
Practical Solutions For Format-Preserving Encryption

Mor Weiss
Technion

Haifa, Israel
Email: morw@cs.technion.ac.il

Boris Rozenberg
IBM

Haifa, ISrael
Email: borisr@il.ibm.com

Muhammad Barham
IBM

Haifa, Israel
Email: muhammad@il.ibm.com

Abstract—Format Preserving Encryption (FPE) schemes en-
crypt a plaintext into a ciphertext while preserving its format
(e.g., a valid social-security number is encrypted into a valid
social-security number), thus allowing encrypted data to be
stored and used in the same manner as unencrypted data.
Motivated by the always-increasing use of cloud-computing and
memory delegation, which require preserving both plaintext
format and privacy, several FPE schemes for general formats have
been previously suggested. However, current solutions are both
insecure and inefficient in practice. We propose an efficient FPE
scheme with optimal security. Our scheme includes an efficient
method of representing general (complex) formats, and provides
efficient encryption and decryption algorithms that do not require
an expensive set-up. During encryption, only format-specific
properties are preserved, while all message-specific properties
remain hidden, thus guaranteeing data privacy. As experimental
results show that in many cases large formats domains cannot
be encrypted efficiently, we extend our scheme to support large
formats, by imposing a user-defined bound on the maximal format
size, thus obtaining a flexible security-efficiency tradeoff and the
best possible security (under the size limitation).

I. INTRODUCTION

Encryption schemes are used to protect data privacy, e.g.,
when transmitted over insecure channels or stored on unreli-
able servers. However, standard encryption schemes (such as
AES) can significantly alter the data format, causing disrup-
tions both in storing and using the data. Indeed, when storing
devices and applications are designed to operate on unen-
crypted data they may not be able to operate on encrypted data.
Consequently, Format-Preserving Encryption (FPE) schemes,
namely schemes which encrypt messages into ciphertexts with
the same format, have emerged as a most useful tool in applied
cryptography.

CURRENT SOLUTIONS. First studied in the context of inte-
gral domains (namely, when the message domain is M =
{0, 1, ...,m− 1} for some m ∈ N) [4], later works [2] consid-
ered more general formats, and two general techniques were
suggested for FPE design. First, the cycle walking strategy of
Black and Rogaway [4] constructs an FPE for format F from
any FPE for a format F ′ such that F ⊆ F ′. The encryption
algorithm for F repeatedly applies the encryption algorithm of
F ′, until the ciphertext is in F . (Decryption is repeated until
reaching a valid string in F .) For example, an FPE scheme for
credit-card numbers can use cycle-walking on AES (which is
an FPE for {0, 1}128).

Second, the Rank-then-Encipher (RtE) method suggested
by Bellare et al. [2] reduces the task of designing an FPE
for format F to the task of designing an FPE for an integral
domain. (In particular, the RtE framework allows one to apply

the same encryption logic to all formats, thus eliminating
the need to design specially-tailored encryption schemes for
every format.) More specifically, a format F of size N is
arbitrarily ordered as F = {s0, ..., sN−1}, and encryption
(decryption) is based on an integer-FPE (i.e., for an integral
domain), where a string s ∈ F is encrypted in three steps,
called ranking, integer-encryption, and unranking. First, the
index i such that s = si is found; then i is encrypted
into an index j, using the integer-FPE encryption algorithm;
finally, the encryption of s is the message sj . (Decryption
is performed in the same manner by replacing the integer-
FPE encryption with the decryption algorithm.) If F has a
deterministic finite automaton (DFA), then F has efficiently
computable ranking and unranking algorithms [6]. We note
that the scheme inherits its security from the integer-FPE,
while ranking and unranking do not contribute to security.
Efficiency of the scheme relies heavily on the efficiency of
ranking and unranking. The combination of cycle-walking and
RtE yield an FPE scheme for any “rankable” format, which
raises the question of designing efficient ranking and unranking
methods for general formats. We stress that though ranking
can use translation-tables, such tables cannot be constructed
efficiently, require expensive storage, and do not admit efficient
searching algorithms. Moreover, designing a single encryption
scheme for several formats raises the question of efficiently
representing formats, since a representation of the format will
be given as input to the encryption algorithm.

LIMITATIONS OF CURRENT SOLUTIONS. Several works sug-
gested FPEs for specific formats, such as fixed-base, fixed-
length vectors (i.e., {0, 1, ...,m}n for n,m ∈ N) [3], [5];
and more practical message-domains such as social-security
numbers [10], credit-card numbers, and dates [8], but these
schemes were tailored for specific formats, and it is not
clear whether, and how, they can be generalized. The ranking
strategy suggested for more general formats (e.g., names,
addresses, etc.) [13], [1] partitions the format into many
sub-formats, where the messages in each sub-format share
additional characteristics (e.g., length), and therefore raises
both efficiency and security concerns.

Regarding security, the scheme maintains ”cosmetic” char-
acteristics of the message which are not part of the properties
defining the format, thus allowing an attacker to deduce (from
the ciphertext) many message-specific characteristics which
do not follow from m having format F . As we show in
Section III-B, this renders the scheme completely insecure in
theory and practice. Regarding efficiency, the scheme of [13],
[1] is inefficient in practice. First, they do not suggest a method
of efficiently representing formats, and partitioning the format
into sub-formats (which must be done before encryption) is

too costly to be performed in practice, since it depends on
the number of plaintexts, rather than their lengths as in non-
format-preserving encryption schemes. Second, all formats
(even when |F| � 2128, which is the case for many practical
formats) are encrypted using the same methods. As these
schemes rely on integer-FPEs that are inefficient when applied
to large domains, encrypting and decrypting large formats
is inefficient in practice. Thirdly, as the scheme admits no
method of representing complex format properties, encryption
can be inefficient even for medium-sized format due to cycle-
walking, which repeatedly applies the “heavy” operations of
integer-FPE encryption and decryption. Therefore, the average
cycle length may be long, and more importantly, there is no
worst-case bound on the actual cycle length. This motivates
eliminating the use of cycle-walking.

OUR CONTRIBUTIONS. We address both issues by proposing
a RtE-based FPE scheme for general formats that is both effi-
cient and secure. We provide a framework for defining complex
formats according to their unique properties, thus avoiding
format-partition (except when the format is too large to be
encrypted efficiently without partitioning). This is done by
identifying several simple formats, and defining composition
operations which are used to represent complex formats. In
addition, we provide a general logic for inclusively ranking and
unranking complex formats (namely, ranking all ingredients
of the format together, instead of ranking every building-block
separately). Our framework offers a method of efficient format
representation, thus eliminating the need for cycle-walking,
and improving the average and actual efficiency. Moreover,
by preserving only format properties (without preserving any
message-specific properties), we get an (optimally) secure gen-
eral FPE scheme. Finally, by incorporating a user-controlled
bound on format sizes, we give a practical solution for large
format encryption. Our scheme was also filed for US patent
[11].

CONCURRENT WORK. In a concurrent work, Luchaup et al. [9]
developed libFTE - a unifying format-preserving and format-
transforming encryption scheme (in format-transforming en-
cryption, all ciphertexts are guaranteed to have format Fo,
which may differ from the message format). libFTE also em-
ploys the RtE method, where regular expressions (regexes) rep-
resent formats, that are ranked using either a corresponding de-
terministic finite automaton (DFA) or non-deterministic finite
automaton (NFA). More specifically, a DFA can be obtained
through a general regex-to-DFA transformation, which is not
always efficient. To allow the use of the (more efficient) regex-
to-NFA transformation, the authors relax the ranking method,
such that it can also be based on an NFA. Though presenting a
general FPE scheme, the goals, focus, and solutions, of [9] are
very different than ours. First, libFTE is designed for develop-
ers, and as such provides the developer with several possible
schemes, out of which she chooses the most appropriate one.
Our scheme is designed to be incorporated into a larger system
which is designed for the end-user, so it must provide a single
scheme, and the flexibility of our system is obtained by setting
(according to the clients’ specifications) few parameters “once
and for all” in the larger, “wrapper” system. Second, formats in
our scheme are defined directly, and naturally, from their user-
defined properties, and is therefore flexible since the user can
define new formats himself. Defining new formats in libFTE
requires a developer’s involvement to construct a regex from

the user-defined format properties. This representation using
regexes has the additional disadvantage of nonuniformity,
since the performance of the resultant scheme depends on the
specific regex chosen to represent the format, as opposed to the
“complexity” of the format (as in our scheme). Moreover, there
is no method of predicting whether the resultant scheme would
have poor performance, and if it does, the developer cannot
know whether a different regex would give better performance.
We note that both our scheme, and libFTE, have the same
security guarantees (since the underlying non-FPE scheme is
the same in both). See Section V for performance comparison.

II. PRELIMINARIES

NOTATION. The length of a string s is denoted |s|, and |A|
denotes the number of elements in a set A. x · y denote the
concatenation of strings x, y. We say that a string s = c1...cn
is over alphabet Σ (where Σ is a set of characters) if ∀1 ≤
i ≤ n, ci ∈ Σ. A format F defines a set of constraints over
strings, i.e., it is associated with a set {s1, ..., sn} of strings.
If s = si for some 1 ≤ i ≤ n then we say s has format F
(denoted s ∈ F). A format F = {s1, ..., sn} is over alphabet
Σ if Σ contains all the characters that appear in s1, ..., sn. We
say that F ,F ′, defined over alphabets Σ,Σ′ respectively, are
over disjoint alphabets if Σ ∩ Σ′ = ∅. Similarly, a character
c is disjoint to format F if c /∈ Σ, where F is defined over
alphabet Σ.

A. (Format-Preserving) Encryption Schemes.

An encryption scheme is a quadruple Π =
(M,KeyGen,Enc,Dec), where M is a set of plaintexts (or
messages), KeyGen : N → K is a probabilistic polynomial-
time algorithm that outputs an encryption key k from the set
K of keys, and Enc : K ×M → C,Dec : K × C → M are
polynomial-time algorithms. Enc, on input an encryption key
k and a plaintext m, returns a ciphertext c; Dec, on input a
key k and ciphertext c, returns (the only) message m such
that Enc (k,m) = c.

A Format-Preserving Encryption (FPE) scheme for format
M is an encryption scheme with the additional property that
M = C. Most FPEs studied in the literature are designed
to encrypt only specific formats (e.g., credit-card numbers),
while we focus on General-Format Preserving Encryption
(GFPE), which can encrypt messages from various formats.
More specifically, the encryption and decryption algorithms of
a GFPE are associated with a collection of plaintext domains
M1, ...,Mn. Given an encryption key k, a message m ∈Mi

(resp., ciphertext c ∈ Mi), and a succinct representation
rep (Mi) of Mi, encryption (resp., decryption) outputs a
ciphertext c ∈ Mi (resp., the message m ∈ Mi such that
Enc (k,m, rep (Mi)) = c).

B. Security Notions For FPEs.

Intuitively, encryption schemes should be “as unpredictable
as possible”, i.e., given a ciphertext an adversary should be
unable to deduce any properties of the encrypted message, and
this should hold even given prior knowledge on the message,
and (possibly also) other ciphertexts encrypted using the same
key. However, FPEs cannot achieve these security notions
since they inherently reveal the message format. Consequently,

the following four FPE-specific game-based security notions
have been suggested [2]. Pseudo-Random Permutation (PRP)
security requires that an adversary cannot distinguish encryp-
tions with a randomly chosen key from random permutations
over the format domain; single-point indistinguishability (SPI)
requires that the adversary cannot distinguish the encryption of
any message of its choice from a random ciphertext; message
privacy (MP) requires that ciphertexts reveal no information
on the encrypted message, except its format (this is formalized
by comparing the “performance” of the real-world adversary
to that of a degenerate adversary S that can only make equality
queries of the form “is m the encrypted message?”); and
similar to MP, but weaker than it, message recovery (MR)
only requires that the ciphertext does not completely reveal the
encrypted message. The two latter security notions should hold
even if the adversary can choose the message distribution to
its advantage. (These security notions are non trivial since the
degenerate adversary S operates on the same message distri-
bution. For example, if the distribution is concentrated on one
message, A has no advantage over S since both can recover the
original message.) In all cases, the adversary is also given an
encryption oracle. Roughly speaking, the advantage AdvX (A)
of an adversary A (where X ∈ {PRP,SPI,MP,MR}) is the
difference between the probability that A correctly guesses
which situation he is in, and the probability of guessing
correctly when only the format is known (in the first two cases,
this probability is 1

2). (Due to space limitations, we refer the
interested reader to [2] for the formal definitions.) Bellare et
al. [2] show that PRP → SPI → MP → MR, meaning PRP
is the strongest security notion and MR is the weakest. We
note that though PRP is the best security notion one can hope
to achieve for FPEs, the three weaker notions can, in many
concrete cases, offer better security for the same efficiency,
and may therefore suffice in practice.

III. EXISTING GFPE SCHEMES AND THEIR LIMITATIONS

Cycle-walking and RtE provide general strategies for con-
structing GFPEs, but a GFPE also requires efficient ranking
and unranking methods. Such methods were described for a
specific format type [13], [1], and were claimed to apply to
more general formats. In this section we review and analyze
these methods, and show that applying them to more general
formats yield completely insecure schemes.

A. SGFPE: A Simple General-Format FPE

In this section we review the GFPE scheme of [13], [1],
which we call SGFPE. At a high-level, SGFPE first “simpli-
fies” a given format F by replacing it with another format
SF(described below), which usually consists of partitioning
it into smaller sub-formats (“shrinking”), but may also add
strings to F (“expansion”). Strings are ranked in SF by
applying a method similar to counting (together with cycle-
walking, if SF strictly contains F). SGFPE can encrypt
any format whose simplified form consists of fixed-length
strings with independent location-specific character-sets. That
is, SF is defined by a length `, and ` sets of characters
Σ1, ...,Σ`, and contains all `-length strings s = c1...c` such
that ci ∈ Σi for every 1 ≤ i ≤ `. A format F can be
simplified by partitioning it to the union of simplified formats
SF1, ...,SFm (in which case a string s is ranked using the

ranking method of SF i, where s ∈ SF i). Alternatively, SF
can be obtained by removing restrictions defining F . (For
example, the format F of all legal social-security numbers can
be simplified to the format SF of all 9-digit decimal strings,
removing any additional restrictions F imposes on legal social-
security numbers.) A simplified format SF is ranked using the
Scale-and-Sum (SaS) method (see Section IV-C1).

B. Limitations of SGFPE

1) (In)security Of SGFPE - Theoretical Analysis: We an-
alyze SGFPE security according to the FPE security notions
[2]. Since MR is the weakest (see Section II-B), showing that
SGFPE is insecure according to MR implies its insecurity
according to all four security notions. Remember that SGFPE
partitions a format F into sub-formats SF1, ...,SFk, and
encrypts a message m to a ciphertext c in the same sub-
format. Therefore, c reveals the sub-format SF i to which m
belongs, thus decreasing the number of possible messages, and
increasing the probability of recovering m.1 We formalize this
intuition by describing an adversary that breaks SGFPE MR-
security. We first describe an adversary for sparse formats (i.e.,
formats in which message-specific characteristics almost define
the message), and then extend the attack to dense formats.
Bellare et al. [2] show that for an adversary A making q
oracle queries and choosing message distribution D, the best
strategy of the degenerate adversary S is to make equality
queries on m1, ...,mq , where mi 6= mj for every i 6= j,
and for every 1 ≤ i ≤ q, if m1, ...,mi−1 are discarded
then mi is the most likely message (according to D). If
m ∈ {m1, ...,mq}, then S outputs m, otherwise he guesses
that mq+1 (i.e., the likeliest message once m1, ...,mq are
discarded) is the encrypted message. The probability that S
recovers m is

∑q+1
i=1 PrD[m = mi].

ATTACKING SPARSE FORMATS. Consider the format F =
{m1,m2, ...,mk}, where ∀1 ≤ i ≤ k, |mi| = `i, and `i 6= `j
for every i 6= j. Let A be an adversary that chooses the
uniform distribution on F , and makes no oracle queries. Then
AdvMR (A) = 1− 1

k . Indeed, the ciphertext length reveals the
message so A always guesses correctly. The optimal S picks
a random message in F (because he cannot make any oracle
queries), recovering m with probability 1

k .

ATTACKING GENERAL FORMATS. The previous attack suc-
ceeded because in sparse formats the ciphertext length reveals
the message. However, an adversary AMR can “transform” any
(non-sparse) format F into a sparse one, as follows. AMR

partitions F into sub-formats SF1, ...,SFk, where for every
1 ≤ i ≤ k, all messages in SF i have the same length `i,
and `i 6= `j for i 6= j. Then, AMR chooses k arbitrary
messages m1 ∈ SF1, ...,mk ∈ SFk, and takes D to be
the uniform distribution over {m1, ...,mk}. This effectively
reduces F to a sparse format, so the previous analysis shows
that AdvMR (AMR) = 1 − 1

k →
k→∞ 1, i.e., the advantage

increases with the format diversity (i.e., with the variety of
message lengths).

1In general, smaller format are more predictable and therefore more prone
to attacks (e.g., an attacker correctly guesses a value in a gender column with
probability 1

2
, and statistics about the male-female ratio in the organization

can drastically improve this probability).

In summary, we have shown an adversary breaking the
MR-security of SGFPE, and thus also the MP-, SPI- and PRP-
security of SGFPE. The advantage can be made arbitrarily
close to 1 as the format in question is more diverse.

Example 3.1: Consider the format Fname of names, con-
sisting of 1-4 words, where each word has the format Fword

of an upper-case letter, followed by 0-63 lower-case letters,
followed by a space. For x ∈ Fname (for w ∈ Fword), let
Nword (x) (Nletter (w)) denote the number of words (letters)
in x (w). Here, each sub-format is defined by Nword, Nletter,
so k =

∑4
i=1 64i, and AdvMR (A) = 1− 1∑4

i=1 64i
.

2) (In)security Of SGFPE - Practical Analysis: We draw
on the theoretical weaknesses discussed in Section III-B1,
and design practical attacks that breach the data privacy, thus
rendering SGFPE impractical from a security standpoint.

ATTACK MODEL. Our attack model is motivated by the
common scenario of third-party hosting with external attacks,
e.g., when encrypted databases are stored at remote servers.
A database may be accessed both by legitimate applications,
and by unauthorized parties. Thus, an unauthorized party
(adversary) may have partial or complete knowledge of the
database. However, as the remote server does not know the
secret encryption key being used, it is unlikely that the adver-
sary can learn the encryption of messages of its choosing. To
capture these adversarial capabilities, we assume the adversary
is given full access to the encrypted database. In addition, we
assume the adversary has some prior knowledge I regarding
the data (e.g., the adversary may know the database contains
medical records of residents of a specific city). The goal of the
adversary is to extract as much information as possible, about
as many records as possible. This adversarial goal was chosen
to reflect real-world threats, as researches show that even few
properties of an individual completely identify her (see, e.g.,
[12]). Therefore, we consider privacy to be broken, even if the
adversary is able to “only” pin-point a few specific properties
of a certain record.

RESULTS. Our experiments were performed on the FEC re-
ports. (The Federal Election Commission (FEC) is a regulatory
agency that regulates the campaign finance legislation in the
United States.) These reports list all donors (that donated
more than $200), along with the name, home address, em-
ployer and job title of each donor. Experiments were per-
formed on the first 1,000,000 records out of the 2008-2012
report, available at https://explore.data.gov/Contributors/FEC-
Contributions/4dkz-64bn. Our results show that dataset records
may be clustered into groups, based on message-specific
attributes preserved by SGFPE, e.g., the number of words
in every column, and the number of letters in every word.
(The graphs show, for every percentage of the population, a
lower bound on the probability with which it can be identified.
For example, if 50% of the records can be identified with
probability 0.5, then for 50% of the records, their encryption
is consistent with only 2 unencrypted records.) Concretely,
we show (Figure 1, left) that if the FEC report is encrypted
using SGFPE then 71% of the donors can be identified with
probability at least 0.5, and another 15% can be identified with
probability at least 0.1. (This means that the identifiers of 71%
of the donors match only two records.) We also analyzed the
level of security guaranteed if the adversary could access only

part of the table. For example, we show (Figure 1, right) that
if only the name and town columns are revealed then 16%
of the donors can be identified with probability at least 0.1,
and another 28% can be identified with probability at least
0.01. (Additional graphs can be found in the full version.)
This security loss should be contrasted to the level of security
achievable by a non-FPE scheme, which resembles a random
permutation (see Section II-B).

Fig. 1: Security analysis of SGFPE, given encryption of all
columns in the dataset (left), and given encryptions of only the
name and town columns (right)

3) SGFPE - Efficiency Analysis: We analyze the concrete
efficiency of SGFPE. As the “costly” operations are encryption
and decryption, we measure efficiency in terms of the number
of integer-FPE encryption and decryption operations when
encrypting a single message (i.e., the cycle length during
encryption or decryption). Our approach is further motivated
by the following observation. When basing general-format FPE
on the RtE framework, each of the three operations (ranking,
encrypting or decrypting, and unranking) is performed at least
once, so repeating any of these operations is considered redun-
dant, but ranking and unranking are never repeated. As noted
in Section III-A, when a format F is simplified by expansion
to format SF then cycle-walking is used to guarantee that
the ciphertext is in F . The average cycle length is |SF||F| , so
reducing the ratio improves average-case efficiency, but also
degrades security (and is sometimes impossible, as in the case
of social-security numbers). Consequently, the average cycle-
length may be long. (See [9] for additional examples.)

Example 3.2: consider the format F of strings of the form
date, ssn, ccn, where date is a date between 01.01.1900 and
23.09.2013, ssn is a valid social security number, and ccn is
a 16-digit credit card number, where the 16th digit is a luhn
check-sum digit. (F can be used to describe credit-card trans-
actions, by providing the card holder’s SSN and the date of
the transaction.) F can be represented in SGFPE as all strings
of the form x1x.y1y.z1zzz, w

9, c16 where x1 ∈ {0, 1, 2, 3},
y1 ∈ {0, 1}, z1 ∈ {1, 2}, x, y, z, w, c ∈ {0, 1, ..., 9} (where
nm denotes a sequence of m characters of type n, not
necessarily identical). In this case, the average cycle-length is
more than 629 (i.e., integer-FPE encryption is repeated more
than 629 times on average when encrypting a single message).
We note that the average cycle-length can be shortened by
splitting the format into sub-formats, but this will decrease
the security of the scheme. For example, we can divide F
into sub-formats F1,F2, where x1x < 30 for all messages
m ∈ F1, and x1x ∈ {30, 31} for all messages m ∈ F2.
This reduces the average cycle-length by a factor of 4, but
significantly degrades security since a ciphertext with prefix
3x.yy.zzzz could only result from a transaction that took

place on the 30th or the 31st. The alternative solution of
encrypting message ingredient (date, SSN, CCN) separately
also substantially degrades security, due to the small size of
the sub-formats

More generally, the average encryption time is tEnc =
trank +ALcy · tintEnc + tunrank, where trank, tintEnc, tunrank denote
the running time of the ranking, integer-FPE encryption and
unranking algorithms, and ALcyc is the average cycle length.
However, |SF||F| is an average bound (the actual length may be
larger, and cannot be predicted), so in many cases it is highly
desirable to completely eliminate cycle-walking.

IV. OUR GFPE SCHEME

A. Overview

The main shortcoming of SGFPE (Section III) is its inflex-
ibility in format representation: it offers a single, very specific
method of representing general formats, focusing on a specific
set of properties (length and location-specific character-sets),
while ignoring all other format properties. As we have shown,
this results in a scheme which is insecure and achieves non-
optimal efficiency. Our scheme is also based the RtE frame-
work, but by providing a flexible framework of representing
general formats, we improve security and efficiency.

REPRESENTING FORMATS. We cannot possibly predict all
formats to which our GFPE scheme may be applied, so we
supply several format “building-blocks”, from which com-
pound formats are constructed by applying “composition
operations” which we define. Thus, we get a well-defined
method of representing compound formats admitting simpler
ranking and unranking operations. More specifically, the build-
ing blocks, or Primitives, represent non-compound formats
(usually “rigid”, i.e., defined by a strict, non-flexible set of
rules). Primitives sometimes require specially-tailored ranking
and unranking algorithms. Using the composition operations,
compound formats, or Fields, can be constructed from any set
of primitives or fields. Intuitively, the composition operations
preserve the property that a message string s in a compound
field-format FL, which was constructed from primitives and
fields FL1, ...,FLk, can be efficiently parsed into substrings
s = s1...sk, such that ∀1 ≤ i ≤ k, si ∈ FLi. (We refer to this
property as the parsability property.) Thus, after parsing the
string, ranking and unranking can be (mostly) delegated to the
ingredients of the compound field.

RANKING AND UNRANKING. We provide efficient ranking
and unranking methods for all formats representable in our
framework. Concretely, we provide ranking and unranking
algorithms for all primitives and composition operations. Thus,
primitives are ranked directly; and compound fields can be
ranked using the ranking method of the composition operations
with which they were constructed, and by delegating (some
of) the work to the fields and primitives from which they were
constructed.

ENCRYPTION AND DECRYPTION. As our system uses RtE,
encryption and decryption of formats reduce to integer-FPE
encryption and decryption. Our scheme has the flexibility that
it can use either FE1, FE2 [2], or FFX [3]. FE1 and FE2
completely eliminate cycle walking, and their security has
been rigourously analyzed in [2]. However, implementations

of these algorithms are currently less efficient than FFX,
because they employ factorization algorithms. FFX must be
used together with cycle-walking since, strictly speaking, it
is not an integer-FPE. Recall that we cannot bound the actual
cycle-length, but for an appropriate choice of the parameters of
FFX we can guarantee that the average cycle length is at most
2. Currently, FFX implementations are faster than FE1,FE2.
FFX has no rigourous security analysis, but is currently under
consideration of NIST, and may become an FPE standard.

B. Representing General Formats

We tried to identify the minimal set of primitive formats
and composition operations from which general formats can
be constructed, and focused on formats and operations that
admit simple and efficient ranking and unranking algorithms.
We stress that the main advantage of our scheme, compared to
SGFPE, is that it allows one to represent complex formats by
identifying their properties and ranking a message in relation
to all, and only, messages with the same format.

Remark 4.1: There may exist some specific non-compound
formats we have not incorporated into our framework. If
needed, these can be added by presenting ranking and unrank-
ing methods for these formats. Thus, our framework is also
easily extendable and adjustable.

1) Primitive (Non-Compound) Formats: We present several
primitive formats, which serve as building-blocks for con-
structing compound formats. We distinguish between rigid
primitivesRP , possessing the prefix-parsability (which is used
to preserve the parsability property when defining operations),
namely given a string s = s′s′′ such that s′ has format
RP , s′ can be efficiently parsed from s in one pass; and
non-rigid formats, that do not posses this property. Ranking
and unranking primitives usually require specially-tailored
algorithms (due to space limitation, we defer most of these
algorithms to the full version). In the following, all primitives
are rigid, unless specifically noted otherwise.

SOCIAL SECURITY NUMBERS (SSNS). A 9-digit decimal
number x9x8x7x6x5x4x3x2x1, where x9x8x7 /∈ {000, 666}∧
x9x8x7 < 900, x6x5 6= 00 and x4x3x2x1 6= 0000.

CREDIT CARD NUMBERS (CCNS). A 16-digit decimal string,
where the 16th digit is a luhn sum-check digit of the first 15
digits.

DATES. A set of legal dates is defined by minimal and
maximal dates minD,maxD, whose format determines the
granularity (e.g., whether dates are of the form “dd.mm.yyyy”
or “dd.mm.yyyy hh : mm : ss”). The minimal date is needed
for ranking, since ranks are computed in relation to it (see
Section IV-C). The maximal date is needed since the format
must be finite. (We cannot use the current date as a maximal
date, since future dates may also be encrypted.)

FIXED-LENGTH STRINGS. `-length strings (for some fixed
length `), where for every 1 ≤ i ≤ `, the character in location
i is from a specific set Σi of characters. (This is the format
captured by SGFPE.)

DELIMITERED VARIABLE-LENGTH STRINGS. Defined by
minimal and maximal lengths min,max, a set (alphabet) Σ of
legal characters, and a delimiter character d /∈ Σ. It consists

of all strings of the form s · d where s is over alphabet
Σ, and min ≤ |s| ≤ max. (This format can be generalized
to delimitered strings over location-specific character sets.
However, as this generalized formats seems not useful in
practice, we consider only the simpler form.)

NON-DELIMITERED VARIABLE-LENGTH STRINGS. The non-
rigid equivalent of the “delimitered variable-length strings”
format, it is defined by the same parameters min,max,Σ. It
consists of all strings s over alphabet Σ such that min ≤ |s| ≤
max. (This format can also be generalized to location-specific
character sets.)

DELIMITERED LEGAL STRINGS-SET. The set of strings de-
fines the only “legal” strings, i.e., the only strings having the
format defined by the set. To achieve the prefix-parsability
guarantee, we require that all strings in the set be delimitered
by a character d that does not appear in any other location in
the string.We also extend this primitive to prefix-free sets of
(not necessarily) delimitered strings. (By prefix-free we mean
that there exist no s, s′ in the set such that s is a prefix
of s′.) Though every format can be represented by a set of
legal strings, ranking and unranking here must keep translation
tables, and are therefore practical only for very small sets, so
this primitive should only be used when the format cannot be
defined by any other property (see Example 4.2 below).

LEGAL STRINGS-SET. The non-rigid equivalent of the delim-
itered legal strings-set format, in which the set of legal strings
need not be prefix-free or delimitered.

INTEGRAL DOMAIN. The set of integers between some min
and max values. Though this format is trivial (since it is a
domain of integers and therefore can be encrypted directly
using an integer-FPE), we incorporate it into our framework
so that integral domains can be used as building-blocks for
designing compound formats (see Example 4.2 below).

2) Composition Operations: Our framework includes three
composition operations, that maintain the parsability property
discussed in Section IV-A. Consequently, ranking and unrank-
ing can be performed by delegating the ranking to underlying
sub-formats, as we show in Section IV-C below.

UNION. The format F is defined as the union of disjoint
formats F1, ...,Fk, and consists of all strings having one of
the formats F1, ...,Fk.

CONCATENATION. The format F can be defined by the
concatenation of formats F1, ...,Fk. The concatenation can be
performed in one of two ways, depending on the properties of
the underlying formats F1, ...,Fk. (The difference is due to the
parsability property which the concatenation should preserve.)

• F = F1 · ... · Fk (i.e., every string s ∈ F can be
written as s = s1...sk where ∀1 ≤ i ≤ k, si ∈ Fi),
such that for every 1 ≤ i ≤ k − 1, Fi+1 is separable
from Fi, where separability is defined as follows. F
is separable from F ′ either if F ′ is a rigid primitive,
or if F ,F ′ are defined over disjoint alphabets.

• F = F1 · d1 · F2 · d2... · dk−1 · Fk (i.e., every string
s ∈ F can be written as s = s1d1s2d2...dk−1sk
where ∀1 ≤ i ≤ k, si ∈ Fi), where d1, ..., dk−1 are
characters (called delimiters, since they are used to
separate si from si+1), and for every 1 ≤ i ≤ k − 1,

di is disjoint to Fi. Here, the parsability property is
maintained since upon reaching di, the parser knows
that the previous character is the last character of si.

RANGE. Analogously to the “variable-length strings” primi-
tive, a format F can be defined as a variable-length concate-
nation of a sub-format F ′. Concretely, F is defined by F ′, a
delimiter character d that is disjoint to F ′, and a pair of num-
bers min < max. F contains all strings s = s1 ·d·s2 ·d...d·sk ·d
such that ∀1 ≤ i ≤ k, si ∈ F ′, and min ≤ k ≤ max. (We also
consider a variant of the range operation, in which the final
substring sk is not delimitered.)

Example 4.2 (addresses): Consider the for-
mat Fadd of legal addresses of the form
“name1 num name2 name3 zip state”, where
name1,name2,name3 ∈ Fname are the name, street name
and city name, respectively (1-4 words, each an uppercase
letter followed by 0-63 lowercase letters and a space); num
is the street number (say, a number between 1 and 1053);
zip is a zip-code (a 5-digit decimal number); and state is
a 2-character state code. Then Fadd can be represented as
the concatenation Fadd = Fname· Fnum· Fspace· FdName·
Fzip· Fspace· Fstate, where Fname (FdName) is the range
composition with parameters Fword,

′ ′, 1, 4 (Fword,
′ ′, 2, 8),

and Fword is a “variable-length strings” primitive; Fnum is
the (shifted) integral domain {1, 2, ..., 1053}; Fspace, Fzip are
“fixed-length string” primitives; and Fstate is a “delimitered
legal string-set” primitive.

Example 4.3 (credit-card transactions): The format of Ex-
ample 3.2 can be represented as the concatenation Ftrans

= Fdate·Fcom· Fssn·Fcom ·Fccn where each of the sub-formats
is a rigid primitive (Fcom = {“,”}). Unlike the representation
in SGFPE (Example 3.2), this representation eliminates cycle-
walking. (Further examples are deferred to the full version.)

C. Ranking And Unranking General Formats

To describe how to efficiently rank and unrank general
formats, we first describe the Scale-and-Sum method.

1) The (Generalized) Scale-and-Sum (SaS) Method: This is
a generalization of the decimal counting method for ranking
of strings. Let F be defined by a length ` and location-specific
character sets Σ1, ...,Σ`, and let Ni := |Σi| , i = 1, ..., `,
and Oi : Σi → Ni, i = 1, ..., ` be arbitrary orderings of
Σ1, ...,Σ`. (Notice that storing these orderings is significantly
cheaper than storing an ordering of the entire format, since
the Ni’s are small.) Then rank (s) =

∑`
i=1 Oi (ci) ·

∏i−1
j=1 Nj

for s = c1...c` ∈ F is the number of strings before s
in the lexicographic order on F , the set of length-` strings
where every ith character is in Σi. In this sum, characters
have “weights” according to their location (just as binary
strings have most and least significant bits), and so the
location Oi (ci) of the character ci in the set Σi is scaled
by its weight (i.e., the number of length-(i− 1) strings in
which every character cj is from the set Σj). The operation
unrank := rank−1 retrieves the characters of s one-by-one
(just as taking a decimal number modulo 10 retrieves its digits).
More specifically, the location Oi (ci) of a character ci in the
set Σi is retrieved by first removing the “contributions” of the
characters c1, ..., ci−1, and taking the result modulo

∏i−1
j=1 Ni.

(By retrieving the characters c1, ..., c` from left-to-right, the
“contribution”

∑i−1
j=1 Oj (cj) ·

∏j−1
l=1 Nl of c1, ..., ci−1 can be

computed and removed from rank (s).) This method extends to
variable-length strings by incorporating the number of shorter
strings into the rank. For example, in the format of all strings
s = c1...c` of length `1 ≤ ` ≤ `2 such that ci ∈ Σi

for every 1 ≤ i ≤ `, rank (s) =
∑i=`−1

i=`1

∏j=i
j=1 Nj +∑`

i=1 Oi (ci) ·
∏i−1

j=1 Nj , where |s| = ` (the first summand is
the number of strings in F whose length is shorter than `). As
we show in Section IV-C3, the SaS method can be generalized
to complex sets Σi containing strings instead of characters, and
will be a main tool in ranking and unranking operations.

2) Ranking And Unranking Primitive Formats: SOCIAL-
SECURITY NUMBERS (SSNS). Disregarding the specific re-
strictions on valid SSNs, they are simply 9-digit decimal
strings, and so the rank of a given SSN s is itself. As valid
SSNs do follow certain rules, the ranking method subtracts
from s the number |{n : n < s ∧ n is not a valid SSN}|.
This is done by distinguishing between SSNs that are smaller
than 666xxxxxx, and SSNs that are larger than 666xxxxxx.
(This distinction is required because all numbers of the form
666xxxxxx are not valid SSNs, and should be subtracted
only from the rank of the second type.) The unranking
procedure, given a rank r, should retrieve the SSN s such
that rank (s) = r, namely it should return r + Ns, where
Ns := |{n : n < s ∧ n is not a valid SSN}|. Since s is
unknown, a straight-forward computation of Ns is rather
complex. Therefore, we implement the unranking method by
using a variant of binary search on the message domain of
legal SSNs. Further details are deferred to the full version.

CREDIT CARD NUMBERS (CCNS). The rank of c = c1c2...c16
is the 15-digit decimal number c1c2...c15. To unrank r =
rank (c) we interpret r as a 15-digit string r1r2...r15 (adding
leading zeros if needed), and concatenate to it from the right
the luhn sum-check digit of r1, r2, ..., r15.

DATES. We discuss ranking for dates of the form
“dd.mm.yyyy hh : mm : ss” (dates of the form
”dd.mm.yyyy” are ranked similarly by counting days instead
of seconds). The rank r of a date d is the number of seconds
N since minD. N can be computed by first determining the
relative number of seconds, minutes, hours etc. of d (compared
to minD), and then computing N according to the SaS method
(where every element is scaled by the number of seconds in
a “unit” of that element, e.g., the number of days is scaled
by the number of seconds in a day). To unrank r = rank (d),
we first retrieve the relative number of seconds, minutes and
hours (compared to minD), which can be computed by modular
operations. Similarly, we can retrieve the total number of days
passed since minD, and taking into consideration leap years
etc., we can compute the relative number of years, months and
days. The non-relative date d can then be retrieved from minD
and the relative values.

FIXED-LENGTH STRINGS. Uses the SaS method.

DELIMITERED AND NON-DELIMITERED VARIABLE-LENGTH
STRINGS. Ranking uses the extended SaS method (in the
delimitered case, the delimiter character is ignored during
ranking). Given a rank r = rank (s), unranking first deter-
mines ` = |s| (this can be done since N` ≤ r < N`+1 where
Ni is the number of strings of length ≤ i in the format). Then,

s is retrieved from r′ = r−N` (which is the rank of s among
length-` strings in the format) using the fixed-length strings
unranking algorithm. (In the delimitered case, s is retrieved
without the delimiter, which is then concatenated to it.)

DELIMITERED AND NON-DELIMITERED LEGAL STRINGS-
SET. Through search in look-up tables.

INTEGRAL DOMAIN. Ranking and unranking shift the given
number n by the minimial range point.

3) Ranking And Unranking Compound Formats: At a high
level, a string s in a compound format F is ranked by parsing it
into substrings, where each substring is in a sub-format used
to define F (parsing is done according to the composition
operation used to construct F), and delegating the ranking
task to these sub-formats. Then, rank (s) is constructed from
the ranks in the sub-format using the generalized SaS method,
where the scaler of every sub-format Fi is

∏i−1
j=1 |Fj |. (This

is a generalization in the sense that the location-specific sets
Σi are now sets of strings.) We now describe specifically how
generalized SaS applies to compound formats, according to the
composition operations used to define them.

UNION. Let F = F1∪...∪Fk. The ranking algorithm on input
s ∈ F finds the index 1 ≤ i ≤ k such that s ∈ Fi, and returns
rankFi (s) +

∑i−1
j=1 |Fj |, where rankFi (s) is the rank of s in

the format Fi. The unranking algorithm on input a rank r =
rank (s) operates as follows. First, it determines the smallest
1 ≤ i ≤ k such that s ∈ Fi. (This can be done since i is the
smallest index such that

∑i−1
j=1 |Fj | ≤ r <

∑i
j=1 |Fj |.) Once i

is known, rankFi
(s) is computed and s is found by applying

the unranking operation of Fi to rankFi (s) = rank (s) −∑i−1
j=1 |Fj |.

CONCATENATION. We describe ranking and unranking of
formats F = d1 · F2 · d2... · dk−1 · Fk obtained through
concatenation, the algorithms for formats F = F1 · ... · Fk

are similar. On input s ∈ F , the ranking algorithm parses it
to s = s1d1s2d2...dn−1sn and computes ri = rankFi (si),
i = 1, 2, ..., n (by delegating the ranking of s1, ..., sn to
F1,,Fn). Then, the rank is computed using the generalized
SaS method, i.e., rank (s) =

∑n
i=1 ri ·

∏i−1
j=1 |Fj |. The un-

ranking algorithm on input r = rank (s) uses the generalized
SaS method to retrieve the ranks r1, ..., rn of the substrings
s1, ..., sn, then delegates the unranking of r1, ..., rn to the sub-
formats F1, ...,Fn, and given their outputs s1, ..., sn, outputs
the string s = s1d1s2d2...dn−1sn.

RANGE. Let F be a range format defined with parameters
F ′, d and min < max. Given a string s ∈ F , ranking parses
s = s1ds2d...skd for some min ≤ k ≤ max, and outputs
rank (s) = Nk−1 + Rk, where Nk−1 =

∑k−1
i=min |F ′|

i is the
number of strings consisting of k′ concatenations of substrings
from F ′ (for some min ≤ k′ ≤ k − 1), and Rk is the
rank of s among strings with exactly k concatenations (Rk

is computed using the generalized SaS method as described
above for a compound format obtained through concatenation).
The unranking method, given a rank r = rank (s) first
determines k (i.e., the index such that Nk−1 ≤ r < Nk), then
computes r′ = r−Nk−1 (namely, the rank of s between strings
with k concatenations), and uses the generalized SaS method to
retrieve from r′ the ranks r1, ..., rk (of the substrings s1, ..., sk
defining the concatenation) in relation to the format F ′.

Finally, the substrings s1, ..., sk are computed by delegating
the unranking of r1, ..., rk to F ′, and s = s1ds2d...skd is
returned.

Example 4.4 (ranking addresses): Consider the format
Fadd (Example 4.2), To rank an address s =“Jane Doe 53
Cherry Tree Road New York 12345 NY”, it is first parsed as
s = s1...s7 where s1 =“Jane Doe ”, s2 =“53”, s3 = s6 =“
”, s4 =“Cherry Tree Road New York ”, s5 =“12345” and
s7 =“NY”. The ranks r1, ..., r7 of s1, ..., s7 (respectively)
are computed using the ranking methods of Fname, Fnum,
Fspace, FdName, Fzip and Fstate. The rank of s is then taken
to be r = r1 + r2 · |Fname| + r3 · |Fname| · |Fnum| + ...+
+r7 · |Fname| · |Fnum| · |Fspace|2 · |FdoueblName| · |Fzip| · |Fstate|
To unrank r = rank (s), the ranks r1, ..., r7 are
retrieved from r (e.g., r1 = r mod |Fname|, and
r2 = ((r mod |Fname|)− r1) mod |Fnum|), and r1, ..., r7
are unranked to s1, ..., s7 using the unranking methods of the
sub-formats. The output is the concatenation s = s1...s7.

D. Security And Efficiency Analysis

SECURITY. Our GFPE scheme preserves only format-
properties and hides all message-specific attributes. Thus, our
scheme is as secure as the underlying integer-FPE scheme
it employs. (This is a significant improvement over SGFPE,
which was less secure than the underlying integer-FPE, from
both theoretical and practical aspects.) We focus on the security
of an implementation with FE1 or FE2 [2] as the underlying
integer-FPE, because a rigourous security analysis exists only
for FE1 and FE2, and not for FFX [3] or BPS [5]. The security
of FE1, FE2 depends on their parameters. Specifically, they
operate in rounds, in which a pseudo-random round function
RF is applied to an intermediate value. Increasing the number
of rounds reduces the adversarial advantage, and guarantee
security against “stronger” adversaries (who can obtain more
ciphertexts). By reducing the security of FE1 to the security of
the round function RF, Bellare et al. [2] show it is SPI-secure,
if sufficiently many rounds are used. Concretely, if RF is based
on AES or SHA-256 then FE1 is “almost” as secure as AES
or SHA-256, respectively. Regarding PRP-security, Bellare et
al. [2] show that even a small number of rounds suffices to
guarantee that the advantage of any efficient (i.e., poly-time)
adversary is small (say, at most 2−80).

EFFICIENCY. Our scheme is most efficient when based on
FFX, in which case it may incur cycle-walking, but the average
cycle-length is at most 2. When provable security is required,
or if one wishes to completely eliminate cycle walking, or to
avoid using FFX (at least as long as it is not a NIST standard),
our scheme can be based on FE1 or FE2 (see Figure 3,
Section V for a comparison of the running time of our scheme
when using FFX and FE1). In this case, our GFPE ranks
strings in relation to their original format (without simplifying
it), thus eliminating cycle-walking. Therefore, we can upper-
bound the actual running time of encryption and decryption
by t = trank + tintFPE + tunrank, where tX denotes the running
time of algorithm X. This bound is optimal when using the
RtE framework (whose advantages were already discussed).
Our ranking and unranking algorithms are efficient, so the
main efficiency bottleneck are integer-FPE encryption and
decryption (which are “costly” operations). FE1 and FE2 are
efficient when the size N of the underlying format is not “too

large”, since these algorithms factor N . As the state-of-the-
art factoring algorithms are super-polynomial, FE1 and FE2
should not be applied to very large formats. However, for many
real-life formats (such as the address format, Example 4.2)
factoring will render FE1 impractical. Therefore, to allow our
GFPE to use FE1, we describe a method of managing the size
of general formats, as discussed in the next section.2

V. SUPPORTING LARGE FORMATS

Real-life formats, the main motivation for GFPE, are often
so large that integer-FPE-based schemes become impractical,
because all RtE-based FPE operations (namely ranking, un-
ranking and integer-encryption or decryption) are computed
in relation to the format size. As real-life format sizes are
unlimited, if no upper-bound on permissable format sizes is en-
forced, any GFPE will soon become too inefficient to be used.
(Even seemingly simple formats, e.g., the address formats of
Example 4.2, are too large to be efficiently encrypted.) Despite
being a major practical obstacle, known solutions ignore these
issues. We remedy this by extending our framework to support
large formats.

A. Overview

At a high level, to guarantee efficiency for very large
formats when using FE1, we need to insure that all operations
are independent of the format size. This can only be achieved
by restricting the format size, which causes security loss (see
Section III-B), so minimizing this loss is a main goal. Since
any restriction to sub-formats results in MP-insecure schemes
(and consequently also PRP- and SPI-insecure), we focus
on practical security, drawing conclusions from our study of
SGFPE (Section III-B2). Concretely, by dividing a format
according to the sub-formats from which it was constructed,
and to as few “pieces” as possible, we try to hide message-
specific attributes. Specifically, given a size bound maxS, larger
formats are split recursively, where the compound format
pre-processes (parses) the given plaintext, and delegates the
splitting to its sub-formats. This raises the major question
of how to split a format F . Splitting F = F1 ∪ ... ∪ Fk

and applying RtE to each sub-format separately may incur
insecurities (as in SGFPE, where splitting is based on message-
specific properties). We propose a solution in which (using
the parsability property) ranking is computed recursively in
relation to sets of size at most maxS. The specific splitting
strategy employed depends on the composition operations used
to construct the compound format F . The main underlying
idea is to generalize the RtE framework to allow a message m
to be ranked to a list of ranks. Thus, given a format F , and
m ∈ F , we can write F as the concatenation F = F1 · ... · Fk

where |Fi| < |F|, and parse m accordingly: m = m1...mk.
The encryption ci of each mi ∈ Fi is then computed by RtE
on Fi, and the encryption of m is c := c1...ck. Our splitting
strategy has several advantages. First, ranking can be delegated
to the underlying formats F1, ...,Fk. Second, by choosing the
sub-formats “correctly” (see Section V-B below), encryption
hides many message-specific properties (since mi is encrypted

2We note that given a user-defined performance requirement, the appropriate
value of maxS can be generated by the system by calculating the format size,
and estimating FE1 runtime on it (since the runtime depends only on the
format size). See our experiments in Section V for examples of format sizes.

to any ciphertext in Fi). For example, the address format Fadd

of Example 4.2 can be split such that F1 = Fname. Then the
name in a given address is mapped to any valid name, and the
message-specific properties discussed above remain entirely
hidden. Splitting formats and encrypting ranks in relation to
various sub-formats raises the following issue. The integer-
FPE algorithms expect a size M (determining the integer-
domain Mint := {0, 1, ...,M − 1}) and an index i ∈Mint to
encrypt or decrypt. A message m ∈ F is represented by a list
r1 → r2 → ... → rn of ranks, where every ri was computed
by the sub-format Fi in relation to |Fi|. |F1| , ..., |F1| may be
different, and are possibly unknown to F (since ranking was
performed by the sub-formats). Thus, we extend the ranking
procedure to return not only a ranks list, but also a list of
sizes, where entry i contains the size of the integral-domain in
relation to which the i’th rank was computed. Thus, integer-
FPE encryption (and decryption) is performed on the size Mi

and the rank ri. Due to technical reasons (which will become
apparent in Section V-B below), the unranking method is given
an “example” string with the same format as the string it should
output, which for encryption (decryption) is the message to
encrypt (the ciphertext to decrypt).

B. A GFPE For Large Formats

We describe the splitting operations for composition opera-
tions, and the generalized RtE framework. (Splitting algorithms
for primitives, which are usually smaller and less likely to be
split, are omitted due to space limitations.)

1) Splitting Compound Formats: In the following, maxS
denote the upper bound on permissible format sizes.

UNION. Let F = F1 ∪ ... ∪ Fk.

• Splitting. F splits itself to sub-formats F = F ′1 ∪
... ∪ F ′k′ for some k′ ≤ k as follows. Let i1 <
i2 < ... < ik′ ∈ {1, 2, ..., k} be indices such that
for every 1 ≤ i ≤ k′, either (

∑ij+1−1
l=ij

|Fj | ≤ maxS

and
∑ij+1

l=ij
|Fj | > maxS) or ij+1 = ij + 1, then

F ′j := Fij ∪ ... ∪ Fij+1−1. (Intuitively, F1, ...,Fk are
grouped into as few unions as possible such that every
union does not exceed maxS, or (if that is not possible)
the union consists of a single format Fi.)

• Ranking. The rank of m ∈ F is computed by finding
the index 1 ≤ i ≤ k′ such that m ∈ F ′i and delegating
ranking to F ′i . If |F ′i | < maxS then ranking (of union
formats, Section IV-C3) is performed directly by F ′i ,
and ranking returns a ranks-list (sizes-list) containing
a single rank r (size |F ′i |). Otherwise, F ′i = Fj for
some 1 ≤ j ≤ k such that |Fj | > maxS, and Fj first
splits itself, before computing the rank.

• Unranking. The method receives a ranks-list R, a
sizes-list S, and a message f ∈ F , expected to have
the same format as the plaintext m. (That is, if m ∈ F ′i
then F .unrank expects a string f such that f ∈ F ′i .) f
is used to determine an 1 ≤ i ≤ k′ such that m ∈ F ′i ,
and unranking is delegated to F ′i .

CONCATENATION. We consider formats F = F1 ·d1 ·F2 ·d2...·
dk−1 · Fk (the algorithms for F = F1 · ... · Fk are similar.)

• Splitting. F splits itself as F = F ′1 · ... · F ′k′ for some
k′ ≤ k, where i1 < i2 < ... < ik′ ∈ {1, 2, ..., k} are
such that for every 1 ≤ i ≤ k′, either (

∏ij+1−1
l=ij

|Fj | ≤
maxS and

∏ij+1

l=ij
|Fj | > maxS) or ij+1 = ij + 1, then

F ′j := Fij · dij · ... · dij+1−2 · Fij+1−1 · dij+1−1.

• Ranking. To rank m ∈ F it is parsed to m =
m1...mk′ , where ∀1 ≤ i ≤ k′,mi ∈ F ′i (this can be
done since m can be parsed according to F1, ...,Fk,
see Section IV-C3). Then, for every 1 ≤ i ≤ k′,
ri = rank (mi) is computed in relation to F ′i .

• Unranking. The unranking method receives a ranks-
list R, a sizes-list S, and a message f ∈ F , expected
to have the same format of the plaintext m. The
unranking method parses f to f = f1...fk where
fi ∈ F ′i for every 1 ≤ i ≤ k′, and delegates the
unranking to F ′1, ...,F ′k′ (the unranking of each F ′i is
given fi and the corresponding entries in R,S).

RANGE. Let F be a range format defined by F ′, d,min,max.

• Splitting. The format splits itself to sub-formats F =
F1 ∪ ... ∪ Fk as follows. Let i1 < i2 < ... < ik ∈
{min,min+ 1...,max} be such that for every 1 ≤ i ≤
k′, either (

∑ij+1−1
l=ij

|F ′|l ≤ maxS and
∑ij+1

l=ij
|F ′|l >

maxS) or ij+1 = ij + 1, then F ′j is defined as the
range over F ′ with parameters F ′, d, ij , ij+1 − 1.

• Ranking. To rank an m ∈ F , the index 1 ≤ i ≤ k′

such that m ∈ F ′i is found, and the ranking of m is
delegated to F ′i (i.e., ranking finds the sub-range to
which m belongs, and m is ranked in that sub-range).

• Unranking. The unranking method receives a ranks-
list R, a sizes-list S, and a message f ∈ F , expected to
have the same format as the plaintext m. The method
uses f to determine the 1 ≤ i ≤ k′ such that m ∈ F ′i ,
and delegates the unranking operation to F ′i .

2) Encrypting Compound Formats: We extend encryption
and decryption to ranks-lists as follows. Given F , and m ∈ F ,
F .rank (m) returns a ranks-list R = r1 → ... → rn,
and a sizes-list S = s1 → ... → sn. Then, integer-FPE
encryption is invoked on every ri, si (encrypting ri in the
domain {0, 1, ..., si− 1}), returning a list R′ = r′1 → ...→ r′n
of encrypted ranks. Finally, F .unrank (R′,m) returns a list
c1 → ... → cn of unranked strings, and the encryption of m
is c = c1...cn. (Decryption is performed similarly, see the full
version for further details.)

SECURITY. Since large formats are split into smaller sub-
formats, the attacks of Section III-B apply to our scheme,
which is unavoidable when bounding format sizes. However,
by splitting formats according to their ingredients (rather than
message-specific properties), our splitting strategy maintains
the highest possible security level, and mostly hides message-
specific properties that do not define the format.

Example 5.1: the format Fadd (Example 4.2) can be split
(say) to the sub-formats F ′1 = Fname · Fnum · Fspace, F ′2 =
FdName · Fzip · Fspace, F ′3 = Fstate. Thus, every substring is
encrypted to any legal element in the corresponding sub-format
(e.g., the encrypted name is any legal name, whereas SGFPE
maintains all characteristics of the original name).

Fig. 2: Security analysis of our GFPE scheme with (clockwise,
from top left) maxS = 264, 2128, 2192

The unavoidable disadvantage of splitting is that sub-
string are encrypted independently. (Thus, in Example 5.1
two addresses with the same name and street number are
encrypted to ciphertexts with the same (encrypted) name
and street number.) Our scheme minimizes this security loss
by splitting formats to the minimal number of “pieces”, so
if two addresses only share a name, their ciphertexts will
have different names, since the name and street number are
encrypted together (in SGFPE, both ciphertexts have the same
name). maxS determines the concrete security level of our
scheme. Concretely, if maxS = 2128, then splitting reduces the
message-space to size 2128, so no message-specific properties
are revealed (except the message being in the smaller message-
space), and the probability of recovering the message is at
most 2−128, which can be ignored for all practical purposes.
We stress, however, that maxS should be taken to be as
large as possible (depending on the efficiency constraints). We
tested our scheme on the FEC dataset (see Section III-B2) to
determine the security loss. Our experiments show (Figure 2,
top left) that even for maxS = 264 (as is the case in DES),
only 4% of the donors can be identified with probability 0.001.
(The probabilities are lower-bounds.) The top right (bottom)
graph shows the if maxS = 2128 (maxS = 2192) then only
12% (6%) of the populace can be identified with probability at
least 0.0001. (Additional graphs appear in the full version.) For
maxS = 2256 all message-specific attributes remain hidden,
and the scheme is as secure as the underlying integer-FPE.

EFFICIENCY. We analyzed (Figure 3) the efficiency of our
scheme on the FEC dataset with FFX and FE1, for various
maxS values, and compared the performance with that of
libFTE (Figure 4). Our experiments were performed on Intel-
Core i5-3550 CPU 3.30GHz x4 processors with 7.6 Gib mem-
ory, using 64-bit Ubuntu 14.04 LTS. We used the FFX (FE1)
implementation of libFTE [9] (Botan [7]). Encryption and
decryption were performed on 100,000 messages. (The actual
number of encrypted messages, as measured by #Messages,
was larger due to splitting.) We measured the total ranking
and unranking times (these are independent of the underlying
integer-FPE scheme); running times of FFX and FE1 (on all
messages); and total encryption times. Our experiments show
that FFX achieves better performance; splitting significantly
improves the running time of FE1 (and in some cases also of

FFX) in this case (the corresponding format has size approxi-
mately 2856); but setting maxS < 2256 has no efficiency gains.
(We defer further experimental results to the full version.)

Fig. 3: Running time (sec.) of our scheme with FFX and FE1

Fig. 4: Running time (sec.) of our scheme compared to libFTE

VI. CONCLUSIONS

We propose a new general-format FPE scheme which
(compared to existing methods) is more efficient (performance-
wise), provides strong security guarantees, and, most impor-
tantly, is much more flexible in representing general formats.
Our scheme is applicable and practical for solving real-life
problems, e.g., delegating data and computation to the Cloud.

REFERENCES

[1] Mihir Bellare, Paul Elbridge Catinella, Patrick K. Hazel, Clay
Von Mueller, and Scott R. Yale. System and method for variable length
encryption. US patent application 2011/0211689.

[2] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.
Format-preserving encryption. In Selected Areas in Cryptography, pages
295–312. Springer, 2009.

[3] Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode of
operation for format-preserving encryption. NIST submissio, 2010.

[4] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains.
In Topics in Cryptology (CT-RSA 2002), pages 114–130. Springer, 2002.

[5] Eric Brier, Thomas Peyrin, and Jacques Stern. BPS: a format-preserving
encryption proposal. Submission to NIST, available from their website,
2010.

[6] Andrew V. Goldberg and Michael Sipser. Compression and ranking.
SIAM J. Comput., 20(3):524–536, 1991.

[7] Botan Library. http://botan.randombit.net/.
[8] Zheli Liu, Chunfu Jia, Jingwei Li, and Xiaochun Cheng. Format-

preserving encryption for datetime. In Intelligent Computing and
Intelligent Systems (ICIS), volume 2, pages 201–205. IEEE, 2010.

[9] Daniel Luchaup, Kevin P. Dyer, Somesh Jha, Thomas Ristenpart, and
Thomas Shrimpton. Libfte: A toolkit for constructing practical, format-
abiding encryption schemes. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages
877–891, 2014.

[10] Douglas Neil Hoover. Format-preserving encryption via rotating block
encryption. US patent application 2011/0280394.

[11] Boris Rozenberg and Mor Weiss. Complex format-preserving encryp-
tion scheme. US Patent Application Number: 14/296484, filed 6/5/14.

[12] Latanya Sweeney. Uniqueness of simple demographics in the US
population. Technical report, Carnegie Mellon University, 2000.

[13] Luther W. Martin, Terence Spies, and Matthew J. Pauker. Format
preserving encryption systems for data strings with constraints. US
patent application 2011/0103579.

