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Abstract

We study the “anti-theft” mechanisms available to con-
sumers to thwart unauthorised access to personal data on
stolen Android smartphones. With millions of devices stolen
in the USA in 2013 alone, such attacks are a serious and
growing problem. The main mitigation against unauthorised
data access on stolen devices is provided by “anti-theft”
apps; that is, with “remote wipe” and “remote lock” func-
tions. We study the top 10 Mobile Anti-Virus (MAV) apps
that implement these functions. They have been downloaded
hundreds of millions of times.

We investigate the general security practices of MAVs,
as well as the implementation of their “remote wipe” and
“remote lock” functions. Our analysis uncovers flaws that
undermine MAV security claims and highlight the fragility
of third-party security apps. We find that MAV remote locks
may be unreliable due to poor implementation practices,
Android API limitations and vendor customisations. Mobile
OS architectures leave third-party security apps little leeway
to improve built-in Factory Resets, therefore MAV remote
wipe functions are not an alternative to a flawed built-in
Factory Reset. We conclude the only viable solutions are
those driven by vendors themselves.

I. INTRODUCTION

The extraction of personal data on stolen devices is
a growing concern. In 2012, smartphone robberies were
almost 50% of all robberies in San Francisco, 40% in New
York City and were up 27% in Los Angeles1. In 2013,
3.1M devices were stolen in the USA2, and 120,000 in
London3. For the half of all users who do not lock their
screen4, the main anti-theft protections in use today are
“remote wipe” and “remote lock” functions. Products that
offer these remote anti-theft data protections include a range
of enterprise and consumer-grade offerings. In this paper, we
focus on the latter and study the top 10 Mobile Anti-Virus
(MAV) apps. The Google Play store indicates that these
apps are prevalent today with the top 2 MAVs downloaded
between 100M and 500M times each, the third between

1gizmodo.com/5953494/hold-on-tight-smartphone-mugging-is-more-
popular-than-ever

2www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-
to-3-1-million-last-year/index.htm

3www.london.gov.uk/media/mayor-press-releases/2013/07/mayor-
challenges-phone-manufacturers-to-help-tackle-smartphone

4www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-
to-3-1-million-last-year/index.htm

50M and 100M times, and the following 4 between 10M
and 50M. In comparison, the top enterprise app (for mobile
device management) was downloaded less than 5M times.
Our analysis reveals eight issues: (i) misinformation given
to users following a remote wipe and lock; (ii) questionable
MAV authentication practices; (iii) the limitation of, and
the restriction imposed by, Android’s APIs and architecture;
(iv) the misuse of Android security APIs by MAVs; (v) in-
consistency of Android’s API across versions; (vi) incorrect
Android API documentation; (vii) MAV reliance on carrier
network (in)security; and (viii) unfortunate customisations
by vendors. For example, we found that because of An-
droid API differences across versions, 9 MAVs can be un-
installed by a thief before a Gingerbread (v2.3.x) phone
is remotely locked by its user; because of API misuse, 4
MAV locks can be bypassed (Section VI); and because of
vendor customisations, all MAV locks can be circumvented.
By comparing MAV remote wipe functions with previous
findings on Android built-in Factory Resets [1], we find
that mobile OS architectural decisions that were aimed at
enhancing security (e.g. the permission system and lack
of root access) get in the way of MAVs that attempt to
improve the reliability of flawed factory resets. Therefore
MAV remote wipe functions are not an alternative to a
flawed built-in factory reset (Section VII).

In summary, our contributions are as follows:
• We present the first comprehensive study of Mobile AV

(MAV) implementations in the context of device theft,
including their general security practices and anti-theft
functions.

• We uncover major failures that may affect millions of
users. These flaws are not only caused by questionable
practices by MAV developers, but also by vendor
customisations and by the limitation of the Android OS.
Remote lock functions can therefore be bypassed, and
remote wipe functions are not an alternative to flawed
Factory Resets.

• We discuss possible countermeasures, but conclude that
only vendor-provided software has the potential to raise
the reliability of anti-theft mechanisms.

II. BACKGROUND

A. Data Partitions

Anti-theft solutions must protect personal data on all
storage on the device. Android smartphones share three
common partitions for storing a user’s data (Fig. 1).

1



The first is the data partition that hosts apps’ private
directories; it is generally mounted on /data/. An app’s
private directory cannot be read or written to by other apps,
so it is commonly used to store sensitive information such
as login credentials. On older phones with a small data
partition, one can also install apps on an external SD card;
but this is usually not the default behaviour.

The second partition storing user data is the internal
(primary) SD card. Despite its name, it is not an SD card
per-se, but a partition physically stored on the same chip.
The internal SD card is mainly used to store multimedia
files made with the camera and microphone; it is generally
exposed to a computer connected via USB – via Mass
Storage, Media Transfer Protocol (MTP) or Picture Transfer
Protocol (PTP).

The last partition containing user data is the external,
removable SD card. It offers similar functionality to the
internal SD card, but can be physically inserted and removed
by the user. If there is no internal SD card on the device, the
external one becomes the “primary SD card”; otherwise it
is called the “secondary SD card” (in this case the “primary
SD card” is the internal one). The primary and secondary
SD cards are sometimes referred to as “external storage”.

Some devices also have hardware key storage. When
supported, it is used principally by the default Account
Manager app.

Recovery Bootloader boot /sdcard/ /data/

Code partitions Data partitions

image.jpg
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system/
wifi/
private_dir_app0/
private_dir_app1/

Fig. 1. Common Android partitions. Each rectangle represents a partition
on the same flash storage.

B. Level of Sanitisation & Factory Resets

In Section VII, we compare the reliability of Android
built-in Factory Resets with the remote wipe functions of
MAVs. For comparison, we need to agree on a level of
sanitisation. The following three levels of data sanitisation
exist [2].

The highest level of sanitisation is analog sanitisation,
this degrades the analog signal that encodes information,
so that its reconstruction is impossible even with the most
advanced sensing equipment and expertise.

The second level is digital sanitisation. Data in digitally
sanitised storage cannot be recovered via any digital means,
including the bypass or compromise of the device’s con-
troller or firmware, or via undocumented drive commands.

The third level is logical sanitisation. Data in logically
sanitised storage cannot be recovered via standard hardware
interfaces like standard eMMC commands.

Simon and Anderson [1] studied the reliability of built-in
Factory Resets in the context of logical sanitisation because
it is the only one that is cheap and may be profitable if

exploited at scale. The authors found that certain phones do
not logically sanitise the data partition, the internal SD card
and/or the external one. This may affect devices running
Android from Froyo (v2.2.x) to KitKat (v4.4).

For a fair comparison, we take the same approach as
Simon and Anderson, in that we consider a remote wipe
to be “secure” or “proper” if it provides logical sanitisation.

C. Bootloader, Recovery and Safe Modes

Besides partitions storing personal user data, phones also
store (binary) executable files in dedicated partitions (Fig. 1).
These contain binaries to boot in normal mode (i.e. Android)
and other less-known special modes of operation. Android
smartphones generally have three extra modes of operation
that are useful to our discussion: the Bootloader mode, the
Recovery mode and the Safe mode. A user can boot into
them by pressing a combination of hardware keys on the
device. There exist subtle variations between vendors, so
we try to keep the description general.

The Recovery mode is generally a headless Android OS
used for performing updates and backups to the current
installation: updates may be stored in external storage or
sent in-band from a computer connected via USB. The
Bootloader is not based on Android, and it allows flashing
new software and partitions to a device, generally via USB.
To achieve their functionalities, both the Recovery and
Bootloader mode must run with high privileges. Typically,
this means unrestricted access to both the Android OS
binaries and partitions storing user data. There are three
kinds of Bootloader and Recovery protections we have found
on devices: open, protected, and locked.

Open Bootloaders/Recoveries let anyone with physical
access to a device install custom updates. We found this
to be true for most Samsung and LG devices in our sample.

Locked Bootloaders attempt to lock devices to a certain
carrier or vendor by enforcing signature verification on
software updates. This is true of most HTC devices we
encountered. To disable the signature verification, a locked
bootloader needs to be “unlocked”. This may be possible
via OS or bootloader exploits. HTC also lets users “unlock”
their Bootloader through their website, but voids the war-
ranty of the device thereafter. Upon unlock, the Bootloader
is supposed to wipe all data on the device, so as to prevent
thieves from recovering users’ data after installing forensics
software. We note that a locked Bootloader/Recovery is
not a panacea: as the key used to sign a software update
is owned by the vendor, an insider – or a server or CA
compromise – could leak it to attackers. We stress that this
is not a hypothetical scenario: for one phone in our sample,
we found an implementation of Recovery that passed the
signature verification and let us root the device. In practice,
a locked Bootloader/Recovery may provide enough security
for average users, but not for firms with high assurance
requirements.

Protected Bootloaders/Recoveries genuinely try to protect
users: the lock does not serve any business purpose. Users
are empowered to unlock their Bootloader to install custom
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software without voiding the warranty. This is mostly true
of Google phones. Unlike open and locked Bootloaders,
a protected one can be “re-locked”. If a thief wants to
install forensic software on the device, he can unlock the
Bootloader but this will also wipe the device’s data.

The Safe Mode boots the main Android OS, but disables
all user-installed apps. This is primarily used for users to
un-install misbehaving apps, for example malware that may
lock the screen and render the phone unusable. Even though
apps are disabled in the user interface, they can still be
launched via a shell. Obtaining a shell can be achieved by
first enabling the Android Debug Bridge (adb) developer
option in the default phone Settings; and then plugging the
device into a computer via USB. By design, this gives a
shell prompt on the computer to interact with the device.

D. Mobile Anti-Virus (MAV) Apps and Device Admin API

Mobile Anti-Virus (MAV) apps have already been down-
loaded hundreds of millions of times from the Google Play
store. They generally achieve their remote anti-theft pro-
tections with an app installed on the device in combination
with an online web interface accessible from a standard web
browser. A user who loses his phone can log in the web
interface and remotely instruct the phone app to wipe or
lock the device. An exception amongst the apps we studied
was Dr.web: instead of using a web interface, it requires
users to define trusted phone numbers, from which a user
can send remote commands to his lost phone via SMS.

A simple attack against anti-theft solutions is the use of
“Faraday bags” to block all radio-frequency communications
between a stolen device and its cloud service, thereby
preventing any remote action from a device’s owner. We
leave this problem aside for the moment and discuss possible
countermeasures in Section VIII. In the following sections,
we highlight other important issues which we believe are
relevant to improve the reliability of current anti-theft solu-
tions in general.

All MAVs make use of a special set of functions ac-
cessible via Android’s “Device Administration API”, that
provides administration features at the system level. Once
an application is granted access to this API, it becomes a
“device admin” and gains access to security “policies” like
the password policy (e.g. to enforce password strength),
or the encryption policy. Each policy within the admin
set must be explicitly requested in an app’s manifest.
Fig. 2 shows the relevant code for requesting access to
the force-lock, wipe-data, reset-password and
disable-camera policies. Unlike traditional Android
permissions, the admin permission and policies are not
granted at installation time: they must be approved all at
once by a user in the Android default Settings. When not
granted, an app can still run, but without admin privi-
leges. The two admin policies relevant to our study are
the wipe and screen lock policies that can be used to
protect users’ data when devices are lost. At runtime, an
admin app with the wipe-data policy can invoke the

wipeData(int flag) function to perform a wipe. It cur-
rently supports wiping the data partition only (flag = 0)
or with the additional wiping of the primary SD card
(flag =WIPE EXTERNAL STORAGE). The API does not
support wiping the secondary (external) SD card. Internally,
wipeData() uses the device’s built-in Factory Reset – so its
reliability varies across devices as detailed in Section II-B.
An admin app with the force-lock policy can also use
the built-in PIN screen to lock the phone screen (e.g. by
invoking the lockNow() function). One additional security
protection is that an admin MAV cannot be un-installed
unless its admin privileges are first removed in the default
Android Settings. Nevertheless, even an admin MAV has
limitations: it cannot access other apps’ private directories
in the data partition, nor can it bypass the file system to
read/write arbitrary content from/to storage.

If a user forgets to enable the admin permission for a
MAV, the app can neither use built-in wipe and lock features,
nor overwrite partitions reliably bit-by-bit to sanitise data
storage. Therefore, it must resort to less reliable ad-hoc
mechanisms. For example, it may use public Android APIs
with the traditional permissions granted at installation time
(like contact APIs to remove contacts from the Phonebook
app). However, this generally results in the deletion of
records in the associated SQLite file, which does not provide
logical sanitisation. For external storage, a non-admin app
may fill existing files with random bytes, unlink them, create
new ones (in the hope of overwriting unallocated file system
space), or format the partition. User-installed apps generally
do not expose sanitisation APIs on the phone, so their data
would typically remain intact. As for the screen lock, a MAV
could detect when it loses screen focus, and subsequently
launch one of its “views” (a.k.a. Android Activities) to
foreground.

# =========== AndroidManifest.xml ==========
<receiver android:permission="BIND_DEVICE_ADMIN">
<intent-filter>
<action android:name="DEVICE_ADMIN_ENABLED" />

</intent-filter>
<intent-filter>
<action android:name="DEVICE_DISABLE_REQUESTED"/>

</intent-filter>
</receiver>

# =========== device_admin.xml ==========
<device-admin [...] >
<uses-policies>
<reset-password />
<force-lock />
<wipe-data />
<disable-camera />

</uses-policies>
</device-admin>

Fig. 2. Device admin request example. Permission and action names are
purposely shortened for readability. Two broadcast receivers are declared:
one to receive a notification when the user has accepted the admin
permission, another when the user is trying to disable it in the default
Android Settings. Four policies are requested.
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III. METHODOLOGY

We restricted ourselves to the 10 most-downloaded MAVs
on Google Play – the Google Device Admin app was not in
the top 10. We downloaded them from a Samsung Galaxy S
Plus phone between Nov. 2013 and Apr. 2014. Our Samsung
Galaxy S Plus runs Gingerbread (v2.3.5), has a primary SD
card formatted in FAT, and we inserted a secondary 2GB
removable SD card in its slot. We conducted a review of
apps’ code using apktool5 and simple run-time analysis to
confirm our findings. We report our findings on the general
security of MAV solutions in the following sections, and
specifically focus on anti-theft functions in Section VI and
Section VII. We also report on the discussions we had
with MAV developers after the responsible disclosure of our
findings.

IV. ACCOUNT AUTHENTICATION

MAVs are sensitive-permission hungry, and their web
interface is a proxy to the rich functionalities they offer.
Through the web interface, MAVs offer sensitive functions
such as access to personal data backups, remotely taking
pictures, remotely enabling the microphone, etc. By gaining
access to a victim’s account, an attacker could therefore
remotely access personal information or lock the device to
demand a ransom. To protect user accounts, all MAVs in
our sample ask users to select a password at first run of the
app.

Findings: We found questionable authentication prac-
tices (Table I, column “Account Password”). For example,
all MAVs accept short passwords – ranging from 4 (Dr.web)
to 8 minimum characters (Kaspersky). Four of them do
not accept special characters (McAfee, Avira, TrendMicro
and TrustGo). Avast does accept special characters, but
processes them somehow: when entering the password
hello”’@#%&*/-+(), we could then log in with the trun-
cated version hello”’@#%. More generally, all apps accept
weak passwords, except Kaspersky that forced us to use a
combination of uppercase, lowercase and numerals.

We hypothesize that in practice, it is difficult for MAVs
to enforce strong passwords: as users rarely interact with
MAVs or their corresponding web interface, they would
inevitably forget their password if not easily memorable.
Furthermore, if a password is set up on a phone, the
keyboard limitations make it inconvenient to mix upper and
lower case, let alone adding non-alpha characters.

We also found indications that certain web services may
not store user credentials properly. When websites enforce
a maximum password length, it is often indicative of bad
storage practices – when stored hashed, passwords can be
arbitrarily long [3]. Three MAVs (McAfee, TrustGo and
Norton) fall in this category (column “length” in Table I).
We were not able to verify improper credential storage for
these apps though. We tried the “recover lost password” but
this only provided a reset link, not a clear-text password.

5code.google.com/p/android-apktool/

Nevertheless there is no valid reason for MAVs to limit the
length of passwords for more paranoid users.

Online rate limiting is a natural defensive measure against
online guessing attacks. At the time of our study, we
found that three products implemented it (McAfee, Norton
and Lookout, column “online rate limiting” in Table I).
For Norton, the lockout period did not work when we
tested. Since our study finished, more MAV solutions have
implemented rate-limiting in their web interface, but many
still fail to enforce it in within the app. It is important
to realise that while account locking might thwart an all-
out targeted online guessing, a slower, distributed, throttled
attack might still succeed [4]. Rate limiting and account
locking also interact poorly with targeted smartphone theft:
if prior to stealing a device, an attacker can lock her victim’s
account (or render its access slower), she can prevent him
from remotely locking or wiping the stolen device.

Response from MAVs: MAVs that responded acknowl-
edged these findings. They generally pointed out that usable
authentication is challenging. Therefore we think this is an
area worth investigation for future research.

V. APP CONFIGURATION & USER INTERFACE

Without admin privileges, MAVs cannot take advantage
of built-in lock and wipe features; yet admin privileges must
be granted explicitly by users. It is commonly accepted that
it is hard for users to configure and use security software
safely [5], [6], [7], [8], and this can be even harder for small-
screen devices. Therefore it is important for MAVs to warn,
guide and inform users accordingly.

Findings: As shown in Table I, only four MAVs warn
users if they do not run as admin (column “in-app warn-
ing”). For Avira, if a user clicks the warning but does not
subsequently grant admin privileges, the warning disappears
for ever. Norton, Avast and TrendMicro go further in the
wrong direction: they display “Anti-Theft is on”, “You are
protected” and “Device now protected” respectively, either
in the app or the online interface, even when apps do not
run as admin. The column “in-app flow” (Table I) refers to a
MAV that automatically launches the Android Settings view
for granting admin privileges, when a user visits the relevant
“Anti-Theft feature” menu of the app. This reduces the
chance of misconfiguration, since a user need not struggle
with finding the relevant Settings option. Three apps do take
this approach. However, we found that if a user has granted
admin privileges, but later decides to remove them, apps
generally fail to notify “out-of-band” (i.e. outside the app
– this is important as users do not interact with AV apps
regularly and would miss in-app notifications).

Similarly, none of the MAVs warn users about app
misconfiguration in the web interface either (column “web
warning”). Furthermore, most of them misinform users
about the results of a remote wipe and lock: they merely
claim it is “successful” even if the phone app does not run
as admin. We will see in Section VI and Section VII that the
lack of admin privileges significantly reduces the reliability
of anti-theft functions. A few solutions do give information
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TABLE I
MAV IMPLEMENTATIONS: GENERAL FINDINGS

User interface Account Password SSL
web in-app in-app online length special only certificate pinning
warning warning flow rate limiting characters strong validation

AVG 7 7 7 7 6 ≤ l <∞ 3 7 32 7
Lookout 7 7 7 1hour wait if 5 ≤ l <∞ 3 7 32 7

13 incorrect
attempts0

Avast 7 “Issues”1 7 7 7 ≤ l <∞ 30 7 32 7
Dr.web n/a 7 3 n/a 4 ≤ l <∞ n/a n/a n/a n/a
Norton 7 7 7 CAPTCHA and 6 ≤ l ≤ 50 3 7 32 7

account locked0

1hour
McAfee 31 orange flag 3 reset password 8 ≤ l ≤ 32 7 7 33 7

after 5 attempts
Kaspersky 7 “issues” 3 7 8 ≤ l <∞ 3 3 32 3
TrustGo 7 7 7 7 6 ≤ l ≤ 15 7 7 3 3
TrendMicro 7 7 7 7 8 ≤ l <∞ 7 7 72 7
Avira 7 “Action 7 7 5 ≤ l <∞ 7 7 3 7

Required!”
7means absence of protection, whereas 3is the opposite. 0implementation problems are reported in the text of the paper.
1warning provided but in a specific tab. 2use of http at registration time or startup.
3 certificate validation during registration is broken.

in the web interface but only after a wipe command is issued,
which is generally too late because this happens when the
device is already lost.

Given the lack of guidance and warning provided by
MAVs to users, it is likely many users will run an insecure
setup. Throughout the following sections, we therefore take
account of this observation and highlight several conse-
quences.

Response from MAVs: MAVs that responded acknowl-
edged these findings. They all say they are taking actions to
improve the UI of their app.

VI. LOCK IMPLEMENTATIONS AND EFFECTIVENESS

One anti-theft option for users to protect their data on
stolen devices is to remotely lock the screen, generally
through a web page provided by MAVs. In the following
sections, we assume that the Android Debug Bridge (adb)
is disabled or protected in the device Settings (if not, then
a thief can get an interactive shell and access user data as
described in Section II-C). As users may have improperly
configured their MAV (Section V), we study outcomes
whether it runs as admin or not. The following sections
present the many attack vectors we discovered during our
study.

A. Removal of MAVs & API Misuse
Finding 1: When a MAV does not run as admin, it must

resort to ad-hoc solutions to implement the screen lock, and
must additionally ensure the app launched at device boot
time. At boot time, there is a race condition, in that the
custom lock screen should appear fast enough to prevent a
thief from un-installing the MAV. We found that for four
MAVs, the custom screen lock does not show up quickly
enough and can therefore be un-installed (column “race
protection” in Table II). By rebooting a stolen device and
winning the race, a thief can remove the app and prevents
the owner from remotely protecting the device.

Finding 2: By design (Section II-C), the Safe mode lets
a thief un-install a MAV so long as the app does not have
admin privileges. A race condition is no longer needed in
this case, and all MAVs incorrectly configured by users
(i.e. non-admin) are therefore vulnerable. Again, a user who
remotely locks his screen is generally left clueless about the
problem since MAV web interfaces do not provide details
(Section V).

Finding 3: An admin MAV should invoke the built-in
screen lock, which eliminates race conditions and safe mode
bypass on the condition that it requests the force-lock
policy and calls the relevant APIs (e.g. lockNow()). We
found that four MAVs misuse the security API, in that
they do not enable the default screen lock even though
they request the force-lock policy (Dr.web, McAfee,
TrustGo and TrendMicro). They can therefore be bypassed
via Safe mode (Table II, column “admin lock protection”).
Although Avast properly enables the built-in lock, it can also
be bypassed – we defer this discussion to Section VI-C.

Finding 4: Even if an admin MAV properly enables the
built-in lock screen, a thief could un-install the app before a
user has remotely locked his device – on the condition that
he first manages to remove the admin privileges. We found
that seven MAVs leave the removal of admin privileges
unprotected (Table II, column “un-install protection”). Only
three apps take account of this attack vector. Kaspersky
enables the built-in screen lock on first run of the app; the
device remains locked at all time without the need for remote
activation, and so is immune to this attack. McAfee and Avast
prompt a thief with a PIN if he attempts to remove admin
privileges. Avast’s lock (including the anti-removal lock) can
be bypassed, but we defer the discussion to Section VI-C.

McAfee misuses the Android API so its anti-removal lock
can be circumvented by re-booting into Safe mode, and
the app subsequently removed. McAfee’s code for handling
the removal of admin privileges is illustrated in Fig. 3.
It uses the callback function onDisabled() to be notified
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TABLE II
MAV REMOTE WIPE AND LOCK FUNCTIONS

Wipe Lock
data lock on-device un-install admin lock non-admin lock counter reset race
partition primary SD secondary SD rate limiting protection protection protection protection protection

AVG admin admin,format, unlink1 user-selected 7 7 bp:brute-force bp:Safe mode n/a 3
unlink 4-6-digit PIN or

“alpha” password
Lookout admin file overwrite, file overwrite, random 4-digit PIN T = N

3
× 1min0 7 30 bp:Safe mode bp:remove battery 7

unlink unlink

Avast admin unlink,format, unlink,format user-selected 7 bp:GSM BTS bp:GSM BTS bp:Safe mode n/a 7
admin 4-6-digit PIN

Dr.web admin admin,unlink unlink 4-char password 7 7 bp:Safe mode bp:Safe mode n/a 3
Norton admin admin format or random 4-digit PIN optional wipe 7 3 bp:Safe mode 3 3

unlink2 after 10 attempts
McAfee admin admin,unlink, unlink,format3 user-selected 1hour wait after bp:Safe mode bp:Safe mode bp:Safe mode bp:remove battery 7

format3 6-digit PIN 10 attempts
Kaspersky admin unlink unlink user-selected 7 n/a built-in lock 3 n/a 3

4-16-digit PIN

TrustGo admin unlink unlink web password 30min wait 7 bp:Safe mode bp:Safe mode 3 3
after 5 attempts

TrendMicro admin format,unlink format,unlink web password 7 7 bp:Safe mode bp:Safe mode n/a 7
Avira admin unlink unlink,format user-selected unlock with 7 3 bp:Safe mode 3 3

4-digit PIN web only after
3 attempts

7means absence of protection, whereas 3is the opposite. “bp:method” means that the protection is present but can either be bypassed using “method” or its effectiveness reduced using “method”.
Note that vendors’ customisations may allow bypass of properly implemented protections. 0implementation problems are reported in the text of the paper.
1only if the app is not an admin and formatting of the internal (primary) SD card fails. 2only if the app is not an admin. Format if SDK >= 17, unlink files otherwise. 3formats if a tablet.

of admin changes: when this function is called by the
Android framework, McAfee locks the screen. Unfortunately,
on Gingerbread devices (v2.3.x), the onDisabled() function
is called only after the admin privileges are disabled. As a
result, the subsequent call to lock the screen cannot make
use of the built-in lock screen and must be implemented by
the app itself. Therefore when rebooting into Safe mode,
the lock screen does not show up since apps are disabled in
this mode (Section II-C). At this point, the app can also be
removed as it no longer has admin privileges.

public class McAfeeReceiver extends DeviceAdminReceiver {

public void onDisabled(Context paramContext,
Intent paramIntent){

[...] // removed
displayLockScreen();

}
}

Fig. 3. Code of McAfee’s anti-removal screen.

Further investigation reveals that the onDisabled() func-
tion is called before admin privileges are dropped on subse-
quent Android versions we tested (ICS (v4.0.x), Jelly Bean
(v4.[1-3]). This problem is aggravated because the Android
documentation is incorrect. More specifically, it is oblivious
to differences between versions6. It only states that the
onDisabled() function is “called prior to the administrator
being disabled” without specifying the relevant Android
versions. We used the Internet Archive7 to trace changes to
the API description. We found the API documentation was
also incorrect at the time when Gingerbread was the most

6developer.android.com/reference/android/app/admin/
DeviceAdminReceiver.html

7web.archive.org/web/20100501000000*/https://developer.android.com/
reference/android/app/admin/DeviceAdminReceiver.html

recent Android version (Dec 2010 – Oct 2011). Another
function, onDisabledRequested(), is called before admin
privileges are dropped for all Android versions we tested.
Therefore it is more reliable, but MAV apps currently do
not use it.

There are also usability problems associated with the
protection of app removal. As users tend to forget pass-
words/PINs, a user who genuinely attempts to un-install
a MAV may be presented with a (PIN) screen lock he
cannot remove. Therefore MAVs must provide additional
information in their lock screen, e.g. to guide users how
to reset the PIN. But the default Android lock screen has
certain limitations, in that it cannot be customised. As
a result, additional information cannot be provided with
the default lock screen, and MAVs resort to implementing
their own lock screen; which we know can be bypassed
through race conditions or Safe mode. Android Lollipop
(v5.0) provides a new function (startLockTask()8) for “screen
pinning”, that is, to “temporarily restrict users from leaving
your task”. However this would still be by-passable in Safe
mode. Therefore we think Android would benefit from a
customisable lock screen.

Response from MAVs: Problems were generally ac-
knowledged. One company argued that the Safe mode by-
pass of their lock screen was “low risk” because “third-party
apps do not run in Safe mode”. This is incorrect. First, a thief
read user’s emails manually and gain access to credentials
for other websites – e.g. contained in emails or through a
reset link sent to their Inbox. Second (Section II-C), even
though disabled in the user interface, apps can be installed
and launched via a shell in Safe mode to automate the
process.

One company argued that they do not enable the built-

8https://developer.android.com/about/versions/android-5.0.html
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in lock because it may violate the Google policy. This
states that “an app downloaded from Google Play [...] must
not make changes to the user’s device outside of the app
without the users knowledge and consent”. We said we
disagree because when remotely locking his device, a user
is implicitly giving his consent.

Regarding the lack of un-installation protection, we have
received feedback from few developers. Many apps con-
cerned with this problem did not have a proper contact/email
for bug reports. We had to use the “customer support” portal
instead. Customer support assured us they would forward
our report to the engineers but we have not heard from them
in most cases.

B. Rate Limiting

Finding 1: Admin MAVs that properly enable the built-in
screen lock generally also overlay their own lock on top of
the default lock screen. This is used to customise the look-
and-feel or offer additional information. For example, MAVs
sometimes want to provide an email address to contact the
phone owner if the device is lost. This overlay is also
a source of problems. The built-in screen lock, on most
devices, enforces a 30sec wait period after 5 failed PIN
attempts. Unfortunately half the MAVs do not have rate
limiting protection on their custom screen-lock (column “on-
device rate limiting”), thereby annihilating the protection
of the built-in one. This makes brute force practical since
MAVs accept common weak PINs like “1111” or “1234”.
Only Kaspersky warned us to use at least 7 digits, yet it still
accepted weak PINs. This issue again highlights a limitation
of the default lock screen, in that it cannot be customised
enough, therefore MAVs have tried to find ways around this.
This suggests that the default lock screen would benefit from
an additional admin “lock rate limiting” policy for apps to
express requirements such as “enforce an X sec wait after
Y successive incorrect PINs”.

Finding 2: Some MAVs apps do enforce stronger rate-
limiting policies than the built-in default (column “on-device
rate limiting”). For Lookout however, we found that it could
be circumvented on our Galaxy S Plus even when the app
runs as admin: by clicking the Home button, a thief can
navigate away from the Lookout’s custom screen lock, and
benefit from the lower rate limiting of the built-in one. In
Safe mode, a non-admin MAV’s custom screen lock does not
show up, so if the built-in lock has less protection, a thief can
use that instead – on certain devices such as the Samsung
Galaxy S Plus, the built-in screen has no rate limiting.

Finding 3: In order to enforce rate-limiting after too many
incorrect PIN attempts, MAVs must save a retry counter. For
Lookout, we found that removing the battery resets the retry
counter, and for McAfee it decreases it by one. This attack is
not always practical, as a thief must reboot the phone but the
boot time may exceed the wait period enforced by a MAV.
In Lookout’s case, it significantly decreases the wait period
– which increases linearly with the number of incorrect PIN
attempts (Table II, column “on-device rate-limiting”).

Finding 4: If an attacker knows the username of his
victim, he could also leverage the lack of rate limiting in the
online interface to unlock the screen remotely (Section IV).
This is mostly true in targeted attacks. In non-targeted ones,
it may still be the case because some MAVs, by default,
display the owner’s email address in their custom lock
(e.g. Avira and TrendMicro). This unintentionally leaks the
username necessary to perform an online dictionary attack.

MAV Response: Our findings were acknowledged. One
company responded to the “Finding 4” by masking some of
the characters in the email address.

C. Network-level Attacks
Finding 1: Avast, downloaded more than 100M times on

Google Play, has an option (including in its “anti-removal”
lock) that lets thieves send temporary unlock PINs via SMS
to a (compulsory) contact pre-configured by the genuine
device owner. This function is accessible in the custom
screen lock. When used, the stolen device sends a temporary
PIN – in clear – to a trusted contact. It is known that
GSM only authenticates a phone to the network, but not
the network to the phone. Therefore it is possible to have
the phone connect to a rogue GSM station – a.k.a. Base
Transceiver Station (BTS) – to recover traffic. Because
phones usually fall back to GSM in the absence of 3G, a
thief could set up a rogue BTS to intercept the temporary
PIN and bypass the lock screen to remove the app.

Similarly, Dr.web locks/unlocks devices through com-
mands sent via SMS from a trusted contact. If the SMS
sender is a pre-configured trusted “buddies”, a password
is not required (this is enabled by default). In a targeted
scenario where a trusted buddy’s phone number is known,
a thief could spoof the SMS’s sender ID to bypass the
password. One could use online services, a rogue BTS
station or a femtocell.

Finding 2: Recall from Section II-D that MAVs generally
keep a TCP connection to a server in order to receive remote
commands to be executed on the device. An attacker who
can impersonate as a MAV server could therefore send an
unlock command to the phone app. MAVs generally use TLS
to secure their connection and properly verify their server’s
certificate but do not implement pinning (Table I, column
“SSL”). TrendMicro however did not properly validate the
CN of the certificate. It accepted any domain (i.e. CN) so
long as it was signed by a trusted CA. McAfee improperly
authenticated its server during account registration: the app
accepted selfsigned certificates as well as certificates signed
by a trusted CA but for a different domain (i.e. CN).
Even though they used TLS, Avast, AVG, Lookout, Norton,
Kaspersky and TrendMicro additionally made some non-
encrypted requests. Instead of maintaining a TCP connec-
tion to their server, certain MAVs such as Avira re-use
the Google connection and push commands to the phone
through Google push APIs. We found that the Google
service did not implement certificate pinning. On a side note,
TrustGo’s user web interface used a combination of http and
https, making cookie recovery trivial for a network attacker.
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MAV Response: The latest version of their apps fixes
certificate validation issues – not necessarily pinning. We
have not received feedback regarding unprotected PINs and
commands sent via carriers’ networks (Finding 1).

D. Vendor and Customised Android Failures

Even if anti-theft functions are properly implemented by
MAVs, customisations by vendors may allow an attacker to
bypass their protection.

Finding 1: We refer to “charging mode” as the mode
in which a device is, when it is switched off and plugged
into a power supply. We found that certain phones boot
up a headless Android and expose a debugging interface
when booted in charging mode. For example, the LG L7
running Jelly Bean (v4.1.2) exposes adb: the data partition
is mounted and one folder is writeable, so an attacker could
push code and exploits. The Samsung Galaxy S Plus also
exposes adb but we did not have enough permissions to push
files; yet it remains a concern.

Finding 2: On phones with open Bootloaders, a thief
can install custom upgrade: this bypasses admin MAV
screen locks and the built-in one. Thieves could therefore
install forensics software to recover personal data. Protected
Bootloaders may also contain logic errors or vulnerabilities9.
We found that on the Google Nexus running Android v4.2,
unlocking the Bootloader did not erase the data partition;
on the HTC Desire C, a Bootloader unlock wiped only
the data partition; and on the HTC Desire S, there was a
Bootloader option to read arbitrary files. When booted in
Recovery mode, the Samsung Galaxy S2 also exposes adb,
and the LG L7 further has a writeable folder. The latter
even warns “Using this mode, service center can back up
and recover your data”.

Finding 3: Users who want more control over their
device may install a custom Recovery from which they
gain additional functionalities, such as root access, the
ability to install custom Android builds, custom UI themes,
etc. As the Recovery has unrestricted access to Android
binaries and data partitions (Section II-C), it is important
to prevent unauthorised users (i.e. thieves) from accessing
it. We found this is not always the case. For example,
prevalent Recoveries such as CWM or TWRP10 often expose
unprotected options that allow flashing arbitrary software
via USB even when the screen is locked in the Android
OS. In our tests, we could push arbitrary Android updates
via the following options. The “zip updates” option accepts
arbitrary updates from files present on the primary SD
card, so an attack is feasible on phones with a removable
primary SD card. The “adb sideload” accepts updates sent
in-band via USB. Newer Android versions protect adb-via-
USB using a public-key authentication scheme tied to the

9www.codeaurora.org/projects/security-advisories/fastboot-boot-
command-bypasses-signature-verification-cve-2014-4325 and
www.codeaurora.org/projects/security-advisories/incomplete-signature-
parsing-during-boot-image-authentication-leads

10www.clockworkmod.com – www.teamw.in/project/twrp2

owner’s computer (though bypassable on certain devices11).
This security feature was not enforced in the custom re-
coveries we tested: adb generally remained available and
unprotected even when not enabled in the Android Settings,
and the signature verification on updates could be toggled
off manually.

Finding 4: Vendors also have desktop software that one
can use to backup or transfer files from a smartphone via
USB (like Samsung Kies or HTC Sync Manager). We found
that the activation of the HTC Sync Manager automatically
enables the Android Debug Bridge (adb) on the device
– probably because it piggy-backs on its protocol. Some
HTC devices keep adb on even when the screen is locked,
allowing a thief to get an interactive shell on the device
via USB. We leave a comprehensive security analysis of
vendors’ software for future research.

E. Misc

Android has in the past been victim of PIN bypass
vulnerabilities that let a thief access partially, or fully, a
device’s user interface and data. It may be because of third-
party apps12 or vendor customisations13. These were out of
scope of this study.

Even when a lock cannot be bypassed, current Android
phones allow a thief to Factory Reset the device from the
Recovery or Bootloader mode. This deletes the data, but
not always securely (Section II-B). Therefore a thief could
alternatively Factory Reset a device and use forensic tools
to recover insecurely-deleted data on devices with a flawed
Factory Reset function. This may change in newest Android
devices with the introduction of a “kill-switch” function
introduced to curb phone theft. This was out of scope of
our study.

Some HTC devices have a DIAGnostic that can be
accessed via specially-formatted SIMs or SD cards known
as “gold cards”. It gives access to vendors’ “repair menus”.
On our devices, data was wiped, but this may not be the
case on other models.

We discuss hardware attacks and baseband attacks in
Section VIII.

F. Encryption to the Rescue

The use of Full Disk Encryption (FDE) has the potential
to mitigate many of the attacks when the phone is powered
down, so long as the encryption key cannot be recovered.
On Android devices that support FDE, the encryption key is
stored encrypted with a key derived from a salt and a user-
provided PIN (or password). This encrypted blob is referred
to as the “crypto footer” in the AOSP source code. We found
that if the PIN entered by a user is invalid, Android reads a

11labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-
usb-debugging-bypass and github.com/secmobi/BackupDroid

12seclists.org/fulldisclosure/2013/Jul/6 and www.bkav.com/top-news/-
/view content/content/46264/critical-flaw-in-viber-allows-full-access-to-
android-smartphones-bypassing-lock-screen

13shkspr.mobi/blog/2013/03/new-bypass-samsung-lockscreen-total-
control
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TABLE III
WIPE IMPLEMENTATIONS WITHOUT ADMIN PRIVILEGES
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Lookout 3 3 3 3 3 7 3 3 7 3 7 3 7 7
Avast 3 7 3 3 3 7 7 3 7 3 7 7 7 7
Dr.web n/a 7 7* 3 7 7 7 3 7 3 7 7 7 7
Norton 3 7 7* 3 3 7 7 3 7 3 7 7 7 7
McAfee 3 3 3 3 3 7 7 7 7 3 7 7 7 7
Kaspersky 7 3 7* 3 3 7 3 7 7 3 7 7 7 7
TrustGo 7 7 7* 3 3 7 7 7 7 3 7 7 7 7
TrendMicro 7 7 3 3 3 7 7 7 7 3 7 7 7 3
Avira 3 7 7* 7 7 7 7 7 7 7 7 7 7 7
*data is nevertheless removed by deleting the corresponding files on the SD card

retry counter from the crypto footer, increments it and writes
it back. By monitoring power consumption, an attacker
could detect the write back, and cut the power supply to
circumvent the write14. This attack was well known in the
smartcard community in the 1990s; by fifteen years ago, it
was standard practice to increment the retry counter before
each PIN prompt and reset it only if a correct PIN is
entered [9].

Another problem stems from the “Fast boot” option on
HTC devices. It is enabled by default, and when powered
down, a device transitions into a hibernation/sleeping state
so as to speed up boot time. When powered up, the PIN
is not prompted so it may be stored in RAM or on disk.
Failure to disable the fast boot option may undermine the
benefit of FDE. We leave this for future research.

VII. WIPE IMPLEMENTATIONS

A. General Results

The second option provided by anti-theft functions is the
“remote wipe”. We study MAV wipe implementations with
admin privileges granted or not.

Admin MAVs: Table II (column “data partition”) shows
that all MAVs use the admin API to sanitise the data parti-
tion. For external storage though, implementations differ.

Half of them use the admin API to sanitise the primary
SD card (the internal SD card on our Galaxy S Plus). If the
sanitisation fails, they implement “backup” mechanisms. For
instance AVG, Avast and McAfee format the partition and
unlink all files; this does not provide logical sanitisation.

The other half of MAVs misuses the Android secu-
rity API in the sense that they do not pass the flag
WIPE EXTERNAL STORAGE to sanitise external storage,
and this even when apps have been granted admin privileges.
Instead they resort to ad-hoc mechanisms: they generally
format the partition and/or unlink files; this does not provide
logical sanitisation. We think the misuse of the Android API
may be caused by misleading/outdated Android documenta-
tion: it states that the flag parameter to the wipeData(int
flag) function “must be 0”15.

14Limitations: (i) a full kernel is running with certain userspace pro-
cesses, (ii) the OS may cache (and therefore delay), the write-back to non-
volatile storage, (iii) rebooting the device may be too slow.

15https://developer.android.com/guide/topics/admin/device-admin.html

The Android API currently does not expose an API to
securely sanitise the secondary SD card. Therefore, all
MAVs implement their own mechanisms to sanitise it, as
a result of which data is always recoverable. We note that
even when used properly, the admin API does not ensure that
logical sanitisation is available on the device (Section II-B).

Non-Admin MAVs: When MAVs do not run as admin,
they must resort to other mechanisms to sanitise partitions,
e.g. by using Android APIs (Section II-D). Recall that this
situation is likely to arise because of UI issues highlighted
in Section V. In this case, MAVs attempt to delete data
as shown in Table III; but this does not provide logical
sanitisation. Furthermore, we found that none of the MAVs
manage to remove the primary account using Android APIs.
Some of them try to, but fail because the OS does not seem
to allow it: this failure is never reported to a user in the
online interface. Android does not appear to expose an API
to delete browser, WiFi and VPN credentials, and no MAVs
delete them.

A thief could also attempt to recover MAV credentials on
the phone in order to access online backups made by a user.
We found that only TrendMicro attempts to delete its “own
data” (Table III).

We also found that three MAVs display success for a
remote wipe in their web interface, even if the wipe has yet
to be performed (Table III, column “result timing”). This is
because on reception of the wipe command from their server,
MAV apps acknowledge it: some web interfaces interpret
this as wipe success. All apps, to some extent, misinform
users about wipe results, merely claiming that a remote
wipe succeeds when errors occur, like when an exception
is thrown, when formatting fails, or when a file cannot be
unlinked. They all fail to give accurate details about the
wipe results in general. McAfee, Avast and Avira fare slightly
better because they indicate that the wipe cannot use the
built-in Factory Reset if admin privileges are not granted,
but this is too late when the device is already lost.

B. Case Studies of Lookout and Avast
Lookout and Avast both have unique implementations for

sanitising external storage. Lookout sanitises external storage
by overwriting files before unlinking them. Its developers
implicitly assume that the file system overwrites files “in-
place”. We tested this hypothesis by creating 1000 files on
the primary SD card of our Galaxy S Plus (FAT-formatted).
We overwrote the files, and found that more than 90% of
them were not updated “in-place” by the file system – and
thus were recoverable. We ran the same experiment with
Lookout’s remote wipe, and obtained similar results.

Avast has a special option called “thorough wipe” to sani-
tise external storage. This creates a 1MB file and overwrites
it 1000 times with 0s (all values are hardcoded in the app).
Its developers implicitly assume that the file system does
not update files “in-place”, which would ensure that 1GB
of space is overwritten. We showed this to be mostly true
on our Galaxy S Plus’s primary SD card formatted with
FAT. However, on an ext4-formatted partition, we found that
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more than 99% of files were updated “in-place” on an HTC
One S. Hence, mostly the same blocks, spanning 1MB, are
overwritten. Furthermore, all devices we have encountered,
have at least 2GB of primary SD card, while some have
up to 25GB (HTC One X). As a result, even if 1GB of
data was indeed overwritten, it would not represent the
entire partition. Note that the ext4 filesystem may also use
compression which will further reduce the amount of data
overwritten.

These two examples highlight how the security per-
mission model can sometimes backfire and have a nega-
tive impact on security: because third-party apps cannot
legitimately gain high privileges (i.e. root), they cannot
overwrite an entire partition bit-by-bit, and therefore resort
to unreliable methods to mitigate a flawed Factory Reset
(Section II-B).

MAV Response: We have received feedback only from
one of the two companies. The dev team said they are trying
to improve the reliability of remote wipe without impacting
usability.

C. Inherent Problem of Remote Wipe

We found an inherent timing problem between the time of
wipe and the time of success displayed to users in the web
interface: we call this problem the “Time-Of-Wipe-Time-Of-
Success (TOWTOS)” attack. Concretely, this occurs when a
wipe completion is reported to the user in the web interface
before the wipe effectively takes place on the phone, and
the wipe subsequently fails. The failure could be caused by
the removal of the battery by a thief, by the phone being
shutdown, or by a TLS truncation attack [10] by a thief
attempting to desynchronise the phone app and the server.
This is currently inevitable for an MAV that performs an
admin wipe because it must report to the user before it is
itself wiped. Lookout aggravates this problem by launching a
10sec timer before launching an admin wipe. The TOWTOS
highlights another limitation of the current Android admin
API, in that it is not possible for an app to report results to
its web service after a wipe completes.

VIII. DISCUSSION

We have highlighted three main failures in remote data
protection functions: (i) the misuse of Android security APIs
by MAVs, (ii) the limitation of Android APIs and permission
model, (iii) vendor customisation issues. One attack we
discarded till now is the use of Faraday bags. There are
two lines of thought to mitigate it. The first involves an
online server that is contacted during user authentication to a
device, the approach is taken by CleanOS [11], KeyPad [12]
and other theft-resilient solutions [13]. However these can
severely impact usability by (i) degrading responsiveness of
the device during authentication when there is poor network
coverage, and (ii) by locking a genuine user out if a server
is DoSed, unavailable or if there is no network coverage.

Therefore solutions that solely rely on the user and device
seem the only viable options. Authentication based on user
behaviour [14], swipe characteristics [15], context [16],

typing characteristics [17] and app usage [18] are appealing
but usually lack accuracy and speed as well as increasing
power consumption. Solutions based on an extra device
users carry [19] often impose extra cognitive load and are
seen as a burden. Biometrics such as Apple’s fingerprint
are relatively fast and effortless and therefore appealing to
average users on high-end devices.

Overall, we think that device-based solutions are more
likely to offer usable protections against the attacks de-
scribed in this paper. More importantly, given the limitations
imposed by the Android API and the permission model,
we think the only viable solutions are those driven by
vendors themselves. They, only, can integrate their solutions
seamlessly whilst taking full advantage of the platform and
hardware features. The rise of wearable computing may
also enable better authentication mechanisms if battery life
improves; this is another avenue for future research to
consider.

IX. RELATED WORK

Cannon [20], Osborn [21], and Ossmann and Osborn [22]
attempted to access personal data on smartphones with
physical access to them, but did not study MAVs. Baseband
attacks have been studied by Weinmann [23], Mulliner [24]
and Solnik and Blanchou [25]. In particular, Solnik and
Blanchou [25] demonstrated a complete bypass of the main
OS lock screen on Android and iOS devices. They exploited
Over-The-Air (OTA) update mechanisms used by carriers.
Pereira and al. [26] discussed the security implications of
non-standard AT commands exposed by certain Samsung
phones via USB; these could be used to access personal
data even on screen-locked devices. Mahajan et al. [27] used
commercial software on 5 different devices to recover Viber
and Whatsapp chats from unlocked Android smartphones.
The forensics software requires adb to do storage acqui-
sition. Müller et al. used a cold boot attack on Samsung
Nexus devices to recover FDE keys from RAM. Their hack
however requires an open (or unlocked) Bootloader to flash
their custom forensics Recovery.

Hardware attacks are usually more expensive, do not
scale or require per-device knowledge and skills, yet they
are feasible. Unprotected JTAG16 and UART [22] access
are recent examples targeted at smartphones. Attaching a
bus monitor to monitor data transfers between a CPU and
main memory is also feasible; commercial solutions are
available [28], [29]. DMA attacks have been showcased
by Becher et al. [30], Boileau [31], Witherden [32] and
Piegdon [33], although not on smartphones. To increase
the cost of these attacks, Copl et al. [34] use ARM-
specific mechanisms to keep application code and data on
the System-on-Chip (SoC) rather than in DRAM.

To the best of our knowledge, this paper is the first
comprehensive study of consumer grade anti-theft functions

16www.forensicswiki.org/wiki/JTAG Samsung Galaxy S3 %28SGH-
I747M%29 – copgeek018.wordpress.com/2012/04/03/157/
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provided by mobile anti-virus apps on the Android platform.

X. CONCLUSION AND FUTURE WORK

We studied consumer grade protections against unautho-
rised access to personal data on stolen Android smartphones.
We further highlighted the market and technical fragmen-
tation which means that there is no consistent security
guarantee across devices.

We unveiled critical failures on MAV remote lock and
remote wipe functions. In addition to the limitations imposed
by the Android security model and APIs, these are caused
by questionable MAV designs and vendor customisations.

Future research could investigate in more detail the level
of security provided by smartphones when capable attackers
have physical access to them. This could encompass new
attack vectors introduced by HTC’s “Fast boot” option, by
device-management vendor software, and by the new “kill-
switch” to be introduced in the USA to curb smartphone
theft.
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