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Abstract—Malware collusion is a new threat against Android
application security. It refers to the scenario where two or more
applications interact with each other to perform malicious tasks.
Most existing solutions assume the attack model of a stand-
alone malicious application, and thus cannot detect collusion.
The objective of this position paper is to point out the need
for practical solutions for detecting malware collusion. We show
experimental evidence on the technical challenges associated
with classifying benign Android inter-component communication
(ICC) flows from colluding ones. We statically construct ICC
Maps to capture pairwise communicating ICC channels of
2,644 real benign apps. We find that existing permission-based
collusion-detection policies trigger a large number of false alerts
in benign apps pairs.

I. INTRODUCTION

Malicious software (malware) has been constantly evolving
to evade detection. This evolution nature of malware was first
shown in the seminal paper by Cohen [1] to cause endless
arms-races between defenders and attackers. In the realm
of smartphone application security, there exist a substantial
amount of solutions for detecting malicious apps (e.g., Elish
et al. [2], TaintDroid [3], RiskRanker [4], AppContext [5],
Apposcopy [6], Zhang et al. [7], and Alharbi et al. [8]).
Virtually all the existing solutions assume the attack model
of a single malicious application. The detection techniques
are focused on inspecting apps individually, through building
behavioral models with features obtained from various static
and dynamic program analysis.

The notion of malware collusion has been recently described
in a few research papers [9], [10] as the next step that
malware writers’ may evolve into. Collusion refers to the
scenario where two or more applications – written by the
same malware writer – interact with each other to perform
malicious tasks. The danger of malware collusion is that
each colluding malware only needs to request a minimal
set of privileges, which may make it appear benign under
conventional screening mechanisms. Malware writers have
strong incentives to write colluding malware.

In the Android system, Intent and inter-component commu-
nication (ICC) realize an encapsulated communication mech-
anism for passing messages between two applications, or
between two internal components of the same application.
Sending Intents through ICC channels is widely used in apps.
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For example, a restaurant search app may send an Intent to
Google Maps app, so that Google Maps displays a map with
the chosen restaurant’s location. In this work, we investigate
the technical challenges associated with distinguishing benign
ICC flows from colluding ones. Inability to solve this problem
may result in a high number of false alerts, i.e., misclassifying
benign ICCs as collusion.

Most of the existing static ICC-based program analyses are
for detecting vulnerable-yet-benign apps. For example, Com-
Droid [11] and Epicc [12] identify application communication-
based vulnerabilities. CHEX [13] identifies potentially vul-
nerable component interfaces that are exposed to the public
without proper access restrictions in Android apps, using
data-flow-based reachability analysis. Amandroid [14] and
DroidSafe [15] present a general information flow analysis
framework for Android applications. All of the above solutions
focus on individual app analysis, and none of them provides
a complete solution against malware collusion attack.

XManDroid [9] provides a runtime monitoring of commu-
nication links between apps. It develops communication clas-
sification policies based on certain permissions combinations.
XManDroid has limitations in distinguishing benign ICC flows
from colluding ones, giving a high number of false alerts
as demonstrated in our experiments. That solution is more
appropriate for use to monitor a small number of apps already
installed on a device, as opposed to screen a large number of
apps (e.g., in Google Play Market) for possible collusion.

Because of the wide usage of ICC calls in benign apps
pairs, accurate classification is quite challenging. We argue that
practical solutions for detecting Android malware collusion
needs to satisfy several requirements:

• To be able to characterize the context associated with
communication channels with fine granularity,

• To define security policies for classification that minimize
false alerts,

• To be scalable to a large number of apps (e.g., tens of
thousands of apps).

The purpose of this position paper is to experimentally
demonstrate the difficulties and technical challenges associ-
ated with applications collusion detection. We developed a
static analysis tool to model the Intent-based ICC of Android
applications. We constructed an ICC Map to capture pairwise
communicating channels, and analyzed the ICC calls among
2,644 free popular applications from Google Play market.



These apps have passed multiple screening tools and are
considered benign. 84.4% of these benign apps have external
ICC calls. Furthermore, we apply a set of classification policies
in the existing XManDroid [9] collusion detection solution
to these communicating apps. Our results show that these
permission-based classification policies trigger a large number
of false alerts in benign apps pairs.

To overcome the deficiencies in the existing work (namely,
reducing the number of false alerts), we argue that there is a
need for a more practical solution based on in-depth static flow
analysis. We sketch a promising approach and give specific
examples to show how to discover the context associated with
benign ICC flows, and to formulate more fine-grained policies.

II. MALWARE EVOLUTION AND ATTACK MODEL

Malware collusion is a new malware generation attack that
is very challenging to detect under the existing conventional
screening techniques. A collusion attack occurs when ma-
licious applications, likely written by the same adversary,
collaborate to gain a set of permissions to perform malicious
tasks. In malware collusion, each colluding malware only
needs to perform a certain functionality, which may make
it appear benign to evade the conventional detection tools.
Hence, malware writers have strong motivation to write col-
luding malware to evade standard detection. Figure 1 depicts
the application collusion threat model through Intent-based
inter-component communication (ICC). Colluding applications
may abuse system resources (e.g., sending spam SMS) or leak
sensitive data. Colluding applications also may communicate
indirectly, e.g., through shared files, or through covert channels
as demonstrated in [10]. Detecting covert-channel based apps
collusion remains an open problem.
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Fig. 1. Application collusion threat model via ICC.

In this paper, we focus our analysis on the Intent-based
ICC channels which are standard communication channels
in the Android. Colluding applications can use explicit or
implicit Intents for inter-app communications. The explicit
Intent specifies the target component/app, while the implicit
Intent specifies the action string and will be delivered to any
component that declares to handle this action.

In order for the attacker to make her/his apps collusion
always succeed, she/he should use inter-app explicit Intents
to guarantee that the Intent will be delivered to the correct

component. Colluding apps based on inter-app implicit In-
tents may not always succeed since there is a chance that
the implicit Intent will be wrongly delivered to a different
component/app not the one intended by the attacker in her/his
collusion scenario. This depends on the other apps installed on
the mobile device and what are the actions they can handle.
Therefore, using inter-app explicit Intents make the collusion
more successful than using inter-app implicit Intents.

III. ICC CHANNEL CHARACTERIZATION

The purpose of our analysis is to study the inter-app
communication via ICC in Android and investigate whether
it is commonly used or not. To achieve this, we de-
fine ICC Map to identify the group of communicating
apps by capturing the ICC channels between them. In
our ICC analysis, we focus on all Intent-based ICC APIs
such as startActivity(Intent i), startService
(Intent i), and sendBroadcast(Intent i).

A. ICC Map Construction

The objective of the ICC Map is to capture and identify all
the intra- and inter-app ICCs of an application.

Definition 1. ICC Map is a directed graph G(V,E) for app
A. Each node v ∈ V in G represents a component or action
name, and each edge e ∈ E in G represents an ICC API.
There are two types of communication:

• Internal communication: component X is communicating
with component Y , where both X and Y are internal
components in app A.

• External communication: component X is communicat-
ing with component Y , where component X is in app A,
and component Y is in app B.

To determine if the app has an external communication,
we get the list of components and their actions defined in the
manifest of the app. Then, for each target component or action
we find during our analysis, we match this target component
with this list. If this target component is not defined as one of
the internal components, we label it as an external component
and infer that this application has external ICC.

For each app, we store the ICC Map information
as a set S consisting of multiple four-item tuples
{< ICCNamek, sourceComponentk, targetComponentk,
typeOfCommunicationk >}, where

• ICCName is the API name of ICCk, such as
startActivity() and startService()

• sourceComponent is the name of the component which
initiates the ICCk (exit point). It is a subclass of
Activity, Service, BroadcastReceiver

• targetComponent is the name of the component which
receives the ICCk (entry point). It is a subclass of
Activity, Service, BroadcastReceiver

• typeOfCommunication is the type of ICCk communi-
cation, internal or external.

Our goal is to find all Intents used in the ICC APIs
to identify the source and target components linked by the
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Fig. 2. Partial ICC map for abc.ssd.TrafficInfoCheck application.

Intents. We utilize the data-flow analysis in Soot framework1

to find the Intent object used in the ICC API. Specifically, we
use data-flow analysis to construct the data dependence graph
(DDG) of intra- and inter-procedural dependences to track the
dependences between the definition and use of Intents in a
given app. The DDG is a common program analysis structure
which represents inter-procedural flows of data through a
program [16]. The ICC Map graph is constructed based on
the ICCMap information set S.

B. Example of ICC Map

Figure 2 shows an example of partial ICC Map for
abc.ssd.TrafficInfoCheck app. It is an app to
display information about the Japanese railway service.
In this example, there are five ICC APIs. This map
is constructed based on the ICCMap information set
which has five tuples for this example. For instance,
<startActivity(), abc.ssd.TrafficInfoCheck.TrafficInfoActivity,
android.intent.action.VIEW, external> is one tuple in the ICC
Map information set S. This tuple can be interpreted as there
is an ICC call startActivity() from the source com-
ponent (abc.ssd.TrafficInfoCheck.TrafficInfo
Activity) to a target component which declares to handle
this action android.intent.action.VIEW. This target
component is an external component since none of the internal
components in this app can handle this action. Only other
components in other apps, which are declared to handle this
action, will receive the request. Hence, we infer that this app
is communicating with another app through this action.

IV. EXPERIMENTAL EVALUATION

The purpose of this experiment is to show the difficulties
and challenges in classifying benign Android ICCs from
colluding ones. In particular, the objective of this experiment
is to answer the following questions:

1) How often do benign apps perform inter-app communi-
cations with other apps?

2) How effective is the existing collusion detection solution
(namely XManDroid) in terms of false positive rate?

We implemented a static analysis tool in Java to construct
the ICC Map for a given Android app. We performed our
ICC characterization study on 2,644 free popular real-world

1http://www.sable.mcgill.ca/soot

Android apps from Google Play market. These apps covering
various application categories and different levels of popularity
as determined by the user rating scale. We checked these apps
using different tools such as VirusTotal2 and Elish et al. [2].
All these tools indicate that these apps are benign.

A. ICC Analysis on Benign Apps

For each app, we construct the ICC Map to capture all types
of communication that the app performs. In particular, we need
to find whether the app is interacting with other apps or not.
We found that 2,230 apps (84.4%) out of 2,644 apps perform
external ICC with other third party or built-in apps by either
using implicit or explicit Intent. Table I summarizes our ICC
analysis on 2,644 free popular apps.

For the apps with the external ICC (84.4%), 298 apps
(11.3%) use explicit Intent ICC. In particular, these apps
send external ICC to other third party apps by specifying
explicitly the name of the target component. On the other hand,
1,932 apps (73.1%) use implicit Intent ICC (not specifying
the target component) for communicating with other third
party or built-in apps.

B. Collusion Detection Using XManDroid

XManDroid [9] is a runtime monitoring of communication
links between apps, and it defines communication classifi-
cation policies based on certain permissions combinations.
XManDroid suffers from high false positives as it is acknowl-
edged by its authors. We confirmed this property by evaluating
a set of XManDroid’s policies on randomly selected 20 benign
apps pairs. We found these 20 benign apps pairs using our
ICC Map analysis. Each pair uses direct explicit Intent ICC
channels for the communication between the apps. We found
that 11 out of 20 benign pairs of apps are misclassified as
collusion according to XManDroid’s policies, a very high
false positive rate (55%). Figure 3 shows the number of the 20
benign apps pairs that trigger alerts per XManDroid’s policy.

The empirical results indicate that many Android apps are
interacting with other third party or built-in apps through
ICC channels. This ICC-based communication provides a
potential opportunity for the attackers to develop malicious
colluding apps by utilizing the ICC APIs in a similar way as
in the communication between the benign apps. Therefore,
it is challenging to develop a detection technique that can

2https://www.virustotal.com



TABLE I
SUMMARY OF ICC ANALYSIS ON 2,644 BENIGN APPS. IMPLICIT AND

EXPLICIT INTENT ICC ARE USED FOR COMMUNICATION BETWEEN APPS.

Action Used in External Implicit Intent ICC # of Apps (%)

android.intent.action.VIEW 1870 (70.7%)
android.intent.action.SEND 943 (35.7%)
android.intent.action.DIAL 399 (15.1%)
android.intent.action.GET CONTENT 275 (10.4%)
android.media.action.IMAGE CAPTURE 231 (8.7%)
android.intent.action.CALL 158 (6.0%)
android.intent.action.PICK 139 (5.3%)
android.intent.action.SENDTO 122 (4.6%)
android.media.action.VIDEO CAPTURE 62 (2.3%)
android.intent.action.DELETE 53 (2.0%)
android.intent.action.EDIT 48 (1.8%)
android.speech.action.RECOGNIZE SPEECH 45 (1.7%)
android.intent.action.MEDIA MOUNTED 42 (1.6%)
android.intent.action.INSERT 33 (1.2%)
android.intent.action.SEARCH 20 (0.8%)
android.intent.action.RINGTONE PICKER 19 (0.7%)
android.intent.action.WEB SEARCH 12 (0.5%)
android.intent.action.SYNC 3 (0.1%)
android.intent.action.ANSWER 2 (0.1%)

# of apps with external implicit Intent ICC 1932 (73.1%)

# of apps with external explicit Intent ICC 298 (11.3%)

Total # of apps with external ICC 2230 (84.4%)

Total # of apps with Internal ICC 414 (15.6%)

differentiate well between non-malicious ICC and malicious
ICC. The reason is that most of the benign apps are interacting
with other apps according to our empirical results, which
makes it challenging to develop a detection mechanism.
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Fig. 3. Histogram showing the number of the 20 benign apps pairs that
trigger alerts per XManDroid’s policy [9]. Some apps pairs trigger alerts for
more than one policy. XManDroid’s policy can be found in [9].

V. COLLUSION DETECTION WITH CROSS-APP DATA-FLOW
ANALYSIS

The above experiments show the challenges in distinguish-
ing benign inter-app ICCs from colluding inter-app ICCs in
practice, since most of the apps perform external commu-
nications. In this paper, we proposed ICC Map to statically
characterize the inter-app ICC channels among the Android
apps. This ICC Map does not provide a solution for apps
collusion detection but it helps to identify pair or group of
communicating apps. Thus, one can utilize this ICC Map to
first identify the communicating apps. Then, a set of security
policies can be defined and applied to differentiate between
benign communicating apps and colluding ones.

There may be multiple ICC calls between two apps. The
sensitivity of each ICC call may differ substantially and needs
to be analyzed case-by-case. Permission-based policies cannot
achieve this granularity. Inferring the ICC sensitivity requires
in-depth data-flow analysis in both apps, detailing how the
data is created, modified, and consumed. Policies based on
such an analysis will be more fine-grained than permission-
based policies, reducing false alerts on benign ICCs.

We argue the need for in-depth static flow analysis (e.g.,
definition-use relations) in both source and destination apps
for collusion detection. The key is the discovery of the context
associated with benign ICC flows. The discovery requires new
static program analysis algorithms and data structures. Static
analysis-based solution provides complete analysis coverage,
and scalable to analyze large number of apps. Admittedly,
static analysis-based solution in general is affected by ob-
fuscated code and can not handle dynamic code loading.
However, we argue that any successful collusion detection
technique should be comprehensive, scalable, and not limited
by the device’s resources constraints. Hence, we advocate the
use of static analysis-based solution for collusion detection
because of the scalability and completeness provided by the
static analysis.

Existing work on single-app classification showed that
statically extracted features on user-trigger dependence, i.e.,
the degree of sensitive API calls having def-use dependence
relations on user inputs3, is very effective [2], [17]. Benign
single apps have a high degree of user-trigger dependence,
whereas malware – often performing activities under stealth
mode – does not. Hence, it is conceivable to write similar
user-trigger dependence policies for collusion detection, i.e.,
how much the app actively involves the user in implicitly
authorizing inter-app ICC calls. Such a policy is under the
hypothesis that benign ICC flows are intended and initiated
by the users (at the source app), whereas colluding ones are
not. As a future work, we plan to design and implement such
policies to differentiate between benign inter-app ICC and
malicious inter-app ICC.

Admittedly, all policies have their limitations and may be
bypassed by sophisticated malware writers. Yet, the advantages
of fine-grained policies are twofold: making the tool more

3User inputs may be onClick(), onItemClick(), etc.



usable by reducing false alerts, and creating bigger obstacles
for malware to bypass.

VI. CONCLUSIONS AND FUTURE WORK

In this position paper, we argue that it is very challenging
to detect malware collusion. We demonstrate the challenges
through experimental evidence. The experimental results in-
dicate that many Android apps communicate with other apps
through ICC channels, which makes it challenging to develop
a detection mechanism without generating many false alerts
as in XManDroid [9]. None of the existing solutions provides
a complete solution against app collusion attack. An effective
solution should be scalable to a large number of apps, and
define policies for classification that minimize false alerts.

For future work, we plan to utilize our ICC Map for
application collusion detection and define security policies to
differentiate between benign inter-app ICC and colluding inter-
app ICC. Our goal is to defend against the malware collusion
attack in the Android system.
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