
PINPOINT: Efficient & Effective
Resource Isolation for Mobile Security

& Privacy

Paul Ratazzi, Ashok Bommisetti, Nian Ji,
and Prof. Wenliang (Kevin) Du

Department of Electrical Engineering & Computer Science
Syracuse University, Syracuse, New York

Motivating Examples

• User likes 3rd party keyboard, but wants to ensure it will not leak sensitive information from
certain apps
• Currently, there is no way to list only trusted input methods for certain sensitive apps

• User wants some apps to use accurate sensor data, others to have less accurate data, and the rest
to have no access
• Currently, sensor access does not require permission, and all apps have same access

• User wants location-enabled coupon app to know regional location to get relevant coupons, but
not coarse (10s of meters) or fine (~1 meter) locations
• Currently, only options are no location, coarse location, or fine location

• User wants some location-enabled apps to access location data, and others to have no access
• On/off setting is currently platform-wide

• User wants to play game, but does not want it to leak sensitive info. via requested
READ_PHONE_STATE permission
• Although need for permission may be legitimate, there is currently no way to allow legitimate use while

making leakage impossible

Existing Isolation Approaches

• Cells
• Leverages Linux Namespaces to allow multiple Android Virtual Phones (VP) on a

single kernel

• Hardware and kernel are shared among independent VPs

• AirBag
• Leverages Linux Namespaces to allow multiple decoupled app runtimes

• Hardware, kernel, and native userspace are shared among independent runtimes

• Condroid improved by restoring binder communications and increasing efficiency

Advantage: powerful general-purpose solution with many
applications

Existing Isolation Approaches

• Kernel-level isolation breaks many assumptions of Android’s open
platform design

• Significant effort is required to fix things  2nd order complexity

• Overhead and inconvenience to end-users

Disadvantage: cost and inconvenience may be too high for many
simple security and privacy scenarios

Some Key Namespace Traits

Namespace Trait Value to Android Security

Fine-grained isolation
of specific resources

Tailored isolation environment for each application;
few side effects

High efficiency Negligible performance impact; design simplicity

Share-by-default Preserve open system design; avoid breaking things
unrelated to the isolated resource

Small footprint (files,
memory)

Little impact on performance & resources; OTA
updates

Our Idea: PINPOINT

Employ a Linux Namespace-like approach to Android Framework
resources

• Virtualize and isolate only what’s necessary to meet stated security
goal(s)
Everything else is shared as Android intended

Minimize or eliminate side-effects

• Provide isolation “building blocks” that can be used to create
containers

About “-visors”

• Hypervisor (type I native)
• Runs on “bare metal”
• Authority over guest OS(s)

• Supervisor (a/k/a kernel)
• Inside OS
• Authority over userspace(s)

• NEW: Hypovisor
• Inside userspace
• Authority over resource(s)

Scope of Authority

Large

Small

PINPOINT Concept

PINPOINT Methodology

Step Description Example

1 Define/collect security goal(s) Protect IMEI from app A

2 Identify relevant resource(s) iphonesubinfo and phone
system services (5.1)

3 Identify point(s) of resource access /
capability dispatch -> implement
hypovisor(s) here

servicemanager

3a Security analysis Prevent inter-app passing of system
service binder tokens (modified
SEAndroid hook)

4 Identify and address dependency(ies) com.android.phone and
ProxyController (service
startup)

Android System Service Basics

App Runtime
getSystemService()

ServiceManager (a/k/a
ContextManager)

System Server
- Service A
- Service B

…

IPC

1 2

3 4

0

Case Study: System Services

Handle
returned

System Service Hypovisor: servicemanager

uint32_t do_find_service(struct binder_state

*bs, const uint16_t *s, size_t len, uid_t uid,

pid_t spid)

1. Check nspolicy for entry matching caller’s uid and service
requested

2. On match, modify incoming request per nspolicy

3. Pass modified request to find_svc() for handle lookup

Example: iphonesubinfo iphonesubinfo_1 for uid 0010068

Hypovisor Security Analysis

• Fundamental question: “can the hypovisor be: 1) tricked or 2)
bypassed?”

1) Our modifications do not change how service capabilities are dispatched, so
any problems here are also a problem with stock Android

• Subject identified by uid from binder driver (trusted)

• Policy file restricted

• Service name values validated

 servicemanager cannot be tricked

Hypovisor Security Analysis

• Fundamental question: “can the hypovisor be: 1) tricked or 2)
bypassed?”

2) For most normal services, servicemanager acts as an open capability
dispatch service
• Once obtained, apps are free to pass capabilities held to other apps
• App-to-app transfer of system service capabilities bypasses the hypovisor

Blocked via modified security_binder_transfer_binder() SEAndroid hook
to disallow transfer of u:r:system_server:s0 binders among
u:r:untrusted_app:s0

task_struct of binder_ref/binder_node contains owner’s SELinux security
identifier (SID)

Four Sample Applications

• Security goal: prevent untrusted apps from obtaining accurate location
information
• LocationManagerService

• Security goal: prevent critical apps from leaking information through
untrusted input methods
• InputMethodManagerService

• Security goal: prevent untrusted apps from obtaining sensitive subscriber
information
• IPhoneSubInfo

• Security goal: prevent untrusted apps from obtaining accurate sensor data
to steal data, eavesdrop, or track movement/location
• SensorService

InputMethodManagerService

• Goal: protect app from
untrusted input method

• One additional namespace
• Stock input methods only

• Dependency:
WindowManagerService

• Modified to update all
input_method services with
current activity

InputMethodManagerService

Global IME
nspolicy: <no entry>

Requests: input_service;
receives input_service

Alternate IME
nspolicy: 10084 input_service 1

Requests: input_service;
receives input_service_1

Unmodified
non-critical
app (uid
10083) with 3rd

party IME
available

Unmodified
banking app
(uid 10084)
with only stock
IMEs available

Performance Impacts

Quadrant 2.1.1 File I/O score vs.
namespaces

system_server process
memory footprint vs. #

namespaces

~1.6% loss per namespace ~0.6% increase per namespace

Limitations

• Our approach does not provide security domain isolation
• Apps can pass high level information among namespaces

• Alternate services must be configured and running even if not used
• Additional system_server memory footprint

• Alternate services must be defined at build time

Future Directions

• Formalize methodology (esp. security analysis)

• Implement other hypovisors

• Provide sample device images

• Open source

Thank You
Questions?

ratazzi@ieee.org

P I N P O I N T

