
Cruel Intentions: A Security Analysis of Web Intents

Jenna Kallaher, Amal Krishnan, Paul Makowski, Eric Chen, Collin Jackson
Carnegie Mellon University

{jkallahe, achemman, pmakowsk}andrew.cmu.edu, {eric.chen, collin.jackson}@sv.cmu.edu

Abstract—Web Intents are a new web collaboration frame-
work intended to bring the benefits of Android’s Intent
model to the web. Web Intents are currently implemented
as a JavaScript shim, supporting several major localStorage-
enabled browsers. A prototype native implementation is under
development for Google Chrome. While Android’s Intent model
has previously been the subject of significant security review,
Web Intents has not yet received similar scrutiny.

In this paper, we present several attacks on the prototype
implementations of Web Intents. We have communicated our
recommendations on mitigating these attacks to the Web
Intents developers. Our concerns have been acknowledged by
the developers and several of our suggestions were adopted.

I. INTRODUCTION

The World Wide Web offers a plethora of services to assist
users with their daily tasks. Some of these tasks include
photo editing, file sharing, or even adding events to the users’
personal calendars. Most often, developers are burdened with
the decision of selecting the appropriate subset of services
to integrate with their web applications. Unfortunately, the
current web framework makes it difficult for developers to
anticipate new services, and to select APIs based on their
users’ personal preferences.

Web Intents were proposed to solve this by facilitating
interactions between web applications and application ser-
vice providers. Web Intents are a client side framework
that enables resource sharing and communication between
different web applications. To utilize this framework, the
content providers must first assign each resource with an
intent action attribute (e.g., share); the user proceeds by
evoking a previously registered intent to perform the action
specified by the action attribute.

During our security evaluation of Web Intents, we dis-
covered four attacks: a privacy attack that can be used to
track users across multiple sessions, a denial of service
attack on intent storage, an attack that overwrites benign
intents with malicious intents, and a potential venue for login
CSRF attacks. We proposed defenses that either partially
or fully mitigate the attacks we discovered. The defenses
are as follows: first, we require users to explicitly grant
permission when an intent is registered. Second, the browser
should provide visual indicators differentiating intents that
are registered over SSL. Last but not least, intents storage
should he isolated based on the intent origin. The Web Intent
working group responded positively to all of our concerns
and are working to implement most of our defenses.

<intent action="share" type="image/*"
href= "http://photoshare.tld/share"
title="Image Sharing" />

Figure 1. An example of intent registration.

We provide background on the Web Intents framework
in Section II. In Section III, we enumerate the discovered
avenues of attack on Web Intents and their threat model.
In response to these attacks, we discuss our recommended
defenses in Section IV. In Section V, we provide a summary
of developer response to our presented attacks and defenses.
Finally, we survey related work in Section VI and conclude
in Section VII.

II. WEB INTENTS OVERVIEW

Web Intents simplify how websites are able to interact
with other applications and services. Current web collabo-
ration solutions impose a non-trivial cost increase for each
supported API, whereas Web Intents allows developers to
consolidate the cost increase into support for a single API.
Subsequent addition and removal of supported services does
not impact the Web Intents adoptee’s cost.

Let photoshare.tld be a popular photo sharing
website. Traditionally, web developers who want to allow
content sharing with photoshare.tld would have to
learn photoshare.tld’s API and would have to modify
their website to support it. By employing Web Intents, the
proprietors of catpictures.tld no longer need to use
photoshare.tld’s API. Instead, photoshare.tld
would register an intent with the user’s browser indicating
that it would like to handle image files with a share action.
This intent will persist until the user directly removes the
intent. The intent is registered by embedding an HTML tag
similar to the one depicted in Figure 1. On a subsequent
visit to catpictures.tld, the user clicks a “Share”
button, prompting catpictures.tld to fire an intent
for image/* files with an action attribute of share
(refer to Figure 1). The browser will provide the user with
a list of options for sharing the image, as seen in Figure 2.
Since photoshare.tld previously registered an intent to
handle such an action, its photo sharing service is included
in this list of choices that is presented to the user.

Going back to Figure 1, the action field indicates
the type of action to be taken. Currently, documented



Figure 2. Intent selection interface for the JavaScript shim implementation
of Web Intents

actions include discover, view, pick, share, edit,
subscribe, and save, but developers are free to create
their own actions simply by specifying a unique value for
the action attribute of the registered intent.

Below, we expand on the uses for each intent attribute.

• action: Currently documented actions are URLs that
double as reference points for developer documentation.
The URL scheme is not required in this field. Global
uniqueness, however, is required in order to maintain
specificity between related actions.

• type: The type attribute indicates the data type that is
supported in the context of the registered action.

• href: The href attribute is a URL that points to the
location that handles the action.

• title: The title attribute stores a user-friendly name
for the action, to be displayed to the user when this
Intent is displayed in a dialog prompt.

Web Intents allows cross origin communication between
two websites as long as both websites follow the Web Intents
protocol. The intent-firing website (catpictures.tld)
requires no knowledge of the implementation on the intent-
registered website (photoshare.tld) because the Web
Intents API is standardized across all intents. When a
user chooses to share an image on a Web Intents-enabled
website, an intent is fired and a list of all websites that have
previously registered (action, type) tuples matching the
fired (action, type) tuple will be presented to the user.
In the prototype Chrome implementation, this intent list is
a non-spoofable chrome element, populated by the browser
with supporting intent handlers. The user then chooses which
website (e.g. photoshare.tld) she wishes to use to share
the image.

III. ATTACKS ON WEB INTENTS

In this section, we present our security evaluation of Web
Intents. We have discovered four attacks on the most recent
implementation of Web Intents. All of these attacks were
verified by the Web Intents working group.

A. Threat Model

In our evaluation of Web Intents, we consider two types
of attackers, the web attacker and the network attacker. The
web attacker has control of a malicious website; she also
has the ability to lure users into visiting her website. We
do not assume users to fully trust the malicious website,
that is, users may refuse to install intents provided by the
web attacker. However, this assumption is moot because,
prior to our research, intents could be installed automatically
without users’ consent. In addition to a standard web attacker,
some of the attacks we discovered require additional network
capabilities. Network attackers can read, modify and deny
any network traffic, but do not have the ability to break
existing encryption scheme or read encrypted traffic.

B. Privacy Attacks

A web attacker can track Web Intents users across multiple
browsing sessions, even when browsing data is cleared and
IP addresses change. To launch this attack, the attacker first
creates intents with unique href attributes, then lures the
user into visiting her page. This unique intent identifier
can then be used to associate the user’s activity with
previous session. This attack is similar to the user tracking
technique previously described by Samy Kamkar [1]. In the
current prototype implementation, clearing browsing history
is insufficient for clearing tracking indicators. Intents are
stored permanently by the browser until the user explicitly
removes the intent. Therefore, this type of user tracking
technique has the potential to to record user activity for
much longer periods of time than other techniques (e.g., CSS
history sniffing [2]).

C. Intent Registration Denial of Service

In the current implementation of Web Intents, websites
are not limited in the number of intents or the size of intents
that can be registered. A web attacker can effectively cause a
denial of service by filling the browser’s Web Intents storage.
Prior to our raising of this issue, the Web Intents working
group has not considered limiting the space allocated to Web
Intents. To solve this problem, we propose a similar storage
architecture as the cookie storage, where intent registration
is limited on a per-origin basis. Furthermore, we believe a
user confirmation is needed when registering for an intent.
Details of our proposal is described in Section IV-A.

D. Persistent Effects via Unintentional Intent Registration

An adversary can leverage an existing XSS vulnerability to
overwrite a previously registered intent handler in the context
of victim.com. Web Intents will allow the attacker to
amplify her XSS capabilities by causing her malicious intent
registration to remain even after the XSS vulnerability is
fixed on victim.com. This is particularly interesting when
exploiting a reflected XSS since Web Intents will allow the
effects of the attack to persist. Once an intent is registered,



the user’s browser will store the intent indefinitely. This
behavior escalates a simple reflective XSS capability to a
semi-persistent intent corruption capability. Additionally, the
user will see no indication that the intent has changed since
the initial registration.

Adversaries with network capabilities can perform simi-
lar attacks by overwriting securely registered intents with
unsecure intents. For instance, consider a registered intent
whose href attribute points to a page served over SSL. An
attacker could overwrite this intent such that the intent’s
href attribute points to a non-SSL page, paving the way
for a mixed-content scenario that would otherwise not exist.
Suppose example.com registers an intent for the purpose
of sharing images. example.com might choose to create
two intents, one for normal image sharing and one for
secure image sharing. The network attacker can modify this
registration attempt in order to gain access to an image that
the user believes is being shared securely. During the initial
serving of the intent, the network attacker could change the
URL for the secure photo sharing page to the URL for the
unsecure photo sharing page. This can also be done after
the fact, by causing an intent overwrite. Even if the user is
prompted for intent registration (for this overwrite), it is likely
that the user will accept a registration attempt from a website
that she has previously visited (e.g. example.com). When
the user decides to share an image using the modified intent,
the network attacker would be able to observe the photo. This
attack allows the attacker to access data that the user believes
was shared securely. To fix this vulnerability, browsers must
either not allow intents to be registered through unencrypted
pages, or forbid non encrypted pages from overwriting intents
registered securely.

E. Login CSRF

User interface design problems may not directly send
information to an attacker; however, the attacker may still be
able to obtain information by sending it through another site.
One of the problems with current intent registrations is that
they do not offer the capability to tie the registration to a
user’s account. A user could have two accounts on a website
that registers intents, but the intents were only registered
while the user was logged into one of the accounts. If the
user is logged into one account and attempts to execute
an action, the action may be automatically taken using an
unintended account. The current prototype implementation
of Web Intents does not indicate which account will be
used to carry out the action, nor lock registrations to the
account that was active at the time of registration. Without
the ability to tie a particular account to a registered intent,
login CSRF [3] becomes very powerful in the context of Web
Intents, since it allows a web attacker to trick the user into
divulging information to an attacker-controlled account with
minimal user interface indication. To see a real life example
of this attack, consider a Flickr intent that can be used to post

pictures onto the user’s Flickr account. Furthermore, assume
that Flickr has a login CSRF vulnerability (i.e., the attacker
has the ability to silently log the user into the attacker’s
account in the background). The attack proceeds as follows:

1) User installs the benign Flickr intent onto her browser.
2) User visits the malicious website, which launches a

login CSRF attack on Flickr in the background.
3) User visits PrivatePhoto.com and uses the intent

registered in Step 1 to upload her private photo to her
Flikr account.

4) Since the user is currently logged in as the attacker
(due to the attack carried in Step 2), the attacker will
gain access to the user’s private photo.

In the above example, Web Intents displays only the
services associated with an intent action and does not indicate
the associated account. If the user selects a vulnerable service,
intent data would be sent to the attacker account without the
user’s knowledge. This attack is further aggravated by the
lack of integrity in HTTP cookies that makes login CSRF
attacks difficult to completely defend against [4].

IV. DEFENSES

We propose several modifications to the design of Web
Intents in order to mitigate the first three vulnerabilities we
identified. The defenses proposed in this section have been
communicated to the Web Intents developers, who have either
integrated our proposals or are planning to do so soon. See
Section V for more details.

A. User Confirmation for Registrations

One simple way to mitigate the threat posed by several
of the presented attacks is to require user confirmation
when a website wishes to register an intent. Such a feature
would significantly restrict a web attacker’s capabilities. By
conducting intent validation such as prompting the user prior
to intent registration, the web attacker’s ability consume and
free almost arbitrary amount of space in the Web Intents
storage is severely restricted. Without the ability to consume
and free this space, the web attacker cannot effectively
conduct the previously described denial of services attack
variants. Additionally, such user interaction would be more
analogous to Android’s Intent registration behavior. While
Android users are not directly prompted for the registration of
Android Intents, they are directly prompted for the installation
of applications. By requiring user interaction to install
and remove applications, and therefore those applications’
registered Intents, Android effectively provides the user with
a means to manage her Intent database. We envision that
native implementations of Web Intents will provide the user
with similar discretion. The Web Intents developers agree
with this recommendation and have stated that future releases
of the JavaScript shim and any native implementations will
prompt users prior to registration.



B. Authenticity Indicators in User Interface

To mitigate network attacks, we propose that Web Intents
should present visual cues to users that clearly differentiate
between intents registered over HTTP and intents registered
over HTTPS. Such cues would likely be reminiscent of the
visual cues employed my all major browsers for HTTPS-
secured sites. However, we acknowledge that it would
be difficult to train users to make well-informed security
decisions based on these indicators. A more conservative
approach would be to require HTTPS URLs for all intent
registrations.

C. Isolation of Securely Registered Intents

In addition to presenting visual indicators for secure
intents, we believe securely registered intents should also
be kept in a separate storage as intents registered via HTTP.
More specifically, Web Intents should leverage the security
boundaries called for by the same origin policy. This would
guarantee two things. First, a network attacker would not be
able to overwrite secure intents with insecure ones. Second,
a network attacker would not be able to overflow the secure
intents storage by registering a large number of insecure
intents. (This distinction is unnecessary if HTTPS is required
to register Web Intents.)

V. DEVELOPER RESPONSE

The Web Intents developers responded quickly to the issues
raised in this paper [5]. A “security” bug tag was created
almost immediately after we had contacted them and is being
used to track development progress toward addressing the
presented concerns [6].

In future native implementations, Web Intents will require
user approval for intent registration. This behavior mitigates
the web attacker’s capability to cause a Web Intents denial
of service. Additionally, the developers plan to only offer the
JavaScript implementation over HTTPS, thereby alleviating
the concerns raised around modification by a network
attacker for privacy-violating and mixed-content outcomes
advantageous to the network attacker.

VI. RELATED WORK

While the security implications of Web Intents have not
been previously subject to external evaluation, the design and
goals behind Web Intents are derived from browser extension
security and Android’s Intent framework, both of which have
undergone such an evaluation.

Several recent papers [7], [8] have focused on the security
implications of Android Intents and how application devel-
opers must go about utilizing the Android Intent framework
in order to safeguard the confidentiality and integrity of their
applications’ code and data. Due to the closely related nature
of Android Intents and Web Intents, threats and attack vectors
applicable to Android Intents are in some ways parallel and
applicable to Web Intents. Android Intents are vulnerable

to a wide variety of attacks. Most of these attacks occur
because Intents are used for both intra and inter-application
communication. We have found attacks on Web Intents that
are similar to previously discovered attacks on Android
Intents like Activity Hijacking and Service Hijacking [8];
the means of exploitation are, however, very different as one
is an inter-web application communication mechanism while
the other an IPC mechanism.

VII. CONCLUSION

Prior to this paper, Web Intents had not been subject to an
external security evaluation. Our evaluation has uncovered a
number of attacks against current implementations of Web
Intents. As Web Intents is still very much a work in progress
and has yet to be utilized by any significant number of
websites, we believe the timing of our evaluation may provide
the most benefit due the relative lack of compatibility issues
that would arise from major Web Intents modifications.

We offer recommendations on defending against our
attacks in future browser implementations of Web Intents.
The vulnerabilities presented were acknowledged by the
developers of Web Intents, who have agreed with our most
of our recommendations and are tracking progress toward
their resolution.

REFERENCES

[1] “Evercookie,” http://samy.pl/evercookie/.

[2] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I
still know what you visited last summer: Leaking browsing
history via user interaction and side channel attacks,” in
Proceedings of the 2011 IEEE Symposium on Security and
Privacy, 2011.

[3] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in Proceedings of the 15th ACM
Conference on Computer and Communications Security, 2007.

[4] A. Bortz, A. Barth, and A. Czeskis, “Origin Cookies: Session
Integrity for Web Applications,” in Web 2.0 Security and Privacy
(W2SP), 2011.

[5] “Security research,” 2011, email exchange. https:
//groups.google.com/forum/?fromgroups#!topic/web-intents/
vYbcZJ9aJrE.

[6] “Security issues.” 2011, https://github.com/PaulKinlan/
WebIntents/issues?labels=Security&sort=created&direction=
desc&state=open&page=1.

[7] J. Burn, “Mobile Application Security on Android,” in Black
Hat USA, 2009.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings
of the 9th international conference on Mobile systems,
applications, and services, ser. MobiSys ’11. New York,
NY, USA: ACM, 2011, pp. 239–252. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000018


