
Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Language Based isolation of Untrusted JavaScript

Ankur Taly

Dept. of Computer Science, Stanford University

Joint work with Sergio Maffeis (Imperial College, London) and
John C. Mitchell (Stanford University)

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

1 Web 2.0 and the Isolation Problem

2 Case Study : FBJS
Design
Attacks and Challenges

3 Formal Semantics of JavaScript

4 Achieving the Isolation goal

5 Ongoing and Future Work
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Web 2.0 and the Isolation Problem

Web 2.0 : All about mixing and merging content (data and code)
from multiple content providers in a users browser, to provide
high-value applications

Extensive Client-side scripting - lots of JavaScript.

Systems have complex trust boundaries.

Security Issues

This work

Focus on the simple case where content providers are either
trusted or untrusted : Third party Advertisements , Widgets,
Social Networking site - applications.

Assume the publisher has access to untrusted content before
it adds it to the page.

Focus on JavaScript content present in untrusted code.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Web 2.0 and the Isolation Problem

Web 2.0 : All about mixing and merging content (data and code)
from multiple content providers in a users browser, to provide
high-value applications

Extensive Client-side scripting - lots of JavaScript.

Systems have complex trust boundaries.

Security Issues

This work

Focus on the simple case where content providers are either
trusted or untrusted : Third party Advertisements , Widgets,
Social Networking site - applications.

Assume the publisher has access to untrusted content before
it adds it to the page.

Focus on JavaScript content present in untrusted code.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Web 2.0 and the Isolation Problem

Isolation Problem

Design security mechanisms which allow untrusted code to perform
valuable interactions and at the same time prevent intrusion and
malicious damage.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Web 2.0 and the Isolation Problem

Isolation Problem

Design security mechanisms which allow untrusted code to perform
valuable interactions and at the same time prevent intrusion and
malicious damage.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

IFrames

Placing all untrusted content in separate IFrames seems to be
a safe solution .

Social network site applications and Ads : IFrames are
sometimes too restrictive

Restricts the ad to a delineated section of the page.
Social network applications need more permissive interaction
with the host page.

Some publishers prefer to not use IFrames

Gives better control over untrusted code.
Easier to restrict same-origin untrusted code.

This Work

Design isolation mechanisms for untrusted code not placed in
separate IFrames.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Program Analysis Problem

Program Analysis Problem

Given an untrusted JavaScript program P and a Heap H
(corresponding to the trusted page), design a procedure to either
statically or dynamically via run time checks, guarantee that P
does not access any security critical portions of the Heap.

Design static analysis and/or code instrumentation techniques
Very hard problem to solve for whole of JavaScript as all code
that gets executed may not appear textually !

var m = ”toS”; var n = ”tring”;
Object.prototype[m + n] = function(){return undefined};

Approach

Solve the above problem for subsets of JavaScript that are more
amenable to static analysis.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Program Analysis Problem

Program Analysis Problem

Given an untrusted JavaScript program P and a Heap H
(corresponding to the trusted page), design a procedure to either
statically or dynamically via run time checks, guarantee that P
does not access any security critical portions of the Heap.

Design static analysis and/or code instrumentation techniques
Very hard problem to solve for whole of JavaScript as all code
that gets executed may not appear textually !

var m = ”toS”; var n = ”tring”;
Object.prototype[m + n] = function(){return undefined};

Approach

Solve the above problem for subsets of JavaScript that are more
amenable to static analysis.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Case Study : FBJS

FBJS is a subset of JavaScriptfor writing Facebook
applications which are placed as a subtree of the page.

Restrictions Applied
Filtering : Application code must be written in FBJS

Forbid eval, Function constructs.

Disallow explicit access to properties (via the dot notation
-o.p) parent , constructor,

Rewriting

this is re-written to ref(this)

ref(x) is a function defined by the host (Facebook) in the
global object such that ref(x) = x if x 6= window else ref(x) =
null
Prevents application code form accessing the global object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Case Study : FBJS

FBJS is a subset of JavaScriptfor writing Facebook
applications which are placed as a subtree of the page.

Restrictions Applied
Filtering : Application code must be written in FBJS

Forbid eval, Function constructs.

Disallow explicit access to properties (via the dot notation
-o.p) parent , constructor,

Rewriting

this is re-written to ref(this)

ref(x) is a function defined by the host (Facebook) in the
global object such that ref(x) = x if x 6= window else ref(x) =
null
Prevents application code form accessing the global object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Case Study : FBJS

Rewriting (contd):

o[p] is rewritten to o[idx(p)] : Controls access to dynamically
generated property names.

idx(p) is a function defined by the host (Facebook) in the
global object such that idx(p) = bad if p ∈ Blacklist else
idx(p) = p.
Blacklist contains sensitive property names like parent ,
constructor, . . .

Add application specific prefix to all top-level identifiers.

Example : o.p is renamed to a1234 o.p
Separates effective namespace of an application from others.
Facebook provides libraries, accessible within the application
namespace, to allow safe access to certain parts of the global
object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Case Study : FBJS

Rewriting (contd):

o[p] is rewritten to o[idx(p)] : Controls access to dynamically
generated property names.

idx(p) is a function defined by the host (Facebook) in the
global object such that idx(p) = bad if p ∈ Blacklist else
idx(p) = p.
Blacklist contains sensitive property names like parent ,
constructor, . . .

Add application specific prefix to all top-level identifiers.

Example : o.p is renamed to a1234 o.p
Separates effective namespace of an application from others.
Facebook provides libraries, accessible within the application
namespace, to allow safe access to certain parts of the global
object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

An attack on FBJS (Nov’08)

Goal of the Attack

Get a handle to the global object in the application code.

Main Idea : Get a handle to the current scope object and shadow
the ref method.

1 Getting the current scope: GET SCOPE.

try {throw (function(){return this;});}
catch (f){ curr scp = f();}

Other tricks : Use named recursive functions (see our CSF’09
paper)

2 Shadow ref : curr scp.ref = function(x){return x;}.
3 this will now evaluate to the global object !

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Another attack on FBJS (Mar’09)

Goal of the attack

Access a black-listed property name

Main Idea

The Facebook IDX(e) does the following check :
1 Evaluate e2.
2 Convert result(1) to string and check it is blacklisted
3 If result(2) is false, return result(1) else return ”bad”.

Observe e2 will get converted to string twice.

Almost works

e := {toString : function(){this.toString =
function(){return ’constructor’} ;return ’foo’}}

FBJS has a check e instanceOf Object ? ”bad”

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Attack contd

In Safari, scope objects have a null prototype and hence they
escape the instanceOf check.

Attack !!! (Safari)

var obj = GET SCOPE;

obj.toString=function(){this.toString = function(){return ’constructor’}
;return ’foo’};

var f=function(){}; f[obj](’alert(0)’)();

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Vulnerabilities Disclosed

To defend against the first attack, Facebook renamed idx and
ref methods to $FBJS.idx and $FBJS.ref .

To defend against the second attack, Facebook modified idx

function to check the browser and decide if the object can
escape the ”instanceOf” check.

Does this fix the problem once and for all ?

Are more attacks possible on these lines ?

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Summary of our analysis of FBJS

We realize the following three fundamental issues :
1 The ultimate goal is to ensure that a piece of untrusted code

(that satisfies a certain syntactic criterion), does not access
certain global variables.

2 There are a number of subtleties related to the expressiveness
and complexity of JavaScript.

3 Finding temporary fixes to the currently known attacks is
NOT sufficient.

4 Several million users : Impact value of a single attack is
VERY high.

Formal Analysis !!

It is important to do a formal analysis based on traditional
programming language foundations to design provable secure
isolation techniques

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

1 Web 2.0 and the Isolation Problem

2 Case Study : FBJS
Design
Attacks and Challenges

3 Formal Semantics of JavaScript

4 Achieving the Isolation goal

5 Ongoing and Future Work
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

A bit about JavaScript

Key language features

First class functions, Prototype based language, redefinable
object properties.
Can convert string to code :eval, Function

Implicit type conversions

var y = ”a”;
var x = {toString : function(){ return y;}}
x = x + 10;
js> ”a10”

ECMA262-3 : Standardized for browser compatibility. Does
not include DOM and other browser extensions.
Sufficient for ’understanding’ the language but insufficient for
rigorously proving properties about it.
We need a formal semantics for representing the meaning of
every possible JavaScript program.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Our Approach

For now, focus on ECMA-262-3rd edition. This is already quite
non-trivial !

1 Convert Informal semantics(ECMA262-3) into a Formal
semantics. (APLAS’08)

Specifies meaning in a Mathematically rigorous way.
The very act of formalization revealed subtle aspects of the
language and helped us devise attacks on FBJS.

2 Systematically design subsets of JavaScript to achieve the
isolation goal.

3 Use the formal semantics to rigorously prove that the isolation
goal is attained for all programs within the subset (CSF’09,
W2SP’09 and Ongoing) .

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Structural Operational Semantics

Meaning of a program ⇔ sequence of actions that are taken
during its execution.

Specify sequence of actions as transitions of an Abstract State
machine

State

Program state is represented as a triple 〈H, l , t〉.
H : Denotes the Heap, mapping from the set of locations(L)
to objects.

l : Location of the current scope object (or current activation
record).

t : Term being evaluated.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Semantic Rules

Small step style semantics (Gordon Plotkin)

Three semantic functions
e−→ ,

s−→ ,
P−→ for expressions,

statements and programs.

Small step transitions : A semantic function transforms one
state to another if certain conditions (premise) are true.

General form :
〈Premise〉
S

t→ S ′

Atomic Transitions : Rules which do have another transition
in their premise (Transition axioms).

Context rules : Rules to apply atomic transitions in presence
of certain specific contexts.

Complete set of rules (in ASCII) span 70 pages.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

1 Web 2.0 and the Isolation Problem

2 Case Study : FBJS
Design
Attacks and Challenges

3 Formal Semantics of JavaScript

4 Achieving the Isolation goal

5 Ongoing and Future Work
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Back to Isolation Problem

Isolation Problem

Ensure that a piece of untrusted code written in a safe subset does
not access certain security-critical global variables.

Let Access(P) be the set of property names accessed when
program P is executed.
Reduce the isolation problem to the following 2 sub problems.

Problem 1 (Isolation from library code)

Given a blacklist B, design a meaningful sublanguage and an
enforcement mechanism so that for all enforced programs P in the
sublanguage, Access(P) ∩ B 6= ∅

Isolating host library methods : Create a blacklist B of all security
critical methods in the library code .

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Back to Isolation Problem

Isolation Problem

Ensure that a piece of untrusted code written in a safe subset does
not access certain security-critical global variables.

Let Access(P) be the set of property names accessed when
program P is executed.
Reduce the isolation problem to the following 2 sub problems.

Problem 1 (Isolation from library code)

Given a blacklist B, design a meaningful sublanguage and an
enforcement mechanism so that for all enforced programs P in the
sublanguage, Access(P) ∩ B 6= ∅

Isolating host library methods : Create a blacklist B of all security
critical methods in the library code .

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolation from other untrusted code ?

Key Idea : Rename identifiers to separate namespace of untrusted
code.
But does this preserve the semantics ? Not for Jt.

Issue : Variables are essentially properties of the current
scope object (activation object).

var x = 42; this.x returns 42 in the global scope.
var a123 x = 42; this.x returns ”reference error x not defined”.
Disallow access to scope object !

Problem 2 (Isolating scope objects)

Define a meaningful sublanguage so that no program P in the
sublanguage can return a pointer to a scope object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolation from other untrusted code ?

Key Idea : Rename identifiers to separate namespace of untrusted
code.
But does this preserve the semantics ? Not for Jt.

Issue : Variables are essentially properties of the current
scope object (activation object).

var x = 42; this.x returns 42 in the global scope.
var a123 x = 42; this.x returns ”reference error x not defined”.
Disallow access to scope object !

Problem 2 (Isolating scope objects)

Define a meaningful sublanguage so that no program P in the
sublanguage can return a pointer to a scope object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Plan

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist (Problem 1)

Scope (Problem 2)

Solution 1 is a sublanguage with pure static enforcement for
achieving the goals in problem 1 and 2.

Solution 2 is a sublanguage with static and runtime
enforcement for achieving the goals in problem 1 and 2.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating blacklist with syntactic enforcement

Design a sublanguage such that for any program P, all property
names that can potentially be accessed appear textually in the
code.

Fundamental issue : Strings (m), Property Names (pn) and
Identifiers (x) are implicitly converted to each other

Terms whose reduction trace involves conversion from

Strings −→ Property names (like e[e])

Strings −→ Code (like eval)

are evil. Get rid of them !

Subset Jt

Jt is defined as ECMA-262 MINUS: all terms containing the
identifiers eval, Function, hasOwnProperty, propertyIsEnumerable,
constructor and expressions e[e], e in e; the statement for (e in e) s;

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating blacklist with syntactic enforcement

Design a sublanguage such that for any program P, all property
names that can potentially be accessed appear textually in the
code.

Fundamental issue : Strings (m), Property Names (pn) and
Identifiers (x) are implicitly converted to each other

Terms whose reduction trace involves conversion from

Strings −→ Property names (like e[e])

Strings −→ Code (like eval)

are evil. Get rid of them !

Subset Jt

Jt is defined as ECMA-262 MINUS: all terms containing the
identifiers eval, Function, hasOwnProperty, propertyIsEnumerable,
constructor and expressions e[e], e in e; the statement for (e in e) s;

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Results

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist Subset Jt
Filter P if Id(P) ∩ B 6= ∅

Scope

Id(P) : Set of identifiers in P.

Some property names are accessed implicitly (Recall type
conversions). Denote these property names by Pnat . Includes
{toString, toNumber, valueOf }, Object, Array, RegExp}

Result

Any property name accessed by a program P in Jt when executed
with respect to the initial heap is either contained in Id(P) or in
Pnat .

Can also enforce whitelists !
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating scope object with syntactic enforcement

Isolating the scope object

For initial empty heap state, global object is only accessible
via @scope and @this properties

Dereferencing @this is the only way of returning the current
scope object.

Object.prototype.valueOf, Array.prototype.sort/concat/reverse can
potentially deference the @this property.

Subset Js

The subset Js is defined as Jt, MINUS: all terms containing the
expression this; all terms containing the identifiers valueOf, sort,
concat and reverse;

Js ⊂ Jt : Sufficient for imposing the restriction that properties
valueOf, sort, concat and reverse are never accessed

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating scope object with syntactic enforcement

Isolating the scope object

For initial empty heap state, global object is only accessible
via @scope and @this properties

Dereferencing @this is the only way of returning the current
scope object.

Object.prototype.valueOf, Array.prototype.sort/concat/reverse can
potentially deference the @this property.

Subset Js

The subset Js is defined as Jt, MINUS: all terms containing the
expression this; all terms containing the identifiers valueOf, sort,
concat and reverse;

Js ⊂ Jt : Sufficient for imposing the restriction that properties
valueOf, sort, concat and reverse are never accessed

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Results

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist (Problem 1) Subset Jt
Filter P if Id(P) ∩ B 6= ∅

Scope (Problem 2) Subset Js⊆ Jt
Filter P if Id(P) ∩ B 6= ∅

Result

No program in the language Js when executed with respect to the
initial heap evaluates to the address of a scope object.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating blacklist with runtime enforcement

Jt is fairly restrictive.

Disallows [] operator altogether ⇒ No array access

In principle, solution to problem 1 should allow o[p] where
p /∈ B.

Runtime Check : e1[e2] −→ e1[IDX(e2)] (along the lines of FBJS)
How do we design for IDX which enforces property that

No property name from blacklist B ever gets accessed.

Semantics is preserved for all programs P for which
Access(P) ∩ B 6= ∅.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Subset Jt run

e1[e2] −→ va1[e2] −→ va1[va2] −→ o[va2] −→ o[m]

Observe that first e1 and e2 are converted to a value and only
then e2 is converted to a string.
Ideally, IDX(e2) should return a value which
on being converted to a string, checks if the string obtained
from e2 is outside the blacklist and returns it.

IDX

($=e2,{toString:function(){return ($=TOSTRING($),FILTER($))}})
where TOSTRING($) = (new $String($)).valueOf() FILTER($) =
($blacklist[$]?”bad”:$)

Subset Jtrun

The subset Jtrunis defined as as Jtplus e[e] minus all terms with
identifiers beginning with $

redImportant : Add $String to blacklist B.
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Subset Jt run

e1[e2] −→ va1[e2] −→ va1[va2] −→ o[va2] −→ o[m]

Observe that first e1 and e2 are converted to a value and only
then e2 is converted to a string.
Ideally, IDX(e2) should return a value which
on being converted to a string, checks if the string obtained
from e2 is outside the blacklist and returns it.

IDX

($=e2,{toString:function(){return ($=TOSTRING($),FILTER($))}})
where TOSTRING($) = (new $String($)).valueOf() FILTER($) =
($blacklist[$]?”bad”:$)

Subset Jtrun

The subset Jtrunis defined as as Jtplus e[e] minus all terms with
identifiers beginning with $

redImportant : Add $String to blacklist B.
Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Subset Jt run

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist (Problem 1) Subset Jt Subset Jtrun

Filter P if Id(P) ∩ B 6= ∅ Filter P if Id(P) ∩ B 6= ∅
e1[e2] → e1[IDX(e2)]

Scope (Problem 2) Subset Js
Filter P if Id(P) ∩ B 6= ∅

Result

For all programs P in Jtrun such that Id(P) ∩ B 6= ∅, the program
$String=String; Rew(P) when executed with respect to the initial
heap does not access any property from B.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating global object with runtime enforcement

Js disallows this

Heavily used in object oriented programming.

In principle, solution to problem 2 must allow this if it does
not point to a scope object.

Runtime check : this −→ NOSCOPE(this)

How can we check if a given object is a scope object ?

Not straightforward in general,
Use NOGLOBAL(this) = (this==$?null;this).

NOSCOPE(this) is definable for Firefox, see paper.

Subset Jsrun

Define the subset Jsrun as Js plus : all terms containing this minus
all terms with identifiers beginning with $

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Isolating global object with runtime enforcement

Js disallows this

Heavily used in object oriented programming.

In principle, solution to problem 2 must allow this if it does
not point to a scope object.

Runtime check : this −→ NOSCOPE(this)

How can we check if a given object is a scope object ?

Not straightforward in general,
Use NOGLOBAL(this) = (this==$?null;this).

NOSCOPE(this) is definable for Firefox, see paper.

Subset Jsrun

Define the subset Jsrun as Js plus : all terms containing this minus
all terms with identifiers beginning with $

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Results

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist (Problem 1) Subset Jt Subset Jtrun

Filter P if Id(P) ∩ B 6= ∅ Filter P if Id(P) ∩ B 6= ∅
e1[e2] → e1[IDX(e2)]

Global Object Subset Js Subset Jsrun

(Problem 2 weak) Filter P if Id(P) ∩ B 6= ∅ Filter P if Id(P) ∩ B 6= ∅
e1[e2] → e1[IDX(e2)]

this → NOGLOBAL(this)

Result

For all programs P in Jsrun such that Id(P) ∩ B 6= ∅, the program
$=window; Rew(P) when executed with respect to the initial heap,
never evaluates to the global object and does not access any
blacklisted property.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Results

Isolating Solution 1 Solution 2
(Static) (Static + Runtime)

Blacklist (Problem 1) Subset Jt Subset Jtrun

Filter P if Id(P) ∩ B 6= ∅ Filter P if Id(P) ∩ B 6= ∅
e1[e2] → e1[IDX(e2)]

Global Object Subset Js Subset Jsrun

(Problem 2 weak) Filter P if Id(P) ∩ B 6= ∅ Filter P if Id(P) ∩ B 6= ∅
e1[e2] → e1[IDX(e2)]

this → NOGLOBAL(this)

Result

For all programs P in Jsrun such that Id(P) ∩ B 6= ∅, the program
$=window; Rew(P) when executed with respect to the initial heap,
never evaluates to the global object and does not access any
blacklisted property.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Solution for FBJS

Define $FBJS.ref and $FBJS.IDX in a different name-space.

Use the version of IDX proposed by us.

Preserves semantics.
Prevents access to blacklisted properties

Given a library blacklist B, use subset Jsrun.

Appropriately rename all identifiers

Finally, parse the text of the code to disallow identifier names
beginning with ”$” or any blacklisted identifiers.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Ongoing and Future Work

Design suitable run-time checks for eval, Function.

Given a set of sensitive property names, design a procedure to
analyze the library code and automatically generate the
minimal blacklist which will guarantee property isolation.

Write the semantics in machine readable format so that the
proofs can be automated.

Extend the above results to apply to JavaScript supported by
various browsers which include features beyond the
ECMA-262 spec, such as getter, setters, proto etc.

Ankur Taly Language Based isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Case Study : FBJS Formal Semantics of JavaScript Achieving the Isolation goal Ongoing and Future Work

Thank You !

Ankur Taly Language Based isolation of Untrusted JavaScript

	Web 2.0 and the Isolation Problem
	Case Study : FBJS
	Design
	Attacks and Challenges

	Formal Semantics of JavaScript
	Achieving the Isolation goal
	Ongoing and Future Work

