
Opportunistic Encryption Everywhere
Adam Langley

Google Inc
San Francisco, California
agl@google.com

Abstract—Many of the core Internet protocols were designed
for a less hostile network than the average packet finds itself
in today. Many hosts are connecting over shared-key or open
wireless networks where eavesdropping is trivial. On a larger
scale, ISPs are experimenting with institutional sniffing where
the clickstreams of the majority of users are observed and sold
for their marketing value.

Like the shift away from RSH and open mail relays, it’s our
belief that all traffic should now be encrypted. As a practical
matter this means opportunistic encryption, with all its complex
trade-offs. In this paper, we explore these compromises and the
design space of such a goal.

I. INTRODUCTION

Traditionally, most network protocols have been unen-
crypted. Encryption, if any, is often an optional and secondary
concern. There are many good reasons for this. Unencrypted
protocols are easier to debug, easier to experiment with and
computationally cheaper. Additionally, sniffing on networks
has previously been the exception, not the rule.

In recent years, the computational cost of cryptography has
been reduced in two ways. As ever, processors become faster
and cheaper on the one hand. On the other, cryptography and
research into cryptographic implementations has advanced.
On an Intel Core2, one can perform AES-128 encryption at
12 cycles/byte[1] and an elliptic-curve key agreement can
be performed within 400K cycles[2]. Polynomial message-
authenticators can be as cheap as a couple of cycles/byte on
a Pentium 4[3].

As some of the costs of encryption have diminished, the
motivations have increased. Companies such as Phorm and
Nebu-Ad have announced and trialed schemes where web-
traffic is sniffed or intercepted at an ISP level to extract
information about users. As economic times get tougher, the
incentive for ISPs and other network operators to engage in
such dubious practices will only increase.

On the small scale, the methods by which end hosts are
connected are becoming increasingly wireless. These wireless
networks are inherently more open to sniffing, especially given
the dominance of Wi-Fi networks using weak cryptography[4]
with no key or shared keys.

A major hindrance to the mass deployment of encryption
has been the problem of trust. Although key-agreement pro-
tocols can establish a secure channel between two end-points,
additional information is need to verify that the other end is
who they claim to be.

TLS[5] solves this problem using a public-key infrastruc-
ture where central authorities are trusted to link real-world

and cryptographic identities. SSH has achieved wide-ranging
success using imprinting, where cryptographic identities are
assumed to be correct on first sight and remembered for future
transactions.

Despite ubiqutous support for HTTP over TLS (HTTPS),
general adoption has been limited due to a variety of road-
blocks:

Human intervention is required to generate keys, install
them on the server and submit them to the certificate authority.
These authories require a small, annual fee and the admin-
istrator must remember to renew the certificates in a timely
manner. This process must be repeated for each domain name
which points to the server. Also, support for HTTPS virtual
hosting[6] is not as widespread as HTTPS support itself.

Once the transport layer aspects are working correctly,
websites may need work to avoid mixed-content warnings and
explicit http URLs in links which would direct the browser
to the unsecured version of the site.

II. OPPORTUNISTIC ENCRYPTION

Opportunistic encryption is the act of setting up a secure
channel without verifying the identity of the other host (or,
at best, imprinting may be used). Although it defeats mere
eavesdroppers, an attacker who can modify packets in transit
can perform a man-in-the-middle attack and persuade both
legitimate endpoints that he is the other.

Because of this, opportunistic encryption is insufficient
when the secrets being protected are of high value. However,
it can operate without human action or knowledge and this
appears to be critical for any design which aspires to large
scale deployment. Despite near ubiquitous support for HTTPS,
and the low cost of certificates, adoption has been sadly
limited.

Perhaps most critically, opportunistic encryption provides a
method for detecting large-scale sniffing. Currently, sniffing
can occur silently and none of the users need ever be aware
that it’s happening. In the face of widespread opportunistic
encryption, a sufficiently powerful attacker could perform
man-in-the-middle attacks on all connections at an ISP level.
However, any connections where identities are validated would
detect the subterfuge.

Thus, a small set of nodes, distributed across different net-
works, performing validated connections between each other
at regular intervals could serve as canaries for any network
machinations. As long as the attacker can not differentiate
opportunistic connections from validated ones at the point



where the attack has to be performed, a large-scale attack
would inevitably be detected.

III. DESIGN SPACE

If the goal of opportunistically encrypting traffic is accepted,
there are still many details to decide upon. In general, the
details break into three parts:

• The cryptographic protocol and primitives to use.
• The layer of the stack to insert them at.
• How to signal support for a new protocol and provide a

smooth upgrade path.
For now, we’ll largely ignore the choice of cryptographic

primitives (ciphers, MACs etc). The weakness of opportunis-
tic encryption against active attackers means that we might
wish to choose less secure primitives to gain computational
efficiency. This is a rare situation to be in, but a discussion
here would detract from the more important points below.

We will first consider where in the stack we should work.

A. IPSec

The FreeS/WAN project[7] attempted, and failed[8], to
implement opportunistic encryption at the network layer. The
reasons for this failure are myriad and include the complexity
of the solution and the additional latencies introduced. The
work is being carried on by OpenSWAN, StrongSWAN and
the IETF Better Than Nothing Security working group[9].

We wish them the best of luck, but consider the failure of
FreeS/WAN to be instructive. For a solution at the network
layer, their various designs are largely reasonable. Many of
the reasons for their failure (complexity, difficultly of working
with the variety of networking hardware, latency) are endemic
to the layer at which they were working.

Because of this, we don’t try to solve the problem at the
network layer and carry with us a renewed conviction that any
solution must be transparent and painless to the user.

B. TCP

If we are aiming for all traffic to be opportunistically
encrypted, then adding the capability to TCP would seem to
be almost as ideal as IPSec. By working at this low level,
all higher protocols would automatically gain the benefits
without having to alter the thousands of user-land programs
that implement them.

Providing an upgrade path is easily done using the TCP
options mechanism to advertise support.

Also, by working at the TCP layer, we could protect the
TCP metadata itself. This would render harmless simple RST
injection attacks[10] and other such TCP manipulations.

There are significant technical difficulties with altering TCP
to implement worthwhile opportunistic encryption, although
we can overcome them at the cost of some complexity. The
details can be found in Appendix A.

Most significantly, changes at this layer are difficult to
achieve. The addition of TCP options requires the agreement
of the IETF. More troubling is that important TCP stacks are

closed source and it may take many years to effect a change
in them1.

There is also an aesthetic argument that such behaviour does
not belong in such a low-level, critical, and already complex
protocol. A prototype patch to implement this in the Linux
2.6.26 TCP stack added 1500 lines to the TCP implementa-
tion (not counting cryptographic primitives), supporting this
argument.

C. Transport Layer
If we decide to work at the transport layer, above the kernel,

we must solve the advertising issue to provide an upgrade path
and decide what the transport layer protocol should look like.

There are two basic options for transport layer cryptogra-
phy: use TLS or roll our own. Many of the caveats about
designing one’s own transport layer protocol are rendered moot
when considering a protocol that is not designed to be secure
against man-in-the-middle attacks.

TLS requires two additional round trips to establish a
connection. (This is reduced to one for connections where the
client has cached state from a previous connection.) By rolling
our own protocol we can gain one significant advantage over
TLS: no additional round trips when we obtain the server’s
Diffie-Hellman public value via some side-channel.

The costs of additional latency have not been well re-
searched, publicly. Instead we have to rely on anecdotes
like the following: “In A/B tests (at Amazon.com), we tried
delaying the page in increments of 100 milliseconds and found
that even very small delays would result in substantial and
costly drops in revenue.”[11]

By rolling our own transport layer protocol we could
also use faster cryptographic primitives: elliptic curve Diffie-
Hellman, reduced round ciphers etc. (TLS could use all
of these. However, modifying TLS and its implementations
negates some of the advantages of its ubiquity.)

An argument favour of TLS is that it is already universally
supported with solid implementations. Every serious web
server includes well tested TLS support. TLS does have a
reputation of being slow but this is usually the result of con-
servative default configurations. When using OpenSSL with
no special configuration, connecting to mail.google.com
(which is expertly configured) results in a ciphersuite of
RC4-SHA. Connecting to a default Apache installation uses
the dramatically slower DHE-DSS-AES256-SHA suite.

While the latter suite provides additional security, we con-
sider it unnecessary for HTTPS. It’s our opinion that the
costs of TLS are greatly exaggerated in the minds of many
administrators and a little configuration would go a very long
way.

IV. PROVIDING AN UPGRADE PATH

If we decide not to work in the TCP stack, we have to
provide some way for clients to know when a given server

1It took eight years between the publication of RFC 1323 and the imple-
mentation of TCP timestamps in Windows 2000. It took several more years
before Windows 2000 and later kernels came to account for a significant
fraction of running Windows systems.



supports our transport layer modifications. At this point we
have to start dealing with the specifics of application-level
protocols, and for simplicity, we only consider HTTP. If
an opportunistic encryption scheme ever managed reasonably
wide deployment with HTTP, we would consider it a stunning
success.

Such an advert needs to provide confirmation that a given
server supports opportunistic encryption. It may provide an
alternative port number for encrypted connections, a list of
supported protocols, the server’s Diffie-Hellman public value
etc.

A. DNS

The first advertising possibly that we consider is putting
information in DNS. Since HTTP clients start DNS resolution
before the HTTP connection is started, DNS provides the
possibility of supporting opportunistic encryption on the first
connection to a given server.

By far the easiest method of encoding information in
DNS is via CNAME records. If a given name (say
www.example.com) is a CNAME to xyz.example.com
(where xyz is a longer, base64 encoded string) then this in-
formation is typically returned in the Additional section of the
reply[12] and is available via the standard gethostbyname
API call.

This neat trick has a major limitation in that it doesn’t
work when using a name without a www (etc) at the beginning
because such a name cannot be a CNAME.

Using other record types is certainly possible but DNS
packets cannot carry more than one request2, so accessing the
extra records means additional DNS requests. The requests for
the non-standard records will also have much lower cache hit
rates. If the HTTP client doesn’t wait for the reply to this
additional request before making the connection, then we lose
the ability to act on the first connection. If it does wait, then
we introduce additional latency for all websites, regardless of
their support for opportunistic encryption.

Non-standard record types are also more difficult to resolve
using standard APIs, difficult to configure with some DNS
registrars, and require human intervention to setup.

B. HTTP Based Imprinting

Since we are only considering HTTP at this point, let us
imagine that there’s a distinguished path that HTTP clients
can request from a given server, containing information about
the server’s support for opportunistic encryption schemes (like
/favicon.ico for icons). The client then remembers this
information for future connections to the same server.

For latency reasons we wouldn’t want to wait to resolve
this, so the client’s first connections to a given server could
not be opportunistically encrypted.

However, such a scheme has two important advantages:

2DNS packets can have more than a single request in them. However, due
to an apparent oversight, there’s no way for the server to signal the status
of the different requests and so, to our knowledge, every DNS server returns
SERVFAIL in this case.

Firstly, an HTTP client can check the validity of the claims
in the advert. A client may find a valid advert for a server but
then find that encrypted connections actually fail. For example,
network policies in place near the client may deny outgoing
TCP connections to non-whitelisted port numbers. The HTTP
client is perfectly placed to check that encrypted connections
are possible when fetching the advert.

Secondly, it can be implemented automatically. The default
configuration of web servers can advertise support without any
administrative action. Usually the presence of firewalls/proxies
etc precludes the enabling of protocols without an administra-
tor verifying its correct functioning. However, if clients verify
this before accepting the advert they will not be adversely
affected by an over-optimistic claim of support.

V. RELATED WORK

We have already mentioned FreeS/WAN[7] and its progeny,
OpenSWAN, StrongSWAN and BTNS[9], all of which add
opportunistic encryption to IPSec.

One notable success for opportunistic encryption has been
STARTTLS support in SMTP[13]. Since SMTP already had a
standard method for advertising additional server capabilities,
organic deployment of STARTTLS support has meant that op-
portunistically encrypted hop-to-hop transport will eventually
be the norm for e-mail.

VI. CONCLUSIONS

In order to gain understanding of the issues involved, we
have built working prototypes of all the possibilities outlined
above.

In light of that work, we currently believe that the most
minimal solution stands the best chance of success. That would
be an HTTP specific solution, using imprinting and TLS. We
have initial implementations for Firefox and Chromium at this
time.

Although several details still need to be resolved, the
rough outline of the scheme is this: Upon connecting to an
HTTP server for the first time, the browser requests the path
/host-meta. If present, this document[14] contains infor-
mation about the server’s support for opportunistic encryption,
the fingerprint of the certificate and the duration of time that
this information should be cached. If the server believes that it
is capable of opportunistic connections, the client immediately
verifies this.

For future connections to such a host, the HTTP stack
connects using TLS on the standard HTTPS port (443) and
skips certificate verification.

This design emphasises ease of deployment above all else.
It requires changes to web browsers; however, open source
browsers now account for over 20% of users[15]. Implemen-
tation on the server side is as simple as adding a file to the
server’s document root and setting up a self-signed certificate.
Opportunistic encryption can also be configured by default for
new web server installs.

The problems with this design are that it is specific to HTTP
traffic only, it adds additional latency, it doesn’t account for the



first connection to a given host, and TLS is not an optimised
protocol for opportunistic encryption.

VII. UI CONSIDERATIONS

There should be no changes to the UI of any client
application because of these proposals. Because we have
discussed HTTPS, we find that people often conflate our
suggestions with issues of secure UIs and user-interaction.
Opportunistically encrypted transport is no more pertinent to
users than compression, and HTTP clients must not suggest
otherwise in their UIs. TLS with PKI is the HTTPS gold-
standard and we don’t wish to dilute that.

APPENDIX
OPPORTUNISTIC ENCRYPTION IN TCP

The major technical problems with performing opportunistic
encryption in TCP come from the small size of the TCP
options space.

The TCP options space is, at most, 40 bytes long. In a
modern TCP stack, 20 of those bytes are already used in a
SYN frame. If we leave four bytes for future options, that
leaves 16 bytes for a Diffie-Hellman public value. After taking
two bytes for the option header we have only 14 bytes (112-
bits).

The most space efficient Diffie-Hellman schemes are based
on elliptic curves (we are discounting groups based on hyper-
elliptic curves[16] because they are still research topics). The
best general algorithm currently known for solving the Diffie-
Hellman problem on elliptic curves is Pollard’s Rho. The
expected number of operations required is O(

√
n), or ≈ 256

in this case.
Most importantly, once you have solved a single instance

you can precompute tables to speed up breaking more in-
stances. With a petabyte of storage, you could break 112-bit
curves in 212 operations, which is a real-time attack.

So, if we concede that we need larger public values we
have to employ space outside of the traditional TCP options
space. There is an IETF draft to this effect[17], but it greatly
complicates matters because the client’s public value can no
longer be carried in the SYN frame. Instead, we are forced
to invent the concept of deferred options which are carried in
the client’s second frame (and thus must be retransmitted and
acknowledged etc).

REFERENCES

[1] D. J. Bernstein and P. Schwabe, “New AES software speed records,” in
INDOCRYPT, ser. Lecture Notes in Computer Science, D. R. Chowd-
hury, V. Rijmen, and A. Das, Eds., vol. 5365. Springer, 2008, pp.
322–336.

[2] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in In
Public Key Cryptography (PKC), Springer-Verlag LNCS 3958, 2006, p.
2006.

[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC:
Fast and secure message authentication.” Springer-Verlag, 1999, pp.
216–233.

[4] H. Berghel and J. Uecker, “Wireless infidelity II: airjacking,” Commun.
ACM, vol. 47, no. 12, pp. 15–20, 2004.

[5] T. Dierks and E. Rescorla, “RFC 5246: The transport layer security
protocol, version 1.2,” 2008.

[6] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and
T. Wright, “RFC 4366: Transport layer security (TLS) extensions,” April
2006.

[7] J. Gilmore. (2009, January) FreeS/WAN. [Online]. Available:
http://www.freeswan.org

[8] C. Schmeing. (2004, March) FreeS/WAN announcement. [Online].
Available: http://www.freeswan.org/ending letter.html

[9] IETF. (2009, January) Better-than-nothing security charter. [Online].
Available: http://www.ietf.org/html.charters/btns-charter.html

[10] P. Eckersley, F. von Lohmann, and S. Schoen. (2007, November) Packet
forgery by ISPs: A report on the Comcast affair. [Online]. Available:
http://www.eff.org/wp/packet-forgery-isps-report-comcast-affair

[11] G. Linden. (2006, November) Marissa Mayer at Web 2.0. [Online].
Available: http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-
20.html

[12] P. Mockapetris, “RFC 1035: Domain names - implementation and
specification,” 1987.

[13] P. Hoffman, “RFC 3207: SMTP service extension for secure SMTP over
transport layer security,” 2002.

[14] M. Nottingham and E. Hammer-Lahav. (2009, February) Host
metadata for the web. [Online]. Available: http://tools.ietf.org/html/draft-
nottingham-site-meta-01

[15] N. Applications. (2009, February) Browser market share.
[Online]. Available: http://marketshare.hitslink.com/browser-market-
share.aspx?qprid=0

[16] H. M. Edwards, “A normal form for elliptic curves,” Bulletin of the
American Mathematical Society, vol. 44, pp. 393–422, July 2007.

[17] W. Eddy and A. Langley. (2008, July) Extending the space availible
for TCP options. [Online]. Available: http://www.ietf.org/internet-
drafts/draft-eddy-tcp-loo-04.txt


