
Security, Privacy and Usability Requirements for Federated Identity

Michael Hackett and Kirstie Hawkey
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

e-mail: mhackett@cs.dal.ca, hawkey@cs.dal.ca

Abstract—Federated Identity systems promise to solve the
increasingly vexing problem of password overload. However,
existing systems, such as OpenID and CardSpace have failed
to gain the expected levels of adoption, due in part to usability
and security issues, while proprietary systems such as Facebook
Connect raise serious privacy concerns over their usage of the
data collected. In this paper, we examine two new contenders—
BrowserID from Mozilla and WebID from the W3C WebID
Community Group—and find that, while both offer significant
improvements, we were still able to identify a number of
important security, privacy, and usability issues that need to
be addressed before beginning to widely deploy these new
platforms.

I. INTRODUCTION

Federated Identity systems attempt to solve the growing
dilemma among computer users sometimes referred to as
“password fatigue”. According to one recent study [1], the
average computer user has 25 different password-protected
accounts, many of them used only infrequently, creating a
situation where it is almost impossible to commit all of those
usernames and passwords to memory. Coping strategies
include the use of password management software, writing
down of passwords (often on sticky notes attached to a
computer!), and using the same password for all accounts.
In addition to reducing security, these often create a de-
pendency on a particular device (where the passwords are
stored) or item (such as a notebook) or location (such as
one’s desk), such that the person may be unable to use their
“accessible anywhere” accounts whenever he or she is away
from their particular storage medium.

When using a Federated Identity, an individual need only
remember one set of credentials in order to gain access to
all services, without needing to share those credentials with
the service providers. OpenID [2] is one well-known attempt
to create such a system, but adoption has been hindered by
usability and security issues. Proprietary systems, such as
Facebook Connect and Microsoft Passport, have made some
gains in usability, but they raise serious privacy concerns for
many users, as the companies operating these systems are
able to track users’ activity and make use of the information
they obtain, including making a user’s activity public without
his or her consent or knowledge.

Another concern is that, for all their convenience, these
identity accounts are the keys to a great deal of information

about an individual and could become the targets of hackers
and identity thieves. If an identity account is compromised,
the potential damage could be much more widespread and
devastating for the target individual than if a password to
a single site were compromised. Therefore, the security
of these systems must be scrutinized carefully and the
opportunities for user mishaps minimized.

Two newer proposals that are not yet widely deployed but
which are garnering much attention are WebID [3], [4] and
BrowserID [5], [6]. Both take a decentralized approach to
identity management (where there is no one single central
authority, such as Facebook), and aim to provide improved
usability, security and privacy over prior decentralized sys-
tems, such as OpenID.

In this paper, we focus on analysing some of the key
security and privacy claims of these new proposals, with the
goal of raising alarms early in the design process, when the
developers of these schemes still have the ability to solve
the issues. We will begin with some further background on
the problem being addressed and some useful terminology
in section II, and then discuss some related projects in
section III. This will be followed by two sections introducing
the two proposal being examined here, BrowserID in sec-
tion IV, WebID in section V. Our analysis of the protocols
on a number of key issues appears in section VI, followed
by our future work and conclusions.

II. BACKGROUND

Although the different proposals described herein gener-
ally share many of the same concepts, their specifications
often use different terminology for these concepts. For ease
of comparison, this paper uses the following terms, based on
those given by Maler and Reed [7], noting the corresponding
term wherever one of the official specifications differs.

• A service provider (SP) is some web site or service that
the user must sign into to use. When the SP depends on
a third party for identity authentication, it is often called
a relying party (RP), because it relies on the external
authentication service.

• An identity provider (IdP) is another web site or service
whose job is to verify or provide information to aid in
verifying the identity of a user.

• A user agent (UA) is a web browser or other software
application that communicates with a remote system on
behalf of the user.

Although both WebID and BrowserID can be used for
authenticating software agents (that is, automated systems)
as well as human users, for simplicity we will simply use
the term user for both cases. (The X.509 specification [8]
uses the term subject to mean “person or system”, but this
word has several other meanings as well, so we find user to
be more clear in this context.)

Also, throughout the paper, in the name of grammatical
expediency, we will use the conventional user “Alice” to
stand in for a general user of either system.

Note that while federated identity systems are often re-
ferred to single sign-on (SSO)—probably a more end-user-
friendly term—this is not strictly accurate. In a true SSO
system, one would not be required to sign into each site
separately; once you had signed into your identity account,
you would automatically be recognized at each cooperating
site that you visited. This can be convenient, and might
be a reasonable default within an organization, but many
users would not be comfortable with applying it to the
entire Internet. They may want to use different identities
on some sites and have the option of anonymity on others.
Furthermore, it would be inconvenient to have to remember
to sign out of one identity and into another for each site.
Both BrowserID and WebID give you the option to either
select an identity to share with each service provider, or
to not share one; they never share anything without your
explicit consent. While slightly less convenient, from a
privacy perspective, this is probably what most people would
prefer. (That said, it would almost certainly be possible for
someone to create a user agent that did immediately sign
into every compatible site automatically, if that was what
some users wanted.)

III. RELATED WORK

Of course, neither BrowserID nor WebID is the first
attempt to solve the digital identity problem. OpenID is
perhaps the best known decentralized web identity system.
It uses URLs to identify users, and users are free to choose
their identity providers, or may even set up their own IdP.
As OpenID “does not require any pre-established trust rela-
tionships between IdPs and [RPs]” [9], the barriers to entry
for new IdPs and RPs are low. OpenID adoption by users,
however, has been hindered by usability issues—particularly
with respect to inconsistencies in the sign-in interface [10]—
and design features that make users easy prey to phishing
attacks. Adoption by RPs has greatly increased since Google
and Yahoo came on board as OpenID Providers (and many
users now use OpenID without even realizing it, though
the provider-specific sign-on buttons present on many RP
sites), however, work on improving the user experience and
security issues is still ongoing.

Microsoft’s CardSpace [11], [12] uses the metaphor of
Information Cards that are analogous to the physical identity
and membership cards most of us carry in our wallets. Each
card holds either a collection of identity attributes (referred
to as claims) or a link to an IdP that can supply such
information on demand. Just as in a physical wallet, users
may have cards from several different IdPs, and can choose
the one the that is most appropriate for a given context,
such as using a government-issued ID to vote online, or
a self-issued card containing only an email address for a
web discussion board. With claims-based identity, a user
might be able to use any one of a number of cards to satisfy
a particular RP’s authentication request, provided the card
includes the requested claims and is issued by an authority
that the RP trusts.

Yet, despite bundling the CardSpace client with Windows
Vista and Windows 7, thus ensuring an installed base of mil-
lions of potential users, claims-based identity has not gained
traction with service providers, and Microsoft decided to
cancel the product in February 2011. Service providers did
not see any compelling advantages to implementing support,
and users “were often confused by their first encounter with
CardSpace” [13], finding it too complicated in comparison
with the username/password forms to which they had be-
come accustomed. In addition, Microsoft admitted that the
lack of tools for service providers for creating claims-ready
services was another factor in the lack of uptake [14].

Nonetheless, other groups remain interested in the In-
formation Card concept. Higgins1 and openinfocard2 are
two open-source projects that have also built Information
Card clients. The Higgins project, for example, has experi-
mented with several alternative client implementations, such
as a Firefox-based browser extension (without the native
platform component that CardSpace required) and clients
for mobile phones. They have also created native client
applications for Linux and Mac OS X, and introduced a web
service to solve the problem of sharing Information Cards
across devices, with the active clients becoming simple
shells that interfaced with the web service.

However, in addition to the aforementioned lack of service
provider interest in claims-based authentication, a lack of
visibility and an overly technical installation process have
further limited Higgins’s appeal to a niche of developers
and researchers. Also, some aspects of the card selection
interface have been identified as “overly intrusive and annoy-
ing,” particularly when returning to previously visited sites
or having to select multiple cards to satisfy a request. The
spotty support for various operating systems and browsers,
the need (in most cases) to download an active client, and
general performance issues may also have contributed to user
dissatisfaction [15].

1http://www.eclipse.org/higgins/
2http://code.google.com/p/openinfocard/

http://www.eclipse.org/higgins/
http://code.google.com/p/openinfocard/

IV. BROWSERID

The first of the schemes to be examined here, BrowserID3,
is a recent initiative (first made public in July 2011) of
the Mozilla Identity Team4. It proposes the use of an
email address as a user’s unique identifier, rather than the
URIs used in OpenID and WebID. The claim is that most
computer users are already comfortable with the concept of
an email address representing a particular individual [16],
whereas few people have that same association with URIs.
We have somehow become accustomed to email addresses
so that they no longer look foreign, but URIs still look
too “computery”. As stated in the original specification for
what was called the Verified Email Protocol (from which
BrowserID was derived):

It is understood that “alice@site.com” means that
there is a person, here called “alice”, who has
agreed to trust “site.com” to test her identity and to
act as a secure relay for messages. The fact that we
use this identifier only for SMTP mail delivery is
an accident of history; there is no reason we can’t
bootstrap from this identifier to other protocols
(as recent proposals like Webfinger have made
clear). [16]

Furthermore, just as many people have multiple email
addresses which they use within different contexts (such as
for work, school, or personal life), likewise, with BrowserID,
one can have multiple identities or personas online simply
by using different email addresses. This again leverages the
familiarity and comfort that users have with email addresses.
And when anonymity or pseudonymity is desired, one can
easily create single-use “throwaway” email addresses for use
with BrowserID using any one of a host of email providers.

The BrowserID sign-in flow can be seen in Figures 1–2.
It consists of two distinct phases, although these may, in
some situations, be executed back to back. In the first phase
(as seen in Figure 1), Alice obtains an identity certificate
from her IdP that asserts her control of a particular email
address. She signs into her IdP, typically with her email
address and password as credentials (1). Once authenticated,
her UA generates a public/private key pair (2) and stores the
private key in the local keyring. The public key is sent off to
the IdP (3), where it is bundled into an identity certificate,
along with Alice’s email address and a validity interval for
the certificate, and signed with the IdP’s private key (4).
Finally, the signed identity certificate is sent to Alice’s UA
(5), where it is stored locally with the corresponding private
key.

Once Alice has her identity certificate, she can then use it
to sign into any web site that supports BrowserID, without

3As of Feb 2012, Mozilla has rebranded the user-facing portion of
BrowserID as Mozilla Persona. However the protocol itself will still go
by the name BrowserID.

4http://identity.mozilla.com/

ever having to create a new username and password, or give
her credentials to another site. When Alice wants to sign
in with her BrowserID identity, she will typically click a
“Sign In” button and select the identity to use (if she has
more than one) in a dialog that appears. This kicks off the
sequence show in Figure 2. The UA generates an assertion
that includes the signed identity certificate (obtained earlier)
and the address of the web site (the scope of the assertion),
and then signs the assertion with the private key associated
with the identity (1). The UA sends the signed assertion to
the RP, the site she is signing into (2). The RP retrieves the
IdP’s public key from a well-known location at the domain
in the email address (3), and uses the key to verify that the
signature on the assertion and identity certificate are valid
(4). It also checks that the validity intervals on both the
assertion and certificate are still valid, and that the audience
field in the assertion refers to itself. (This prevents replay
attacks, where one RP could capture signed assertions and
use them to sign in as Alice on other sites.)

Notably, the client side of these processes (apart from
signing into the primary authority’s account) can be stan-
dardized with native browser support or a small Javascript
shim that can be used in the absence of native support. This
is a significant improvement over the interface inconsisten-
cies present in OpenID [10].

V. WEBID

WebID is a proposal currently being developed, through
an open process, by the W3C WebID Community Group5.
While WebID is designed to provide a federated identity
system, it also aims to provide a platform on which to build
a distributed social network. This second goal, while also
of great value, is outside the scope of this study and will
largely be ignored here.

A WebID is a URI that is under the control of the user
whose identity it represents. This much is similar to OpenID.
In WebID, however, the resource obtained when the URI
is dereferenced is a Friend-of-a-Friend (FOAF) [18] profile
document that, among other items, includes a public key
that is used in the authentication process to verify the user’s
control of the URI. (The WebID protocol was originally
known as FOAF+SSL [4].)

In order to use a WebID as an identity with a service
provider, the user must prove ownership (control) of the URI
to the relying party. This is done by way of a certificate
sent to the RP that includes the WebID URI and that has
been digitally signed with the private key associated with
the identity. The RP consults the profile at the given URI
and verifies the certificate signature using the public key in
the profile. If the signature is verified, this indicates that the
RP is “talking” to the owner of both halves of the identity’s

5http://www.w3.org/community/webid/

http://identity.mozilla.com/
http://www.w3.org/community/webid/

4) Sign: - user public key
 - email address
 - validity interval

2) Generate key pair,
store private key

1) Sign in with:
 - email address
 - BrowserID password

Identity
Authority

5) Send signed structure
(user certificate)

3) Send public key

User

Figure 1: BrowserID identity certificate provisioning.

(Source: [17], used under Creative Commons Attribution-ShareAlike 2.5 license [CC-BY-SA 2.5])

eBay

2) Send:
 - signed assertion
 - user certificate

4) Verify: - assertion signature
 - user certificate signature
 - assertion validity interval
 - user certificate validity interval

Relying
Party

eBay

3) Fetch public key

Identity
Authority

User

1) Sign assertion

Figure 2: BrowserID assertion verification process. (Source: [17], used under CC-BY-SA 2.5)

key and that the owner of the key also controls the URI’s
content. Therefore, the identity is accepted as authentic.

The authentication process is executed through the exist-
ing client certificate verification mechanism present in TLS,
the secure communication protocol that is a standard part of
all modern web browsers (though perhaps better known by
the name of its predecessor: SSL). This means that WebID
works with most existing browser software—only the server
ends needs to be modified, a much more manageable task.

In the past, the use of client certificates has mostly been
confined to single organizations that wanted, for example, to
limit site access to employees without resorting to passwords
(or in addition to passwords). In this case, the certificates
are digitally signed by the provider and can be verified
when a user attempts to connect to the service over TLS.
However, certificates can also be “self-signed” (that is,
signed with the user’s own private key instead of that of
some central authority), which, in conjunction with some
other mechanism to verify the authenticity of the signature,
can be used to verify the identity of the certificate holder.
In WebID, that other mechanism is the FOAF profile.

The sign-in flow can be seen in Figure 3, taken from

the WebID draft specification [3]. (For this one section,
we switch up names, following the conventions used in the
diagram. Here, Bob is the user, trying to access a server
belonging to Alice.) The following assumes that Bob has
already created a WebID profile with some IdP and has
provisioned a self-signed certificate to his browser keyring,
with the public key stored in his WebID profile. These
certificates, typically generated through a button on the
profile host’s site, include the WebID URI, as well as a
public key. A typical sequence runs like this:

1) The user agent establishes a TLS connection with the
server, which is also a WebID RP.

2) The application protocol exchange begins; in this case,
the UA makes a request to access some resource
on the server. A “Guard” intercepts this request and
determines that authorization is required to access the
resource.

3) If there is no active session between the two parties,
the Guard requests that the client authenticate itself
using a TLS client certificate. The UA asks Bob to
select the certificate corresponding to the identity to
use (unless Bob has previously selected a default for

Figure 3: WebID authentication flow. (Source: [3])

the RP), and sends the certificate and a signed message
to the RP. The server’s TLS agent verifies the signatures
on the certificate and message using the included public
key, thus proving that the client is in possession of the
corresponding private key.

4) The Guard extracts the WebID Profile URI from the
certificate and asks the internal WebID Verifier to verify
Bob’s claim of ownership of the URI.

5) The Verifier dereferences the URI to obtain the profile
document and checks that the public key in the profile
matches the one in the certificate. If so, then the RP
knows that Bob controls the given URI, and so can be
identified by that string.

6) Having established Bob’s identity, some other site-
specific mechanism can be used to control the level of
authorization granted to him, such as through the trust
relationships encoded in a graph of relations (a web of
trust), as shown here.

7) The response returned to the client depends on the
level of access granted by the authorization query in
the previous step.

Steps 1–3 are actually just the usual TLS mutual-
authentication protocol; only the remaining steps are new
to WebID. It is step 5 that links the current request to the
identity URI, through the matching of the two halves of the
asymmetric encryption key. Additionally, once the validity
of the client’s key pair has been established, it can be used

to encrypt all further communications to the user agent over
the TLS link, providing an additional measure of security.

VI. ANALYSIS

In this section, we examine and compare the BrowserID
and WebID proposals using six different criteria: (i) the
consequences of the loss or compromise of an authentication
key; (ii) resistence to phishing attacks; (iii) risks associated
with recycling (reusing) identifiers; (iv) the extent to which
the protocol protects user privacy and prevents tracking of
activity; (v) how the system holds up in the face of a network
outage or the temporary or permanent failure of an identity
provider; (vi) and general usability.

A. Key Loss

Both of the proposals rely on the use of browser-held
certificates to reduce the frequency with which a user needs
to enter his or her credentials. And in both cases, since the
certificates are stored in the browser or system keychain
without any passphrase protection, simple possession of a
certificate is sufficient to gain access to all of the accounts
associated with the particular URI or email in the certificate.
Consequently, the loss of a device with active and valid
certificates represents a major security concern. However,
device PINs and system passwords, with short auto-lock
timeouts, could greatly mitigate the risk here (on devices
owned by the user).

BrowserID
In order to try to reduce the risk associated with the loss

of an identity certificate, BrowserID certificates have limited
lifespans (from a few minutes to a few hours). However,
there is no way to disable a certificate before it expires, so
one is fairly helpless until that time period runs its course.
Furthermore, the system supports automatic provisioning of
certificates while an authenticated session with the IdP is
active, and such a session may have a much longer lifetime,
on the order of days or weeks. (Think of the session timeout
of a typical webmail service, such as Gmail.)

There is a definite trade-off between security and
convenience—a shorter session timeout reduces the risk of
a thief obtaining an active session, but means the user will
have to sign back in to their identity provider more often.
Experience has shown that, given the choice, users will opt
for convenience over security, and most will not want to have
to sign in several times a day. Finding the right balance may
present a significant challenge, and it may be wise to adjust
the lifespan of certificates depending on the environment
in which they are used (e.g. cell phone vs. desktop PC vs.
public computer).

WebID
WebID public keys are stored in the user’s profile, and re-

trieved from the profile by RPs during certificate verification.
This means that a compromised private key can be disabled
simply by removing its corresponding public key from the
profile. Also, because the WebID profile-editing interface
will typically be password-protected, the loss of a device
does not necessarily compromise the identity. (Although, if
the profile host allows password resets by email, all bets are
off.)

B. Phishing

The ease with which users of a system can distinguish
between a genuine and a fake credential prompt is key to
preserving the security of their data. If users can be easily
fooled into giving their access credentials away to the bad
guys, no level of data protection is going to help.

The authentication flow of these systems will require a
certain amount of adjustment for users, and it is important
that all camps work to provide sufficient education to new
users so that they understand the dangers and how to
protect themselves. There is a risk that users, who are now
conditioned to entering password information when signing
into a site, will not realize that, in a federated system, they
should never be giving out their identity password to any site
except their IdP. As a result, some may be easily tricked into
typing their username and password into sign-in forms on
other sites. (This is one of the points we will be examining
further in an upcoming user study, as described under Future
Work.)

BrowserID

Figure 4: BrowserID sign-in dialog.

In order to bootstrap the system and generate sufficient
user interest to drive RP adoption, the BrowserID user in-
terface is initially being deployed as a JavaScript module, to
be downloaded by the web browser as part of a site’s pages.
BrowserID windows (such as the one shown in Figure 4)
will look like any browser windows and will require careful
scrutiny to verify that they are genuine. The user’s only
means of detecting fakes will be the URL and lock icon
in the address bar, which many users do not know how to
interpret [19], or even bother to look at [20].

Additionally, it would hardly be surprising to see phishing
versions of these windows simply hide the address bar,
again hoping that most users will not notice its absence,
or will not be technically sophisticated enough to realize
the implications.

One can argue that this is a short-term issue, and that the
goal (if BrowserID gains traction) is to have most browsers
provide native support for the protocol. This would mean
that the provisioning and sign-in steps can be presented in
platform-specific windows that are more easily distinguish-
able from web page windows. However, again, it has been
demonstrated that users will often not examine the window
“chrome” that closely and can easily be fooled by web-page-
generated displays that are designed to mimic the look of a
system window on popular platforms (e.g. Windows) [21].
A more secure solution would be to adopt a technique such
as that proposed by Sun et al. [10], where the desktop
background is blacked out and the browser window shown
shrunk down, behind the sign-in window. This is an effect
that cannot be replicated by JavaScript code running in a
browser window, and makes it very easy for the user to
verify the authenticity of the window.

WebID
Certificate provisioning in WebID is usually a one-time

activity per device, well separated from the RP sign-in
process. When actually interacting with RPs, one uses the
browser’s own client certificate selection interface, which
has a visually distinct appearance vis-a-vis browser con-
tent windows. (See Figure 5 for two examples. The user-
friendliness of these interfaces will be discussed in sec-

(a)

(b)

Figure 5: WebID certificate selection: (a) Safari 5, (b) Firefox 10.

tion VI-F.)
With better browser integration for profile management,

WebID users might never need to enter the password into
a web form—all changes to their profile might be done
through native platform windows with recognizable chrome.
Nonetheless, education will still be required to get users to
unlearn some habits of password usage.

C. Recycled Identifiers

A known issue with OpenID is that if a user abandons
or loses control of his or her OpenID identifier, “a new
registrant of that URL can gain access to the same pri-
vate resources as the previous registrant” [22]. While the
OpenID Authentication 2.0 specification addresses recycling
of identifiers by OpenID providers (see [2, section 11.5.1]),
this does not protect against the case where a user delegates
a URI under his or her own control to another provider,
and then gives up the domain from which the delegation
occurred.

Unfortunately, as both BrowserID and WebID are based
on non-permanent email addresses or URIs as identifiers,
they are both prone to this issue as well.

BrowserID
With BrowserID, this recycling problem seems even more

likely to occur because, as any longtime Internet user can
attest, one’s email address is likely to change several times:
as one changes ISPs, switches to webmail, registers one’s

own domain, and so on. Depending on the email provider
(including some high-profile sites such as Hotmail and
Yahoo [23]), once an account becomes inactive, the address
may become available to others. If an RP site records the
email address as the sole means of identifying a user, anyone
who claims the old address will be able to access any of the
previous owner’s data, without having to know the previous
owner’s password. A BrowserID RP currently has no way
of knowing that the person behind the email address has
changed.

Admittedly, this problem exists with traditional accounts
as well—most sites permit an account’s password to be reset
through a link sent to the email address associated with an
account. The difference is that, in many cases, the password
reset procedure would require the intervention of a human
(for example, to complete a CAPTCHA) and would be a
different procedure on each site. In the BrowserID case,
though, no reset process is required, making the process
much faster and easy to automate. Additionally, the reduced
friction in account creation means that it is likely that users
will create many more accounts than before, many of which
they will soon forget about.

While there is some discussion underway about creating a
consistent process for changing the email address registered
with an RP, poor Alice is still left to remember all of the
places where she has created an account and visit each of
those sites to make the switch. Any that she may forget
(perhaps some site that she hasn’t signed into for quite
a while, but which might still have important information
about her) could be targets for identity thieves who could
use tools to scan for disused email accounts. And because
the BrowserID IdP does not know which sites a user has
signed into (see the subsection below on Privacy/Tracking),
it cannot offer to track and automatically update RPs.
However, the browser itself is able to track user activity,
which, along with a syncing feature for multiple devices,
could help the user manage such updates.

WebID
A similar problem can arise with WebID, particularly if

one is using a third-party profile hosting service. WebID
RPs identify users strictly by their profile URIs, and if
Alice’s profile host recycles her identifier after she closes
her account, all Bob needs to do is create a new profile
(with at least one public key) at the same URI to gain access
to any web accounts still associated with that WebID. It is
not necessary to have Alice’s private key, because he has
replaced the public keys in the profile with his own.

This issue is amplified if an organization is hosting its own
profile server under its own domain, and for one reason or
another lets the domain go. In that case, the domain will
almost certainly be snapped up by someone else, who now
effectively controls all of the identities formerly associated
with the domain.

For both BrowserID and WebID, the use of permanent
URNs (Uniform Resource Names) [24] or XRI (Extensible
Resource Identifier) i-numbers [25], with a means of map-
ping from the human-friendly email address or URI, would
allow users to change IdPs without the aforementioned
issues with recycling of the canonical identifier. However,
there remain questions regarding how to pass the permanent
identifier, how to prove ownership, and the implications of
an account compromise that taints a permanent identifier.
For now, using a domain that is under one’s control (and
remains so for life) is probably the best defense against the
risk of account hijacking through identifier recycling.

D. Privacy/Tracking

Users want control over the dissemination of their per-
sonal information and many are rankled by the insistence
of nearly every web site to collect personal details there are
not really necessary to use the service.

Equally important to many is the ability to maintain some
level of anonymity online, at least some of the time. Very few
people want to broadcast their every move online, yet that it
is a very real danger with many federated identity systems.
With systems such as Facebook Connect, every time you use
your identity to sign into a web site, that activity is reported
back to the identity provider (e.g. Facebook), who may very
well make use of that data for marketing purposes, or share
it with other users of their service.

BrowserID
BrowserID uses a mechanism where users can obtain a

certificate from their IdP, and then subsequently use that
certificate to generate a token that can be passed to an RP
and verified by the RP using only the IdP’s global public key.
The benefit of this two-stage process is that Alice’s identity
provider is not informed about which sites she signs into and
thus cannot track her activities. The only contact between a
service provider and the identity provider is to request the
latter’s public keys, which reveals no information about the
identity of the user for which the request is being made.

There is one caveat to this claim, however: At the time of
writing, Mozilla was encouraging the use of a centralized
verification service hosted at browserid.org [26], which
would give Mozilla access to all sign-in requests that are
verified through this service. Even with a stringent data
privacy protection policy in place, some will view this as
contrary to one of BrowserID’s key principles (about not
leaking tracking data back to identity authorities), and we
worry that it sets a precedent that could lead to the creation
of competing verification services, some of whom might try
to monetize the data. In this situation, users would not be
able to determine when this information was being shared
with other parties; and in most cases, given BrowserID’s
marketing material, they might probably not even be aware
that such sharing was taking place.

WebID
When using WebID, on the other hand, when Alice tries

to sign into to a site, the RP must make a request to Alice’s
IdP to retrieve her profile, thereby giving the IdP enough
information to connect Alice and the site. Of course, not
all of the requests for profile information will correspond
to sign-in requests—search engines may crawl the public
portions of the profile, amid requests from individuals fol-
lowing social graphs, for example—but some simple rules
and heuristics would likely be sufficient to fairly reliably
distinguish between different types of traffic.

Nonetheless, the advocates of WebID argue that this sort
of trackability is a good thing, as they are working under the
assumption that users concerned about privacy would host
their WebID profile only on a system that they themselves
control (such as a server in one’s home). In that case, having
all identification requests recorded makes it much easier for
a user to monitor for suspicious activity, such as sign-in
requests to sites she has never visited, or activity at unusual
times of the day. Software running on the user’s profile
server could easily alert the owner when it identifies some
suspicious pattern of activity.

The counter-argument, of course, is that very few average
users have the technical knowledge or desire to set up
and run their own servers, and many will not have the
ability to easily do so, due to terms-of-use limitations in
the ISP contracts. As a result, it would seem that widespread
mainstream adoption of WebID is likely going to have to rely
on hosting service providers, and in that case, the trackability
baked into the WebID protocol can be seen as a potential
privacy concern.

E. Robustness

What happens if a identity provider goes down, even for
a short time? What if it goes down for good? Suddenly,
you are cut off from not just one account, but all of your
accounts at once. This will obviously be a serious concern
for potential users of these systems.

BrowserID
Mozilla is in the process of putting into place the capacity

and redundancy to support a massive level of usage of
their secondary authority service, intended as a temporary
measure to fill the gap until various email providers have
the support in place to vouch for their own users (called
a primary authority). However, it is unlikely that smaller
primaries are going to be able to scale to the same level of
service, so larger providers may have a substantial advantage
in this critical area.

The two-stage provisioning system used by BrowserID
also provides a significant benefit here in that only the
primary’s public key is required to verify the signature on a
BrowserID identity certificate. And since those public keys
are relatively static and few in number (compared to the

browserid.org

BrowserID WebID
Key loss Short lifetimes limit window of opportunity;

should be protected with device PIN/password.
Keys long-lived, but easy to disable from
password-protected profile, even if device is
lost/stolen.

Phishing Requires careful scrutiny of address bar and se-
curity icons. Fairly easy to spoof until browsers
support natively.

Uses browser’s client cert selection UI; low
risk of phishing. No danger in giving out cert
to wrong site.

Recycled identifiers Both systems allow access to a previous owner’s accounts if
email/URI is given up.

Privacy IdP does not know where identity has been
used—not trackable.

IdP knows every site on which identity was
used—allows tracking. (Could be positive, if
self-hosting one’s profile.)

Robustness Cached certificates and IdP public keys may
permit the system to work for a while, even if
the primary is unreachable.

Profile must be accessible to verify a certifi-
cate, so accounts cannot be accessed while
profile host is unreachable.

Usability Much attention being paid good flow and ease
of understanding.

Uses inconsistent and often cryptic client cer-
tificate selection UI.

Table I: Comparison: BrowserID vs. WebID

number of users they serve), they can be easily cached. As
a result, a user may still be able to sign in even if her
identity provider is temporarily unreachable, provided the
IdP’s public keys are in the RP’s cache.

WebID
In the WebID case, an RP must be able to access the

user’s profile in order to verify the signature on the user’s
identity certificate. Thus, even though she has a valid identity
certificate cached in her browser, it would not be possible
for Alice to sign in to any sites while the profile host was
unreachable from the RP site.

There is, however, a mechanism in the WebID speci-
fication to allow a certificate to contain multiple WebID
URIs, which would allow redundant profile hosts to be
used. Unfortunately, the current specification also introduces
a security hole that would permit an attacker to easily
hijack someone’s accounts by creating a certificate that
points to both the original site and a second site that the
attacker controls. This needs to be addressed by having the
specification spell out how service providers should correctly
deal with multiple WebIDs.

F. Usability

In truth, the lack of uptake with security and privacy
tools, such as PKI, stems not from questions about their
security or utility, but from the perceived complexity from
the perspective of the average user [27]. Regardless of the
potential benefits, it is user experience that is going to make
or break any new security-related technology.

BrowserID
The Mozilla Identity Team recognizes that they are going

to have to provide an experience that is as good or better
than that provided by the likes of Facebook if they are going
to woo users away to their system. As such, they are putting
a great deal of their efforts into getting the BrowserID user
experience right, making it as smooth and simple as possible.
This is still a rapidly evolving system, and they are still

making major changes, but they appear to already be well
ahead of WebID in terms of usability. (Compare Figure 4
with Figure 5, for starters.)

WebID
WebID takes advantage of a feature that is already built

into virtually all modern web browsers: support for client
certificates. Unfortunately, the user interface for this feature
varies widely between browsers, and in many cases is cryptic
and ugly, overloading the user with technical details that few
understand. So, although the support is technically present,
WebID’s developers are entirely dependent on browser ven-
dors improving the usability of this interface, which in the
past has been considered an advanced feature, used only in
private corporate networks, with support from the local IT
department. On the other hand, the amount of work required
to redesign this one dialog should be significantly less than
will be required to integrate native support for BrowserID,
and developers can draw on the usability research being done
by the BrowserID team and others.

VII. CONCLUSION AND FUTURE WORK

A summary of the above analysis is given in Table I.
We have noted a number of security and usability issues
that remain in both of the authentication systems examined
in this paper, although BrowserID, in particular, seems to
made significant improvements in usability over OpenID.
Additionally, its privacy focus may have greater appeal as
online privacy awareness and advocacy increases. Concerns
about risks related to key loss and spoofing attacks remain,
but native browser support will help with the latter issue.

WebID’s approach trades privacy for security; placing
public keys in a public profile makes it is much easier to
deactivate a compromised identity certificate, but it requires
that relying parties contact the server to verify certificates,
leaking information about the identity owner’s activities to
the identity provider. WebID’s choice to base their system on
SSL client certificates allows their system to work on nearly

all browsers immediately, but the user interfaces for certifi-
cate selection are inconsistent and much less straightforward
for users than BrowserID’s custom tailored solution.

Our future work in this area includes user studies to test
the usability of these two systems, and to see how well users
of various levels of technical background can comprehend
the security and privacy trade-offs in these systems. We
will also be closely monitoring the development of both
platforms during this critical pre-launch period, and on into
wider deployment to see whether they will have a greater
impact than did their predecessors.

ACKNOWLEDGEMENTS

The authors would like to thank the members of the
BrowserID and WebID teams who answered many of our
questions and offered their feedback on this paper, with
particular thanks to Lloyd Hilaiel and Dominik Tomaszuk
for their reviews of a draft of this paper.

REFERENCES

[1] D. Florêncio and C. Herley, “A large-scale study of web
password habits,” in Proc. 16th Int’l Conf. World Wide Web
(WWW ’07). ACM, 2007, pp. 657–666.

[2] OpenID Authentication 2.0, OpenID Foundation, Dec. 2007;
openid.net/specs/openid-authentication-2 0.html.

[3] M. Sporny, T. Inkster, H. Story, B. Harbulot, and
R. Bachmann-Gmür, WebID 1.0 - Web Identification and
Discovery, World Wide Web Consortium (W3C) editor’s
draft, work in progress, Dec. 2011; www.w3.org/2005/
Incubator/webid/spec/drafts/ED-webid-20111212.

[4] H. Story, B. Harbulot, I. Jacobi, and M. Jones, “FOAF+SSL:
RESTful authentication for the social web,” in Proc. Euro-
pean Semantic Web Conf., 2009.

[5] BrowserID Specification (Draft), Mozilla Foundation draft,
Feb. 2012; wiki.mozilla.org/Identity/BrowserID.

[6] L. Hilaiel, “How BrowserID works,” blog, Jul. 2011;
lloyd.io/how-browserid-works.

[7] E. Maler and D. Reed, “The venn of identity: Options and
issues in federated identity management,” IEEE Security &
Privacy, vol. 6, no. 2, pp. 16–23, Apr. 2008.

[8] R. Housley, W. Ford, T. Polk, and D. Solo, Internet X.509
Public Key Infrastructure—Certificate and CRL Profile, IETF
RFC 2459, Jan. 1999; www.ietf.org/rfc/rfc2459.

[9] S. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov, “A billion
keys, but few locks: The crisis of web single Sign-On,” in
Proc. New Security Paradigms Workshop, Jul. 2010.

[10] S. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey,
and K. Beznosov, “What makes users refuse web single Sign-
On? an empirical investigation of OpenID,” in Proc. Symp.
on Usable Privacy and Security (SOUPS), 2011.

[11] D. Chappell, “Introducing windows CardSpace,” Apr. 2006;
msdn.microsoft.com/en-us/library/aa480189.aspx.

[12] V. Bertocci, G. Serack, and C. Baker, Understanding Windows
CardSpace. Upper Saddle River, NJ: Addison-Wesley, Dec.
2007.

[13] M. Jones, “Personal reflections on the CardSpace journey,”
blog, Feb. 2011; self-issued.info/?p=458.

[14] Microsoft Identity and Access Team, “Beyond windows
CardSpace,” blog, Feb. 2011; blogs.msdn.com/b/card/archive/
2011/02/15/beyond-windows-cardspace.aspx.

[15] P. Trevithick, “Identity in the browser at 5. lessons learned.”
blog, May 2011; www.incontextblog.com/?p=728.

[16] Verified Email Protocol, Mozilla Foundation, Jul. 2011;
wiki.mozilla.org/Labs/Identity/VerifiedEmailProtocol.

[17] Mozilla Foundation, “BrowserID protocol overview,”
Jan. 2012; developer.mozilla.org/en/BrowserID/Protocol
Overview.

[18] D. Brickley and L. Miller, FOAF Vocabulary Specification,
The FOAF Project, Aug. 2010; xmlns.com/foaf/spec/.

[19] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing
works,” in Proc. SIGCHI Conf. on Human Factors in Com-
puting Systems (CHI ’06). ACM, 2006, pp. 581–590.

[20] T. Whalen and K. M. Inkpen, “Gathering evidence: use of
visual security cues in web browsers,” in Proc. of Graphics
Interface 2005. Canadian Human-Computer Communica-
tions Society, 2005, pp. 137–144.

[21] D. Sharek, C. Swofford, and M. Wogalter, “Failure to rec-
ognize fake internet popup warning messages,” Proc. Human
Factors and Ergonomics Society Ann. Meeting, vol. 52, no. 6,
pp. 557–560, Sep. 2008.

[22] D. Reed, L. Chasen, and W. Tan, “OpenID identity discovery
with XRI and XRDS,” in Proc. 7th Symp. Identity and Trust
on the Internet (IDtrust ’08). ACM, 2008, pp. 19–25.

[23] Buzz Web Tips, “They recycled your deleted email account?
oh the risks!” blog, Aug. 2011; www.buzzwebtips.com/
archives/165.

[24] R. Moats, URN Syntax, Internet Engineering Task Force
Proposed Standard RFC 2141, May 1997; tools.ietf.org/html/
rfc2141.

[25] OASIS XRI Technical Committee, Extensible Resource
Identifier (XRI) Syntax V2.0, OASIS Committee Specification
xri-syntax-V2.0-cs, Nov. 2005; www.oasis-open.org/
committees/download.php/15377/xri-syntax-V2.0-cs.pdf.

[26] Mozilla, “How to use BrowserID on your site,” Jan. 2012;
github.com/mozilla/browserid.

[27] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: a
usability evaluation of PGP 5.0,” in Proc. 8th Conf. USENIX
Security Symp. USENIX Association, 1999.

openid.net/specs/openid-authentication-2_0.html.
www.w3.org/2005/Incubator/webid/spec/drafts/ED-webid-20111212.
www.w3.org/2005/Incubator/webid/spec/drafts/ED-webid-20111212.
wiki.mozilla.org/Identity/BrowserID.
lloyd.io/how-browserid-works.
www.ietf.org/rfc/rfc2459.
msdn.microsoft.com/en-us/library/aa480189.aspx.
self-issued.info/?p=458.
blogs.msdn.com/b/card/archive/2011/02/15/beyond-windows-cardspace.aspx.
blogs.msdn.com/b/card/archive/2011/02/15/beyond-windows-cardspace.aspx.
www.incontextblog.com/?p=728.
wiki.mozilla.org/Labs/Identity/VerifiedEmailProtocol.
developer.mozilla.org/en/BrowserID/Protocol_Overview.
developer.mozilla.org/en/BrowserID/Protocol_Overview.
xmlns.com/foaf/spec/.
www.buzzwebtips.com/archives/165.
www.buzzwebtips.com/archives/165.
tools.ietf.org/html/rfc2141.
tools.ietf.org/html/rfc2141.
www.oasis-open.org/committees/download.php/15377/xri-syntax-V2.0-cs.pdf.
www.oasis-open.org/committees/download.php/15377/xri-syntax-V2.0-cs.pdf.
github.com/mozilla/browserid.

	Introduction
	Background
	Related Work
	BrowserID
	WebID
	Analysis
	Key Loss
	Phishing
	Recycled Identifiers
	Privacy/Tracking
	Robustness
	Usability

	Conclusion and Future Work
	References

