware means that websites have
more access to these resources, and that browser behavior
varies depending on the behavior of these resources. The
first part of this observation has security implications: code-
bases not designed to handle adversarial input can now be
exposed to it.3 The second part of the observation, which

1For example, IE9 uses the GPU for compositing, and recent
releases of Chrome use the GPU to accelerate 2D operations
on the canvas.
2By contrast, the first release of Safari for Windows im-
ported font rendering code from Mac OS X, which offended
some users; see http://www.joelonsoftware.com/items/
2007/06/12.html.
3Indeed, one test in the WebGL conformance suite induces
a hard system crash on many systems [9]; and the TrueType
font handling code in Windows and OS X, which is exposed

we focus on, has privacy implications: different behavior can
be used to distinguish systems, and thereby fingerprint the
people using them.

Our results.
We exhibit a new system fingerprint based on browser font

and WebGL rendering. To obtain this fingerprint, a website
renders text and WebGL scenes to a <canvas> element, then
examines the pixels produced. Different systems produce
different output, and therefore different fingerprints. Even
very simple tests — such as rendering a single sentence in a
widely distributed system font — produce surprising varia-
tion. The new fingerprint has several desirable properties:

• It is consistent. In our experiments, we obtain pixel-
identical results in independent trials from the same
user.

• It is high-entropy. In 294 experiments on Amazon’s
Mechanical Turk, we observed 116 unique fingerprint
values, for a sample entropy of 5.73 bits. This is so
even though the user population in our experiments
exhibits little variation in browser and OS.

• It is orthogonal to other fingerprints. Our fingerprint
measures graphics driver and GPU model, which is in-
dependent of other possible fingerprints discussed be-
low.

• It is transparent to the user. Our tests can be per-
formed, offscreen, in a fraction of a second. There is
no indication, visual or otherwise, that the user’s sys-
tem is being fingerprinted.

• It is readily obtainable. Any website that runs Java-
Script on the user’s browser can fingerprint its ren-
dering behavior; no access is needed besides what is
provided by the usual web attacker model.

Our fingerprint can be used as a black box or as a white
box. A website could render tests to a <canvas>, extract the
resulting pixmap, then use a cryptographic hash to obtain
a short, convenient fingerprint. Because the fingerprint is
consistent, the pixmap (and therefore its hash) will be iden-
tical in multiple runs on one machine, but take on different
values depending on hardware and software configuration.
This is a black-box use of the fingerprint, since it extracts

to attackers by the WebFont specification, was patched to fix
an exploitable parsing vulnerability as recently as December
of last year [2, 1].

1

http://www.joelonsoftware.com/items/2007/06/12.html
http://www.joelonsoftware.com/items/2007/06/12.html

distinguishing entropy without being concerned with the im-
plementation details.

Alternatively, a website could use a particular test pixmap
as evidence that a user is running some particular configu-
ration of browser, operating system, graphics driver, GPU,
and, perhaps, display. To identify a user system, the site
can compare the pixmap it produces against a labeled cor-
pus, such as the corpus we obtained using Mechanical Turk.
An intriguing possibility is that GPU quirks could be used
to identify a pixmap without comparing against a corpus.
However it is performed, such a white-box use of our fin-
gerprint in this way reveals private information about users’
systems.4 It could also be used to target an attack more
precisely, by identifying specific vulnerable system configu-
rations. Trying to exploit only those systems that appear
likely to be vulnerable could reduce the number of crashes
caused by the attack, and therefore the likelihood that it is
detected by the operating system vendor.

Fingerprints on the web have constructive and destructive
uses [14]. A use is constructive if users benefit from being
fingerprinted. For example, a bank could fingerprint a user’s
machine, then require additional authentication for login at-
tempts from systems whose fingerprint does not match. A
use is destructive if users do not benefit from being tracked,
or do not wish to be tracked. Users can attempt to avoid
tracking by using their browsers’“private browsing”modes [3]
or the Tor anonymity service [6].

Users of Tor may be willing to endure a slower, less at-
tractive browsing experience to avoid being tracked. (Note
that, although Torbutton disables WebGL, it allows text
rendering to a <canvas>, and is thus at present partly vul-
nerable to our fingerprint.) For mainstream browser users,
however, the possibility of fingerprinting might be an un-
avoidable consequence of browsers’ closer ties to operating
system functionality and system hardware.

Related work: Fingerprints on the web.
The earliest mentions known to us of using differences in

GPU rendering to fingerprint users are in 2010 discussions on
the WebGL mailing list about whether the WebGL renderer
information available to JavaScript should provide informa-
tion about the GPU and driver. Steve Baker argued [4] that
it is possible to identify a GPU without this information: “I
bet that if I wrote code to read back every glGet result and
built up a database of the results - and wrote code to time
things like vertex texture performance - then I bet I could
identify most hardware fairly accurately.” Benoit Jacob later
observed [11] that

We haven’t yet started accounting for GPU ren-
dering analysis (not just WebGL: in the upcom-
ing generation of browsers, most rendering goes
through the GPU and is subject to GPU/driver/
config-based rendering differences.

Jacob also suggests the fingerprinting approach we take:
“Rendering analysis could proceed by rendering stuff into
a canvas 2D and getting its ImageData.” One way to view
our research is as demonstrating experimentally that Baker
and Jacob were correct in expecting substantial additional

4As evidence that such information is private, we note that
Chrome knows a great deal about the graphics subsystem —
see chrome://gpu— but does not expose this information to
JavaScript.

leakage from GPU-based rendering. In addition, we show
that there is substantial information leakage from font ren-
dering to <canvas>.

Many other researchers have proposed techniques to fin-
gerprint web users. These techniques rely on many browser
features, including the history and file cache [12], informa-
tion in HTTP headers and available plugins [13, 7], differ-
ences in JavaScript and DOM API support [8], JavaScript
performance [14], available fonts [5], and deviations from
JavaScript standards conformance [16].

2. HTML5 AND CSS3
In this section, we introduce the emerging web technolo-

gies used in our experiments. First, we present information
about the <canvas> element, a major portion of what is
termed HTML55, along with its support for text render-
ing. Next, we examine WebFonts, part of the CSS3 speci-
fication6. Lastly, we briefly discuss WebGL, an experimen-
tal specification7 currently managed by the Khronos Group
(which also maintains the OpenGL specification).

These three specifications are not finalized, and so could
change in ways that benefit or hinder fingerprinting success.
However, our fingerprinting mechanisms use extremely ba-
sic features of these platforms, such as rendering text and
inspecting pixels — removal of these features would be dra-
matic indeed.

2.1 HTML5 Canvas
One of the most interesting new elements in HTML5,

<canvas> provides an area of the screen which can be drawn
upon programmatically. It enjoys widespread support, be-
ing available in the most recent versions of Chrome, Firefox,
Internet Explorer, Opera, and Safari as well as Mobile Safari
and Android Browser.

The basic approach to drawing on a canvas is simple: ac-
quire a graphics context, and use the context’s API to effect
your changes. In the current HTML5 specification, the only
defined context is “2d”. The 2d context provides basic draw-
ing primitives such as fillRect, lineTo, and arc, as well
as more complicated features such as Bézier curves, color
gradients, and copying in an existing image.

2.1.1 Canvas Text
We chose to focus on the text support found in the 2d con-

text. Given a font size, family, and baseline, the 2d context
can draw any arbitrary text string to the canvas. No wrap-
ping is performed; the 2d context will happily draw text
directly off the edge of the canvas. Lastly, <canvas> sup-
ports CSS-like text styling, allowing for any combination of
font and size. For an example of how text is rendered, see
Figure 1.

2.1.2 Pixel Extraction
In order for <canvas> to be a useful fingerprint, there must

be some way to examine its behavior. Fortunately, <canvas>
makes this extremely easy, providing several ways to inspect
its data with pixel accuracy.

5http://www.whatwg.org/specs/web-apps/
current-work/
6http://www.w3.org/TR/css3-fonts/
7http://www.khronos.org/registry/webgl/specs/1.0/

2

http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.w3.org/TR/css3-fonts/
http://www.khronos.org/registry/webgl/specs/1.0/

<script type="text/javascript">

var canvas = document.getElementById("drawing");

var context = canvas.getContext("2d");

context.font = "18pt Arial";

context.textBaseline = "top";

context.fillText("Hello, user.", 2, 2);

</script>

Figure 1: Render text on a canvas

First, the 2d context provides the method getImageData().
Given a rectangular region of the canvas, this method re-
turns an ImageData object. Contained in this object are the
RGBA values (as integers) for every pixel in the requested
region.

Second, the canvas object itself provides a toDataURL(type)

method. When passed “image/png”, this method returns a
data url consisting of the Base64 encoding of a PNG image
containing the entire contents of the canvas. As this is a
very convenient canvas-level method, we used this approach
to extract data in our experiments. During black-box use
of these fingerprints, the test suite could simply hash these
data URLs, thereby removing the need to upload entire im-
ages from each client.

It is worthwhile to note that these methods do preserve the
same origin policy — if an image from a different origin has
been drawn on this canvas, they will throw a SecurityError

exception instead of returning pixel data. Therefore, our
<canvas> fingerprints must only contain image resources
that are under our control.

2.2 WebFonts
WebFonts, specified in CSS3, allow web designers to load a

font face on-demand, rather than relying solely on the fonts
installed on each client machine. To include a font, the web
designer inserts a @font-face CSS rule with a src attribute
pointing to a font in an appropriate format. The browser
then downloads the font and makes it available for use on
the page. Fortunately for us, web fonts can be used when
writing to a <canvas> as well.

To include WebFonts, we depend on the WebFont Loader8,
co-developed by Google and Typekit. With this library,
WebFonts can be loaded solely through the use of Java-
Script, and callbacks can be established for certain events
(such as the font becoming available or, conversely, failing
to load). By attaching our rendering to a successful load,
we are guaranteed to use the correct font while writing to
the canvas.

2.3 WebGL
WebGL provides a JavaScript API for rendering 3D graph-

ics in a <canvas> element. Modeled after OpenGL ES 2.0,
WebGL is currently a draft specification and implemented
and enabled in Chrome, Firefox, and Opera, as well as im-
plemented but disabled in Safari. Each of these browsers
provides a hardware-accelerated implementation, using the
installed graphics hardware to render each frame. To miti-
gate serious misbehaviour and crashes, all of these browsers
enable WebGL only for a whitelisted set of graphics cards
and drivers.

8https://developers.google.com/webfonts/docs/
webfont_loader

Current WebGL implementations expose their function-
ality through a separate canvas context (which will even-
tually be named “webgl”). The WebGL API is too com-
plex to describe here in sufficient detail, but is stylistically
similar to the desktop OpenGL API. It provides for ver-
tex and fragment shaders, written in OpenGL Shading Lan-
guage (GLSL), that, after compilation, run directly on the
graphics card. WebGL also provides for OpenGL-style tex-
tures, as well as different lighting primitives. More advanced
techniques, such as specular highlighting, bump mapping,
and transparency, can be achieved through custom GLSL
shaders.

2.4 Security Implications
These new capabilities, while providing more and more

ways for developers to produce interesting and useful web
content, do come at a cost. For efficiency’s sake, inputs from
the web are passed farther and farther down the software
stack: for example, GLSL shaders are compiled directly from
web pages and run on the graphics card, allowing arbitrary
data to pass between the JavaScript execution engine and
the kernel-level graphics driver. Other attack surfaces are
possible: malicious or misguided GLSL shaders can crash or
hang the entire operating system on OSX and Windows XP
or cause GPU resets on Windows 7[9].

WebFonts, while appearing more innocent, can also be
a security concern. Remote code execution vulnerabilities
while parsing TrueType fonts have been discovered in Win-
dows[2], OSX, Debian, Red Hat, and iOS[1].

While we do not use these exploits in this paper, we take
advantage of the fact that these new web technologies, for
efficiency’s sake, push untrusted web content deep into the
operating system stack. In our case, however, we simply
examine the results of these operations, exposing differences
in implementation (however slight).

3. EXPERIMENTS
In this section, we discuss the tests that underly our fin-

gerprinting scheme, as well as the support infrastructure we
built in order to deliver the tests and inspect their results.
We will also detail the process of fingerprint collection from
a large number of disparate users on the web.

3.1 Tests
For our fingerprints, we use six tests: text_arial, text-

_arial_px, text_webfont, text_webfont_px, text_nonsense,
and webgl. Each test follows the same basic outline: render
test data to a canvas and extract its contents as an encoded
PNG.

3.1.1 Arial Text
In our first two tests, we render a short sentence in Arial,

a font known for its ubiquity on the web. To exercise each
letterform, we use the pangram “How quickly daft jumping
zebras vex.”, along with some added punctuation.

For text_arial, the text is rendered to the canvas in 18pt
Arial. In text_arial_px, we change the font specification
to 20px Arial. The actual code for these two tests is almost
identical to the snippet in Figure 1 — complicated tests
aren’t needed for fingerprinting!

Example images produced by these two tests are shown
in Figure 2.

3

https://developers.google.com/webfonts/docs/webfont_loader
https://developers.google.com/webfonts/docs/webfont_loader

Figure 2: text_arial (top) and text_arial_px

Figure 3: text_webfont (top) and text_webfont_px

Figure 4: text_nonsense

3.1.2 WebFont Text
These two tests are extremely similar to the Arial tests,

with the added complexity of loading a new font from a web
server. In a more sophisticated or targeted fingerprint, the
delivered font could be carefully tuned by the fingerprinter
to exercise corner cases in font loading.

In our case, however, we use the WebFont Loader to load
“Sirin Stencil” from the Google Web Fonts server9. Once
it loads, we render the same pangram as in our Arial tests.
For text_webfont, the text is set in 12pt Sirin Stencil, while
text_webfont_px uses 15px Sirin Stencil.

Example images are shown in Figure 3.

3.1.3 Nonsense Text
Code-wise, this test is nearly identical to the two Arial

tests. However, instead of a valid font specification, we set
the 2d font specification to“not even a font spec in the slight-
est”. This exercises the fallback handling mechanisms in the
browser: what does it do with an invalid font request? The
browser’s choice of fallback font, as well as its positioning
and spacing, can be quite telling.

Also, note that this behavior is also the fallback font han-
dling mechanism for when the browser is presented with a
valid font specification for an unavailable font. Using this
technique, tests can be written to probe for the existence of
a particular font on target machines. If enough of these tests
are run, the fingerprinter can derive a fairly comprehensive
list of the installed fonts on the target machine.

An example output is shown in Figure 4.

3.1.4 WebGL
webgl is our only test whose code spans more than a few

lines. As WebGL scenes go, however, this scene is almost
minimal. We create 200 polygons, approximating the hy-

perbolic paraboloid z = y2

2
− x2

3
, with −3 ≤ y ≤ 3 and

−3 ≤ x ≤ 3. Over this surface, we apply a single tex-
ture: a 512 by 512 pixel rasterized version of ISO 12233,
the ISO standard for measuring lens resolution. Designed
for measuring sharpness and resolution in electronic still-
picture cameras, this texture contains many areas with high
detail. We then add an ambient light with color (0.1, 0.1,
0.1) and a directional light of color (0.8, 0.8, 0) and direc-

9http://www.google.com/webfonts

Figure 5: An example run of the webgl test

tion (2,4,9). Placing our surface at z = −10, we render this
simple tableau.

A example, rendered on OS X 10.7.3 with Chrome 18 on
a AMD Radeon HD 6490M, is shown in Figure 5.

3.1.5 Test Speed
Speed is an important characteristic for fingerprints. Tests

that take minutes are categorically less useful than tests that
take seconds, especially if they are deployed to protect online
accounts (imagine waiting even twenty seconds to log into
your webmail!). In our case, each test takes a mere fraction
of a second to run — indeed, the longest delays occur while
fetching the image assets. Consisting of a 76 KiB PNG
image and a 24 KiB WOFF font, these fetches would not
be out of place during any page load on today’s web. For
comparison, once it has loaded, the Quake 3 WebGL Demo10

runs at 60 FPS with around 15% CPU utilization in Chrome
18 with a 2 GHz Core i7 and an AMD Radeon HD 6490M.
There is room for a substantial number of <canvas>-based
fingerprints to run before adversely affecting user experience.

3.2 Infrastructure
In general, web designers can depend on their sites ren-

dering in a consistent manner across various browsers and
operating systems. Therefore, we expected that any finger-
printable differences will be subtle, perhaps not even visible
to a human observer.

To view these trace differences, we built a small webapp
which can administer the tests and examine their results.
Experiments are served as pure JavaScript, and results are
collected as data URL-encoded PNGs. Our framework then
compares these results as images, allowing it to group iden-
tical results and display pixel-level differences between these
groups.

We use two types of image comparison: pixel-level dif-
ference and difference maps. When constructing a pixel-
level difference, the framework first creates a new image of
the appropriate size. Then, each pixel’s color is set to the
channel-wise difference between the two images at that lo-
cation. If this color is anything other than transparent pure
black (which indicates that there is no difference between
the two images at this pixel), we set the alpha value of the
differing pixel to 255, rendering it fully opaque. For differ-
ence maps, each pixel in the map is set to either white or

10Quake 3 Demo: http://media.tojicode.com/q3bsp/

4

http://www.google.com/webfonts
 http://media.tojicode.com/q3bsp/

black, depending on whether the original images differ. A
purely white difference map indicates identical images, while
perfectly black indicates difference in every pixel.

Unfortunately, we do not have ready access to several hun-
dred distinct consumer-level computer systems. To collect
enough data to demonstrate the applicability of our finger-
prints, we turned to Amazon Mechanical Turk. We modi-
fied our framework to deliver multiple tests on a single page,
along with extended instructions for the human workers on
Mechanical Turk. The next section explains our process and
results more thoroughly.

3.3 Data Collection
We collected samples from 300 distinct members of the

Mechcanical Turk marketplace, paying each a small sum
to report their graphics card and graphics driver version.
Meanwhile, our five fingerprinting tests ran in the back-
ground. We also collected various metadata, such as the
browser’s user agent string and the WebGL-reported ren-
derer, vendor, and version.

In Safari, acquiring information on the user’s graphics
card and driver is trivial: simply ask the WebGL canvas
context. For example, given a WebGL context gl, calling
gl.getParameter(gl.RENDERER) on Safari 5.1.3 might re-
turn“AMD Radeon HD 6490M OpenGL Engine”, while call-
ing gl.getParameter(gl.VERSION) might return “WebGL
1.0 (2.1 ATI-7.18.11)”, which includes the version number of
the current graphics driver. Currently, however, WebGL is
disabled by default in Safari, and must be manually enabled
through the Developer menu.

In all three browsers which ship with WebGL enabled,
however, these values are redacted. For example, in Chrome
18.0.1025.39, asking for the WebGL renderer returns “We-
bKit WebGL”, while the version is “WebGL 1.0 (OpenGL
ES 2.0 Chromium)”. Firefox and Opera Next are similarly
unhelpful, returning generic statements about the version
of WebGL, without reference to the installed hardware. We
conclude that browser vendors consider hardware and driver
version to be identifying information, and any information
our fingerprints extract about them can be considered a loss
of privacy.

Owing to these constraints, the user-facing portion of our
survey asked users of Chrome, Firefox, and Opera to man-
ually report their graphics card and driver. For Chrome
and Firefox, the user was instructed to copy text from the
browser pages chrome://gpu and about:support, respec-
tively. Opera does not appear to have any such mechanism
for hardware discovery, and so these users were asked to
discover the information through other means.

3.3.1 Platform Representation
Windows represents the lion’s share of user platforms,

with 276 samples. A full 226 of these are from Windows
7, with 9 Windows Vista, 40 Windows XP, and 1 Windows
8 rounding out the total. We also have 13 samples from
OS X, ranging from 10.5.8 to 10.7.3, and 11 samples from
Linux.

Chrome is overwhelmingly present in our data set, with
222 samples ranging from version 10 to 19. Firefox comprises
almost all of the rest, with 71 samples between versions 8
and 11. We also have 4 samples from Opera 9.8, 2 from
Safari 5, and 1 from Android.

These numbers do not represent the current software us-

age of the internet as a whole. We attribute this to text in
the survey, asking users to use a WebGL-enabled browser
to complete the task. Notably, since Internet Explorer does
not support WebGL, we posit that every Mechanical Turk
user using IE either skipped our survey, or returned in either
Chrome or Firefox. The overwhelming prevalence of Win-
dows 7 is also correlated with WebGL capability — users
who have up-to-date browsers might also be more likely to
have up-to-date operating systems.

3.3.2 Persistence
During the course of data collection, twenty-three distinct

users performed our survey twice. Due to our setup, we col-
lected results for text_arial, text_webfont, text_nonsense,
and webgl when they first performed the survey. However,
for all twenty-three users, each of these tests were identical
to their later submissions. This suggests that our finger-
prints are consistent — for a given browser/OS/graphics
card platform, performing the same test will always give
identical results.

To further test this hypothesis, we ran all of our tests on 5
identically-provisioned lab computers, running Firefox 11 on
Windows XP. As expected, all five computers produced iden-
tical results on each test, providing further evidence that our
fingerprints are stable across identical hardware and soft-
ware stacks. Additionally, we note that our fingerprints are
unable to distinguish between users who use the exact same
hardware and software.

3.3.3 Errors
While running the experiment, six users experienced fail-

ures in the text_webfont and text_webfont_px tests, re-
turning a blank PNG instead of one containing text. Upon
investigation, we attribute these failures to a known race
condition in the WebFont Loader library. Since the race
condition is a transient error, we ignore these six samples
whenever they affect our fingerprint information leakage, as
including them will improve differentiation.

3.3.4 Data Quality
We treat the user’s report and user agent string as ground

truth. While examining the data, we saw no evidence of
any forgery, either of user agent strings or graphics card
information.

Since we conducted the survey on Mechanical Turk, how-
ever, some level of imperfection is to be expected. Indeed,
twenty-four users did not submit their graphics card infor-
mation, either by copying unrelated text into the survey box
or failing to fill in the box at all. In the authors’ favorite
submission, the worker simply entered “It was very nice.”
into the text field. These unclassified samples are included
in our results, since they represent the state of a <canvas>

fingerprint in the wild, with no inside information about
hardware.

4. RESULTS
The most important feature of any fingerprint is differen-

tiation: if every system fingerprinted performs identically,
what use is the fingerprint? With this goal in mind, we now
examine the results of our tests as applied to Mechanical
Turk users.

5

Windows:

OS X:

Linux:

Figure 6: 13 ways to render 20px Arial

4.1 Arial Font Rendering
In general, we find a surprising amount of differentiation

in the ways that fonts are rendered. Even Arial, a font
which is 30 years old, renders in new and interesting ways
depending on the underlying operating system and browser.
In the 300 samples collected for the text_arial test, there
are 50 distinct renderings. For text_arial_px, this number
drops to 43. This amount of diversity is astounding, show-
ing differences even between computers running the same
operating system and browser version. In Figure 6, you can
see some of the different results that appear. Interestingly,
some of the Linux samples shown are not using Arial at all,
but are substituting an unidentified yet similar font. Font
subsitutions such as these provide an extra dimension of dis-
tinguishability between otherwise matching computers.

The largest cluster of identical renderings on text_arial

contains 172 samples, taken in versions of Chrome ranging
from 15 to 18 on Windows XP, Vista, or 7. We attribute
the size of this group to the relative popularity of this brow-
ser/OS combination in our data set. However, seven other
groups contain samples taken on this platform as well, indi-
cating that other, more hidden variables might be discover-
able in this test.

4.1.1 Classification
While a repeatable, trivial fingerprint borne out of sim-

ple text rendering is quite promising, even more information
can be derived with this test. 10 of 50 groups contain sam-
ples taken on Linux machines, while 5 contain samples from
OS X. Each of the fifty groups contains samples from only a
single operating system family, implying that this fingerprint
alone is sufficient to distinguish operating systems!

Similarly, almost every group contains samples from only a
single browser family. The single exception occurs on OS X,

where Chrome and Safari can produce identical renderings.
Otherwise, the font handling in each browser is distinctive
enough to leave a usable fingerprint.

Given these results, we conclude that rendering a simple
pangram in Arial on a <canvas> is enough to leak the user’s
operating system family and (almost always) browser family.

4.1.2 Differences
Collecting text samples from such a wide variety of sources

allows us to find slight differences among rendering engines,
which could be exploited for better and more precise finger-
prints. In Figure 7, we present the original rendering for
the 172-member Windows/Chrome group, along with sev-
eral difference maps. The most obvious difference occurs
across platforms, where we see a marked difference in the
kerning of the text, leading to the text rendering at two
different lengths. For samples on the same platform, the
difference map shows the outline of each letter, indicating
that antialiasing or subpixel hinting (such as ClearType)
was used. From this, a fingerprinter might be able to de-
duce information regarding the user’s display or ClearType
settings. Finally, the most interesting difference map comes
from a single sample, claiming to be Chrome 17.0.963.56 on
Windows 8. Here, we see only a few pixels’ difference, lo-
cated solely near round edges, indicating subtle differences
in the font rendering engine in this system. Such differences
might be found in currently deployed systems by using other
fonts and glyphs, rendering this sort of fingerprint even more
potent.

More generally, our technique is capable enough to flush
out any differences between two font handling stacks. Dur-
ing our experiments, we observed that at least operating
system, browser version, graphics card, installed fonts, sub-
pixel hinting, and antialiasing all play a part in generating
the final user-visible bitmap. Additionally, our fingerprint
can recognize the impact of any other variables that impact
font rendering, such as the exact placement of pixels on a
physical LCD screen (which ClearType might take into ac-
count). More data and better platform characteriziation is
necessary for identification and individual classification of
these more subtle variables.

Lastly, in both Figure 7 and Figure 6, there is a surpsris-
ing amount of diversity in the length of rendered text. This
suggests an even simpler fingerprinting mechanism: create
specially crafted sentences as DOM elements and measure
their length via JavaScript. When implemented as a proof-
of-concept, this technique shows a measurable and repeat-
able difference in the length of text between Firefox 10 and
Chrome 18 on OSX. This simpler fingerprint should reveal
a strict subset of the information that our <canvas>-based
text rendering does, but does so using far simpler methods
(and thus will be much more difficult to defend against).

4.1.3 Entropy
Fingerprints are useful only inasmuch as they differenti-

ate users. Since our fingerprints reveal differences in hard-
ware and software stacks, popular hardware configurations
reduce the identifying power of the tests. Conversely, how-
ever, some setups might produce unique results, identifying
their user precisely. To estimate the tests’ overall effective-
ness, we will compute the distribution entropy of our group-
ings. This metric indicates how many predictive bits the
test reveals, or, more precisely, the differential loss of user

6

Original Image:

Linux:

OSX:

Windows (XP, Vista, 7):

Windows 8:

Figure 7: Difference maps for a group on text_arial

privacy resulting from the test. However, since we do not
believe that the hardware and software in our 300 samples
is a representative sample of the internet as a whole, these
metrics should be treated as rough guidelines at best.

To measure distribution entropy, we use the formula

E = −
n∑

i=1

p(xi)log2p(xi)

where p(xi) is the size of the ith group divided by the number
of samples. text_arial, across 50 groups, shows a distribu-
tion entropy of 3.05 bits. text_arial_px, having only 43
distinct groups, reveals 2.86 bits. We note that these num-
bers do not represent the true entropy of these tests, as we
do not have enough data to accurately model the distribu-
tion of platforms in the wild.

4.2 WebFont Rendering
Using WebFonts allows us to standardize the font under

test. Unlike in the Arial tests, where slight differences in
the installed font could conceivably exist, any differences in
the WebFont test must be a direct consequence of the font
engine used to render the text.

In general, text_webfont shows a similar distribution to
the Arial tests. From the 294 properly completed tests, there
are 45 distinct ways to render our sample sentence. 10 of
these are presented in Figure 8. As in the Arial tests, each
group consists of a single OS family/browser family pair,
with the sole exception of Safari and Chrome on OS X,
lending further evidence that text rendering can uniquely
identify platform details.

Interestingly, as is visible in the last Windows sample,
some clients did not use Sirin Stencil at all; rather, they
substituted in a font of their own. In our data, we found
five of these samples: four (Chrome 16 and 17, Firefox 10
and 11) using Times New Roman, the fifth (Opera 9.8) using
what appears to be Arial. Samples containing the correct
webfont exist for each of these browsers, so we must assume
that these five users have disabled WebFonts for security
reasons, or that there was an error loading the font. If the

Windows:

OS X:

Linux:

Figure 8: 10 ways to render 12pt Sirin Stencil

Figure 9: Sirin Stencil

former, these users may be doing themselves a disservice:
their browsers stand out quite strongly in our fingerprints.
Indeed, three of these samples are unique, with only the
Chrome pair sending identical results.
text_webfont_px shows almost identical results, with 44

groups from 294 samples. Therefore, we shall focus only on
text_webfont from now on.

As in our Arial tests, the largest group consists solely of
Chrome on Windows, with 164 identical samples. Oddly, the
Windows 8 sample appears in this group, along with many
of the samples from the large Arial group. This suggests
that the font handling in Windows 8 has not been entirely
changed, and similar subtle differences might exist in other,
currently indistinguishable font engines.

Another interesting render is shown in Figure 9. 13 sep-
arate users submitted this result, each using Chrome (17,
18) on Windows (XP, Vista, 7). After being surprised at
the relative poor quality of this text, we were able to re-
produce it exactly by disabling the option “Smooth edges of
screen fonts” in the Windows 7 Performance Options prefer-
ences, which disables Microsoft’s ClearType subpixel hint-
ing, as well as any antialiasing on fonts system-wide. Our
text_webfont test, therefore, leaks this setting to an online
fingerprinter, and this leakage suggests that other ClearType
configuration might be detectable as well. For example, if
ClearType performs differently with distinct screen DPIs or
LCD pixel layouts, these subtle differences will reveal them-
selves to this very simple fingerprinting technique, leaking
even more information about the user’s hardware.

4.2.1 Entropy
text_webfont, with 294 samples in 44 groups, shows a dis-

tribution entropy of 2.93 bits. text_webfont_px is similar,
at 2.95 bits.

7

4.3 WebGL
When we first started this project, we predicted that we

would need to try quite a few underhanded tricks in order
to see differences between graphics cards. Surprisingly, this
is not the case. Our experiments show that graphics cards
leave a detectable fingerprint while rendering even the sim-
plest scenes.

As described in Section 3.1.4, our WebGL test creates a
single surface, comprised of 200 polygons. It applies a sin-
gle black and white texture to this surface, and uses simple
ambient and directional lights. We also enable antialiasing.

Of the 300 users who participated in our study, 30 sub-
mitted no data for this test. In our framework, this absence
indicates either that WebGL is disabled or that an error
occurred during the test.

Under visual inspection, the 270 remaining images appear
identical. When examined at the level of individual pixels,
however, we discovered 50 distinct renders of the scene.

This level of heterogeneity is, frankly, quite surprising.
Our scene is rendered with basic matrix operations, and
we expected far more consistency among graphics cards.
One possible explanation suggests that graphics cards, in
the name of efficiency, cut corners with respect to graph-
ics processing. Perhaps renders are nondeterministic, but in
such minor ways as to be undetectable for humans.

Looking at the subset of our data in Table 1, we see that
this is not the case: most graphics cards produce pixel-
perfect output as compared to others of their model. There
is also a resemblance among the members of the same line
(note groups 1, 5, and 24), suggesting that graphics card
manufacturers perhaps share hardware or driver implemen-
tations between coexisting and evolving product lines.

The graphics cards, browsers, and operating systems present
in all 51 groups can be found in Appendix A.

4.3.1 Classification
Of course, simply knowing that two implementations differ

is useful, but understanding how might give clues as to why.
In Figure 10, we see the original image for group 24, our
largest, as well as its difference maps against several other
renders.

Examining these in detail, there are several different ways
in which these groups differ. In the group 1 and group 36 dif-
ference maps, we see that most of the difference is located at
the edges of color regions and polygons. This suggests that
these graphics cards are performing antialiasing slightly dif-
ferently, or perhaps simply linearly interpolating textures in
almost imperceptably different ways. In contast, we see that
the renderers in Group 20 produced slightly different colors
when lighting the white portions of the texture, as compared
to group 24. However, group 23 differs at almost every single
non-background pixel. The two renders are visually indistin-
guishable, suggesting that the differences occur in the very
least significant bits of each color.

The most interesting difference, however, appears between
group 24 and group 25. These renders differ by only a
few pixels! Indeed, the hardware used to produce these
images is extremely similar: group 24 consists mainly of
Intel G41 (device ID 0x2e32), Intel HD Graphics (device
IDs 0x0042, 0x0046, 0x0df1), and Mobile Intel 4 Series (de-
vice ID 0x2a42), while group 25 consists solely of Intel HD
Graphics systems (device IDs 0x0102 and 0x0116). If we
assume that distinct device ID numbers indicate distinct

products, these few pixels strongly suggest that even ex-
tremely similar graphics systems can be differentiated sim-
ply through rendering the right images!

Also, it is worth noting that out of 50 total groups, 49 con-
tain samples from a single operating system family. Group
42 (in 1 is the only exception, containing both Linux and
OS X. However, given the relative lack of samples from
Linux and OS X, we cannot determine whether this delin-
eation is due to significant differences in each operating sys-
tem’s graphics handling, or whether we simply do not have
enough samples comparing identical graphics cards across
diverse software stacks.

4.3.2 Entropy
Due to the large number of unique graphics cards and

their consistent effects, webgl gives a distribution entropy of
4.30 bits, over 300 samples in 51 groups. Again, the actual
entropy revealed by this test depends upon the frequency of
each graphics card as deployed in the wild, which we can not
extrapolate from our data. Therefore, this entropy should
be considered a rough estimate, at best.

4.4 Comprehensive Fingerprinting
Given the relative success of each individual test, we shall

now examine their efficacy when combined. If their predic-
tive power lies solely in browser and operating system family,
we will expect a relatively similar number of distinct groups
once all fingerprints are combined. With this approach, each
group consists of samples for which all six tests are identical.

Among the 294 samples which successfully completed all
six tests, there are 116 distinct groups. The largest of these
contains 51 samples, and consists almost solely of Chrome
17.0.963.56 on Windows 7, with a single Windows Vista
mixed in. As for graphics cards, it contains Intel G41 Ex-
press Chipsets (DID 0x2e32), Intel Graphics Media Acceler-
ator HD 0x0046), Intel HD Graphics (DID 0x0042, 0x0046,
0x0df1), Intel 4 Series (DID 0x2a42), and Intel 45 Express
(DID 0x2a42). As mentioned in Section 4.3.1, further and
more sophisticated WebGL fingerprints may be able to dif-
ferentiate these graphics systems.

4.4.1 Entropy
Overall, our fingerprints do combine beneficially: among

the 116 groups, our five extremely simple tests show a dis-
tribution entropy of 5.73 bits. We believe that more spe-
cialized and targeted tests could reveal even more, perhaps
down to the exact installed graphics card, operating system,
and browser family.

5. DEFENSES
In this section, we propose several methods of preventing

<canvas>-based fingerprinting and consider their impact.
First, browser vendors could completely disable canvas

pixel extraction. While obviously preventing any poten-
tial <canvas>-based fingerprinting, this fix removes a use-
ful capability of the platform — imagine building a webapp
for photo editing or drawing. Therefore, let us only con-
sider defends that do not overly undermine the potential of
<canvas>.

One might imagine a defense whereby the browser adds
random pixel noise whenever pixels are extracted. Under
this regime, directly comparing image results becomes far
more difficult. However, slight noise can be easily circum-

8

Table 1: Selected groupings of identical webgl renders. Each group corresponds to a single pixmap.

Group # Graphics Cards Browsers OS

1 3 ATI Mobility Radeon HD 4250 (Device 9712) Chrome 17 Windows 7

1 ATI Radeon HD 2400 Pro (Device 94c1) Chrome 17 Windows 7

1 ATI Radeon HD 2600 Pro (Device 9589) Chrome 17 Windows 7

3 ATI Radeon HD 3200 Graphics (Device 9612) Chrome 17 Windows 7

1 ATI Radeon HD 3800 Series (Device 9505) Chrome 19 Windows 7

2 ATI Radeon HD 4200 (Device 9710) Chrome 17 Windows 7

5 1 ATI Mobility Radeon HD 4300 Series (Device 9552) Chrome 17 Windows 7

1 ATI Mobility Radeon HD 4330 (Device 9552) Chrome 17 Windows 7

1 ATI Mobility Radeon HD 4530 (Device 9553) Chrome 17 Windows 7

1 ATI Mobility Radeon HD 4670 (Device 9488) Chrome 17 Windows 7

1 ATI Mobility Radeon HD 545v (Device 9553) Chrome 17 Windows 7

1 ATI Mobility Radeon HD 550v (Device 9480) Chrome 17 Windows 7

1 ATI Radeon HD 4350 (Device 954f) Chrome 17 Windows 7

1 ATI Radeon HD 4550 (Device 9540) Chrome 17 Windows 7

20 7 Intel(R) 82945G Express Chipset Family (Device 2772) Chrome 17 Windows 7

1 Intel(R) 82945G Express Chipset Family (Device 2772) Chrome 17 Windows Vista

1 Intel(R) 82945G Express Chipset Family (Device 2772) Chrome 18 Windows 7

1 Intel(R) 82945G Express Chipset Family (Device 2772) Firefox 10 Windows XP

1 Intel(R) 82945G Express Chipset Family (Device 2772) Firefox 8 Windows 7

1 Intel(R) HD Graphics Family (Device 0102) Firefox 10 Windows 7

2 Mobile Intel(R) 945 Express Chipset Family (Device 27a2) Chrome 17 Windows 7

23 1 Intel(R) G33/G31 Express Chipset Family (Device 29c2) Firefox 10 Windows 7

24 1 Intel(R) G41 Express Chipset (Device 2e32) Chrome 15 Windows 7

7 Intel(R) G41 Express Chipset (Device 2e32) Chrome 17 Windows 7

2 Intel(R) G41 Express Chipset (Device 2e32) Chrome 19 Windows 7

1 Intel(R) Graphics Media Accelerator HD (Device 0046) Chrome 17 Windows 7

1 Intel(R) HD Graphics (Device 0042) Chrome 15 Windows 7

1 Intel(R) HD Graphics (Device 0042) Chrome 16 Windows 7

2 Intel(R) HD Graphics (Device 0042) Chrome 17 Windows 7

1 Intel(R) HD Graphics (Device 0042) Firefox 10 Windows 7

2 Intel(R) HD Graphics (Device 0046) Chrome 16 Windows 7

23 Intel(R) HD Graphics (Device 0046) Chrome 17 Windows 7

1 Intel(R) HD Graphics (Device 0046) Chrome 17 Windows 8

5 Intel(R) HD Graphics (Device 0046) Firefox 10 Windows 7

1 Intel(R) HD Graphics (Device 0046) Firefox 10 Windows XP

1 Intel(R) HD Graphics (Device 0046) Firefox 11 Windows 7

2 Intel(R) HD Graphics (Device 0046) Firefox 9 Windows 7

3 Intel(R) HD Graphics (Device 0df1) Chrome 17 Windows 7

1 Intel(R) HD Graphics (Device 0df1) Chrome 19 Windows 7

2 Mobile Intel(R) 4 Series Express Chipset Family (Device 2a42) Chrome 16 Windows 7

9 Mobile Intel(R) 4 Series Express Chipset Family (Device 2a42) Chrome 17 Windows 7

1 Mobile Intel(R) 4 Series Express Chipset Family (Device 2a42) Chrome 17 Windows Vista

1 Mobile Intel(R) 4 Series Express Chipset Family (Device 2a42) Firefox 10 Windows 7

1 Mobile Intel(R) 4 Series Express Chipset Family (Device 2a42) Firefox 10 Windows XP

7 Mobile Intel(R) 45 Express Chipset Family (Device 2a42) Chrome 17 Windows 7

1 Mobile Intel(R) 45 Express Chipset Family (Device 2a42) Chrome 18 Windows 7

1 UNKNOWN Chrome 17 Windows 7

1 UNKNOWN Chrome 17 Windows Vista

1 UNKNOWN Chrome 18 Windows 7

25 1 Intel(R) HD Graphics Family (Device 0102) Firefox 10 Windows XP

1 Intel(R) HD Graphics Family (Device 0116) Firefox 8 Windows 7

3 Intel(R) HD Graphics Family (Device 0116) Firefox 9 Windows 7

36 1 NVIDIA GeForce 6150SE nForce 430 (Device 03d0) Chrome 17 Windows 7

1 NVIDIA GeForce 6200 (Device 0221) Firefox 10 Windows XP

1 NVIDIA GeForce 7100 / NVIDIA nForce 630i (Device 07e1) Firefox 10 Windows 7

1 NVIDIA GeForce 7150M / nForce 630M (Device 0531) Chrome 17 Windows 7

1 NVIDIA GeForce 7300 SE/7200 GS (Device 01d3) Chrome 17 Windows 7

1 UNKNOWN Chrome 15 Windows XP

42 1 NVIDIA GeForce 8600 Chrome 17 Linux

1 NVIDIA GeForce 9400 Chrome 17 OSX 10.7.3

1 NVIDIA GeForce 9800 Chrome 17 Linux

1 NVIDIA GeForce 320M (Device 08a0) Firefox 10 OSX 10.6

9

(a) Original
(Intel G41)

(b) Group 1
(Radeon HD 2400)

(c) Group 20
(Intel 82945G)

(d) Group 23
(Intel G33/G31)

(e) Group 25
(Intel HD Graphics)

(f) Group 36
(GeForce 6200)

Figure 10: Original render and difference maps for Group 24

vented: simply repeat the test a few times and compare the
results (perhaps by averaging or selecting the most common
pixel color). While increasing the noise combats this, it also
degrades the performance of <canvas> significantly for le-
gitimate applications. Applying the same noise on multiple
runs would only aid in fingerprinting. Therefore, we con-
clude that adding noise is not a feasible defense against our
fingerprinting methods.

Thinking further, we note that our fingerprints measure
functional differences in both the hardware and software
running on the device. A sure-fire way to defend against
leaking this information, then, is for every system to pro-
duce identical results. To do so, browser vendors will need to
agree on a list of “<canvas>-safe” fonts, and then ship these
fonts, along with text rendering libraries such as Pango, as
a supplement to the browser. To support WebGL, browsers
would ignore the graphics card entirely and render scenes in
a generic software renderer such as Mesa 3D. While this ap-
proach might be acceptable where privacy is of the utmost
importance, the performance impact would be unacceptable
in a shipping browser. Note that performing this emulation
is a signal in and of itself, revealing that the user is taking
precautions to be anonymous.

The easiest effective defense, then, is to simply require
user approval whenever a script requests pixel data. Modern
browsers already implement this type of security — for ex-
ample, user approval is required for the HTML5 geolocation
APIs. This approach continues the existing functionality of
<canvas> while disallowing illegitimate uses, at the cost of
yet another user-facing permissions dialog.

More complicated defense schemes can certainly be imag-
ined. Imagine, perhaps, a <canvas> implementation that
uses hardware acceleration to produce the pixels displayed
to the user, but regenerates the entire image with an emu-
lated implementation whenever the site requests pixel data.
Such complicated schemes might sucessfully defend against
a <canvas> fingerprint, but add significant complexity to
HTML5 APIs and behavior.

6. CONCLUSIONS
We have demonstrated that the behavior of <canvas> text

and WebGL scene rendering on modern browsers forms a
new system fingerprint. The new fingerprint is consistent,
high-entropy, orthogonal to other fingerprints, transparent
to the user, and readily obtainable.

We believe that such fingerprints are inherent when the

browser is — for performance and consistency — tied closely
to operating system functionality and system hardware.

We do not yet have the data necessary to estimate the
entropy of our fingerprint over the entire population of the
web, but given our preliminary findings, 10 bits is a (possi-
bly very) conservative estimate. Indeed, Benoit Jacob has
estimated the entropy of just the GPU model at 9 bits [10].

We were surprised at the amount of variability we ob-
served in even very simple tests, such as rendering a sen-
tence in 12-point Arial. We conjecture that it is possible to
distinguish even systems for which we obtained identical fin-
gerprints, by rendering complicated scenes that come closer
to stressing the underlying hardware. Note that an attacker
could refine a fingerprint in a black-box way by having some
victims render experimental scenes in addition to the ones
used for fingerprinting. Those scenes that allow otherwise
identical systems to be distinguished should be added to the
fingerprint.

We are pessimistic about the possibility of eliminating the
fingerprints we identified without seriously degrading brow-
ser functionality and performance, or require yet more user
approval dialogs to enable basic functionality. Perhaps the
time has come to acknowledge that fingerprints are unavoid-
able on the modern web.

For browsers specifically designed to limit the ability of
attackers to fingerprint users, such as Tor’s modified Firefox
with Torbutton [15], more drastic steps may be necessary.
Torbutton already disables WebGL, and it likely should dis-
able GPU-based compositing and 2D canvas acceleration.11

But even this step does not address the fingerprint obtained
through font rendering. It may be necessary for Tor’s Fire-
fox to eschew the system font-rendering stack, and instead
implement its own — based, for example, on GTK+’s Pango
library.

Acknowledgments
We are grateful to Úlfar Erlingsson, Eric Rescorla, Stefan
Savage, and Geoff Voelker for helpful discussions about this
work. This material is based upon work supported by the
National Science Foundation under Grants No. CNS-0831532
and CNS-0964702, and by the MURI program under AFOSR
Grant No. FA9550-08-1-0352.

11WebGL could perhaps be implemented in software. As an
example, Chrome 17 falls back on a software GL backend on
systems without a supported GPU.

10

Table 2: Groups of identical webgl renders. Number in parentheses indicate device IDs, where appropriate.

Size Graphics Cards Browsers OS

1 11 ATI Mobility Radeon HD 4250; ATI Radeon HD 2400 Pro, 2600 Pro, 3200, 3800, 4200 Chrome (17, 19) Windows 7

2 8 AMD Radeon HD 6250, 6300, 6310, 6670, 6800; ATI Radeon HD 5450, 5670 Chrome (17, 18) Windows 7

3 4 AMD Radeon HD 6250; Mobility Radeon HD 5650; ATI Radeon HD 5670; Unknown Firefox (9) Windows 7

4 1 ATI HD 5850 Opera (9.8) Windows 7

5 8 ATI Mobility Radeon HD 4300, 4330, 4530, 4670, 545v, 550v; ATI Radeon HD 4350,
4500

Chrome (17) Windows 7

6 9 ATI Mobility Radeon HD 5470, 5730, 5700 Series; Intel HD Graphics (0116) Chrome (17) Windows 7

7 1 ATI Radeon 2100 Chrome (17) Windows 7

8 1 ATI Radeon HD 2600 Pro Chrome (17) OS X 10.6.8

9 1 ATI Radeon HD 4300/4500 Series (954f) Firefox (8) Windows 7

10 4 ATI Radeon HD 5700 Series (68be), 5800 Series (6899); Unknown Firefox (10, 11) Windows 7

11 1 ATI Radeon HD 6750M Firefox (10) OS X 10.7

12 1 Unknown Android 2.3.4 Android

13 1 Intel GMA 950 Chrome (18) OS X 10.7.3

14 1 Intel GMA X3100 Chrome (17) OS X 10.5.8

15 1 Intel GMA 950 Firefox (10) OS X 10.6

16 1 Intel HD Graphics 3000 Firefox (10) OS X 10.7

17 1 Intel HD Graphics 3000 Firefox (12) OS X 10.7

18 3 Intel 946GZ Express Chipset (2972), Mobile Intel 956 Express Chipset (2a02) Chrome (10, 17);
Firefox (10)

Windows (7, XP)

19 5 Intel 82845G (2562), G41 Express Chipset (2e32), 945GM/GU Express Chipset (27a2);
Unknown

Chrome (18) Windows XP

7. REFERENCES
[1] Cve-2010-3855. Online:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2010-3855, Dec. 2011.

[2] Microsoft security bulletin ms11-087. Online:
http://technet.microsoft.com/en-us/security/

bulletin/ms11-087, Dec. 2011.

[3] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh.
An analysis of private browsing modes in modern
browsers. In I. Goldberg, editor, Proceedings of
USENIX Security 2010, pages 79–93. USENIX, Aug.
2010.

[4] S. Baker. Re: [public WebGL] about the VENDOR,
RENDERER, and VERSION strings. Public WebGL
mailing list, Nov. 2010.
https:

//www.khronos.org/webgl/public-mailing-list/

archives/1011/msg00221.html.

[5] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre.
User tracking on the Web via cross-browser
fingerprinting. In P. Laud, editor, Proceedings of
NordSec 2011, LNCS. Springer-Verlag, Oct. 2011.

[6] R. Dingledine and N. Mathewson. Tor: The
second-generation onion router. In M. Blaze, editor,
Proceedings of USENIX Security 2004, pages 303–19.
USENIX, Aug. 2004.

[7] P. Eckersley. How unique is your Web browser? In
M. Atallah and N. Hopper, editors, Proceedings of
PETS 2010, volume 6205 of LNCS, pages 1–18.
Springer-Verlag, July 2010.

[8] G. Fleischer. Attacking Tor at the application layer.
Presentation at DEFCON 2009, Aug. 2009. Online:
http://pseudo-flaw.net/content/defcon/.

[9] J. Forshaw. Webgl - a new dimension for browser
exploitation. Online:
http://www.contextis.com/resources/blog/webgl/,
May 2011.

[10] B. Jacob. Re: [public WebGL] about the VENDOR,
RENDERER, and VERSION strings. Public WebGL
mailing list, Nov. 2010.
https:

//www.khronos.org/webgl/public-mailing-list/

archives/1011/msg00229.html.

[11] B. Jacob. Re: [public WebGL] information leakage
and the extension regisrty. Public WebGL mailing list,
Dec. 2010.
http:

//www.khronos.org/webgl/public-mailing-list/

archives/1012/msg00083.html.

[12] A. Juels, M. Jakobsson, and T. N. Jagatic. Cache
cookies for browser authentication (extended
abstract). In V. Paxson and B. Pfitzmann, editors,
Proceedings of IEEE Security and Privacy (“Oakland”)
2006, pages 301–05. IEEE Computer Society, May
2006.

[13] J. R. Mayer. “Any person. . . a pamphleteer”: Internet
anonymity in the age of Web 2.0. Senior thesis,
Princeton University, Apr. 2009.

[14] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham.
Fingerprinting information in JavaScript
implementations. In H. Wang, editor, Proceedings of
W2SP 2011. IEEE Computer Society, May 2011.

[15] M. Perry. Torbutton design documentation, June
2010. Online: http://www.torproject.org/

torbutton/en/design/index.html.en.

[16] P. Reschl, M. Mulazzani, M. Huber, and E. Weippl.
Poster abstract: Efficient browser identification with
JavaScript engine fingerprinting. In Poster Session of
ACSAC 2011, Dec. 2011. Online:
http://www.acsac.org/2011/program/posters/

Reschl.pdf.

APPENDIX
A. DATA CHARACTERIZATION

11

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3855
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3855
http://technet.microsoft.com/en-us/security/bulletin/ms11-087
http://technet.microsoft.com/en-us/security/bulletin/ms11-087
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00221.html
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00221.html
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00221.html
http://pseudo-flaw.net/content/defcon/
http://www.contextis.com/resources/blog/webgl/
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00229.html
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00229.html
https://www.khronos.org/webgl/public-mailing-list/archives/1011/msg00229.html
http://www.khronos.org/webgl/public-mailing-list/archives/1012/msg00083.html
http://www.khronos.org/webgl/public-mailing-list/archives/1012/msg00083.html
http://www.khronos.org/webgl/public-mailing-list/archives/1012/msg00083.html
http://www.torproject.org/torbutton/en/design/index.html.en
http://www.torproject.org/torbutton/en/design/index.html.en
http://www.acsac.org/2011/program/posters/Reschl.pdf
http://www.acsac.org/2011/program/posters/Reschl.pdf

Table 2: Groups of identical webgl renders (cont.)

Size Graphics Cards Browsers OS

20 14 Intel 82945G Express Chipset (2772); Intel HD Graphics (0102); Mobile
Intel 945 Express Chipset (27a2)

Chrome (17, 18);
Firefox (8, 10)

Windows (7, Vista,
XP)

21 2 Intel 82945G Express Chipset (2772) Firefox (8, 10) Windows (XP)

22 24 Intel G33/G31 Express Chipset (29c2); Intel Graphics Media Accelera-
tor 3150 (a011); Unknown

Chrome (13, 17, 18);
Firefox (8, 9, 10, 11)

Windows 7

23 1 Intel G33/G31 Express Chipset (29c2) Firefox (10) Windows 7

24 80 Intel G41 Express Chipset (2e32); Intel Graphics Media Accelerator
HD (0046); Intel HD Graphics (0042, 0046, 0df1); Mobile Intel 4 Series
(2a42); Mobile Intel 45 Series (0x2a42); Unknown

Chrome (15-19);
Firefox (9, 10, 11)

Windows (7, 8,
Vista, XP)

25 5 Intel HD Graphics (0102, 0116) Firefox (8, 9, 10) Windows (7, XP)

26 13 Intel HD Graphics (0102, 0116); Unknown Chrome (16, 17);
Firefox (10, 11)

Windows 7

27 1 Mesa DRI Intel Ironlake Desktop Chrome (17) Linux

28 10 Mobile Intel 965 Express Chipset (2a02, 2a12); Intel GMA X3100 (2a02) Chrome (14, 17, 18);
Firefox (8, 9, 10)

Windows (7, XP)

29 1 NVIDIA GeForce 7025 Firefox (10) Linux

30 1 NVIDIA GeForce 9400M Firefox (10) OS X 10.6

31 19 NVIDIA GeForce 210, 315M, 8400GS, 8500 GT, 8600M GT, 9200M GS,
9500 GT, 9600 GT, 9600M GT, G 105M, G 210M, GTS 250, GTS 360M,
GTX 295

Chrome (13, 17);
Firefox (10)

Windows (7, Vista)

32 2 NVIDIA GeForce 315M; Unknown Firefox (5, 6) Windows 7

33 1 NVIDIA GeForce 320M Safari (5) OS X 10.7.3

34 6 NVIDIA GeForce 410M, GT 425M, GTX 460, GTX 460 SE Chrome (17);
Firefox (10)

Windows (7, XP)

35 1 NVIDIA GeForce GTX 550 Chrome (17) Linux

36 6 NVIDIA GeForce 6150SE, 6200, 7100, 7150M, 7300 SE/7200GS; Un-
known

Chrome (15, 17);
Firefox (10)

Windows (7, XP)

37 1 NVIDIA GeForce 6200 Firefox (4) Windows 7

38 1 NVIDIA GeForce 6800 Series (00f9) Firefox (10) Windows 7

39 1 NVIDIA GeForce 7025 Chrome (18) Windows XP

40 1 NVIDIA GeForce 7300SE/7200GS Firefox (10) Windows 7

41 1 NVIDIA GeForce 7650 GS Chrome (17) Windows 7

42 4 NVIDIA GeForce 8600, 9800, 320M, 9400 Chrome (17);
Firefox (10)

Linux;
OS X (10.6, 10.7.3)

43 4 NVIDIA GeForce 8400 GS, 9500 GT, Quadro FX 1800M; Unknown Chrome (15, 17, 19);
Firefox (13)

Windows 7

44 1 NVIDIA GeForce GT 220 Firefox (10) Windows 7

45 1 NVIDIA GeForce GT 330M Chrome (19) OS X 10.7.3

46 1 NVIDIA GeForce GT 440 Opera (9.80) Windows 7

47 1 Intel 965GM Firefox (8) Linux

48 1 Intel 965GM Firefox (10) Linux

49 1 Mesa DRI Intel Ironlake Mobile Firefox (10) Linux

50 1 Mesa DRI Intel Sandybridge Mobile Firefox (10) Linux

No
WebGL

30 AMD Radeon HD 6670, 7450M; ATI Radeon HD 3200, X1200, X1900,
XPRESS 200; Intel GMA 3100; Intel 82865G; Intel G41; Intel HD
Graphics; NVIDIA GeForce 315M, 6150SE, 6200, FX 5500; NVIDIA
Quadro 6000; VIA Integrated; Unknown

Chrome (15, 16, 17);
Opera (9.80);
Safari (5)

Linux;
OSX (10.6.8);
Windows
(7, Vista, XP)

12

	Introduction
	HTML5 and CSS3
	HTML5 Canvas
	Canvas Text
	Pixel Extraction

	WebFonts
	WebGL
	Security Implications

	Experiments
	Tests
	Arial Text
	WebFont Text
	Nonsense Text
	WebGL
	Test Speed

	Infrastructure
	Data Collection
	Platform Representation
	Persistence
	Errors
	Data Quality

	Results
	Arial Font Rendering
	Classification
	Differences
	Entropy

	WebFont Rendering
	Entropy

	WebGL
	Classification
	Entropy

	Comprehensive Fingerprinting
	Entropy

	Defenses
	Conclusions
	References
	Data Characterization

