
Static Detection and Automatic

Exploitation of Intent

Message Vulnerabilities in
Android Applications

 Daniele Gallingani, Rigel Gjomemo,
V.N. Venkatakrishnan, Stefano Zanero

Android Message Passing Mechanism

Android apps are composed of
different components

Intents carry messages among
components and applications

Components declare the types
of intents they are willing to
receive

Intents can be sent explicitly or
implicitly

Motivation

Problem: Android Components
have no message origin
verification capabilities

An attacker can spoof legitimate
intents and send malicious input

Questions

- Could we check if applications validate input?

- If so, can we automatically generate exploit opportunities?

Activity Activity

Contributions

• Static analysis method to automatically detect
data flows leading to sensitive operations
– Formulation of the problem as an IFDS problem

• Method for automatically generating exploits
that trigger malicious behavior

• Results
– Automatically generated exploits for 26

applications and showed they are vulnerable to
user interface spoofing attacks

Outline

• Problem Statement

• Approach

• Implementation

• Results

Problem Statement

 String host = intent.getStringExtra("hostname");
 String file = intent.getStringExtra("filename");
 String url="http://www.example.com";
 if (host.contains("example.com"))
 url = "http://" + host + "/";
 if (file.contains(".."))
 file = file.replace("..", "");
 String httpPar = toBase64(file);
 . . .
DefaultHttpClient httpC = new DefaultHttpClient();
HttpGet get = new HttpGet(url+httpPar);
 . . .
 httpC.execute(get);

Problem Statement

 String host = intent.getStringExtra("hostname");
 String file = intent.getStringExtra("filename");
 String url="http://www.example.com";
 if (host.contains("example.com"))
 url = "http://" + host + "/";
 if (file.contains(".."))
 file = file.replace("..", "");
 String httpPar = toBase64(file);
 . . .
DefaultHttpClient httpC = new DefaultHttpClient();
HttpGet get = new HttpGet(url+httpPar);
 . . .
 httpC.execute(get);

Source

Problem Statement

 String host = intent.getStringExtra("hostname");
 String file = intent.getStringExtra("filename");
 String url="http://www.example.com";
 if (host.contains("example.com"))
 url = "http://" + host + "/";
 if (file.contains(".."))
 file = file.replace("..", "");
 String httpPar = toBase64(file);
 . . .
DefaultHttpClient httpC = new DefaultHttpClient();
HttpGet get = new HttpGet(url+httpPar);
 . . .
 httpC.execute(get);

Source

Sink

Problem Statement

 String host = intent.getStringExtra("hostname");
 String file = intent.getStringExtra("filename");
 String url="http://www.example.com";
 if (host.contains("example.com"))
 url = "http://" + host + "/";
 if (file.contains(".."))
 file = file.replace("..", "");
 String httpPar = toBase64(file);
 . . .
DefaultHttpClient httpC = new DefaultHttpClient();
HttpGet get = new HttpGet(url+httpPar);
 . . .
 httpC.execute(get);

Source

Sink

• Finding paths from sources to sinks is not
sufficient

• Question: Are those paths feasible for an
attack?

Approach

• Input state: VI

• Exploit state(s): Ve

 Value patterns related

 to sinks

• Find relationship F
between VI and Ve,

such that Vi=F(Ve)

Source

Sink

Vi = {(v1, c1), …,(vn, cn)} = F(Ve)

Ve = {(ve1, ce1), …,(vem, cem)}

Approach Overview

Source

Sink

Approach Overview

• Path Computation

– Find all paths from sources to sinks
Source

Sink

Approach Overview

• Path Computation

– Find all paths from sources to sinks

• Symbolic Execution

– Generate a symbolic formula Fp

Source

Sink

C1

C1C2

C1C2 C3 = Fp

Approach Overview

• Path Computation

– Find all paths from sources to sinks

• Symbolic Execution

– Generate a symbolic formula Fp

• Exploit generation

– Solve Fp  Ve  VI

Source

Sink

C1

C1C2

C1C2 C3 = Fp

Fp  Ve

Path Computation

• Supergraph contains CFGs of all the functions

• Taint Propagation
– Identifies statements that can be influenced by

attacker

– Reduces size of the problem

Implementation (Background)

• Path Computation: IFDS framework
(Soot&Heros)
– Transforms dataflow problems into graph

reachability problems

– Framework user defines a fact

– Framework user defines update rules for a fact

• Exploit Generation: Kaluza
– Efficient string solver

– Native support for many string operations

Implementation

• Path Computation
– A fact contains path and taint information for every

node

– Different rules update the fact information during
graph traversal

• Exploit Generation
– Translate FpVe into a Kaluza formula

– Additional string operations modeled using the Kaluza
language

 E.g.,: a.contains(“test”)  a \in CapturedBrack(/.*test.*/);

Results Overview

• 64 applications of different sizes
– 26 exploits generated and manually verified

• Sink statements: GUI operations

• Ve chosen to change apps GUIs (phishing)

• Different GUI targets
– Entire screen change

– Alerts screen change

– User input fields

– Other Components

Results
App Attack

Mint Display an arbitrary web page inside an
Activity

GoSMS Prompt to the user notification about a
new message with arbitrary sender and
SMS content

GoSMS Prompt notification about a new message
received with arbitrary sender and
receiver

Yelp Modify venue review draft screen and
enter review on behalf of the user

Poste Pay Modify and show the application prompt
alerts with arbitrary messages

Craigslist Change the Action Bar title,
compromising
the interface integrity

Entire Screen

User Input

Alert Screen

Other Components

Results

• Very few validation checks present

– Mostly null pointers

• 31% of the String library functions
approximated with Kaluza

Min Max Avg

Per-application execution time
Per-application components
Per-application vulnerable paths
Per-path statements
Per-path if-statements

2.4 min
3
2
5
0

33.2 min
31
19
81
3

12.3 min
24.5
4.2

17.2
0.98

Limitations

• Untainted variables contribute to application
state. May introduce false positives

• Solver approximations. May introduce false
positives

Conclusions

• Conclusions

– We present an automatic method to discuver
vulnerable paths inside Android application
components

– Our method is modelled as an IFDS problem

– We provide proofs for the vulnerabilities under
the form of actual exploits, generated
automatically.

Questions?

