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Abstract—Today, much of our sensitive information is stored
inside mobile applications (apps), such as the browsing histories
and chatting logs. To safeguard these privacy files, modern mobile
systems, notably Android and iOS, use sandboxes to isolate apps’
file zones from one another. However, we show in this paper
that these private files can still be leaked by indirectly exploiting
components that are trusted by the victim apps. In particular,
we devise new indirect file leak (IFL) attacks that exploit browser
interfaces, command interpreters, and embedded app servers to
leak data from very popular apps, such as Evernote and QQ.
Unlike the previous attacks, we demonstrate that these IFLs can
affect both Android and iOS. Moreover, our IFL methods allow
an adversary to launch the attacks remotely, without implanting
malicious apps in victim’s smartphones. We finally compare the
impacts of four different types of IFL attacks on Android and
iOS, and propose several mitigation methods.

I. INTRODUCTION

Mobile applications (apps) are gaining significant popularity
in today’s mobile cloud computing era [3], [4]. Much sensitive
user information is now stored inside mobile apps (on mobile
devices), such as Facebook authentication tokens, Chrome
browsing histories, and Whatsapp chatting logs. To safeguard
these privacy files, modern mobile systems, notably Android
and iOS, use sandboxes to isolate apps’ file zones from one
another.

However, it is still possible for an adversary to steal private
app files in an indirect manner by exploiting components that
are trusted by the victim apps. We refer to this class of attacks
as indirect file leaks (IFLs). Fig. 1 illustrates a high-level IFL
model. Initially, an adversary cannot directly access a private
file, formulated as a : s. If the adversary can send crafted
inputs to a deputy1 inside the victim app (a → d) and these
inputs can trigger the deputy to send the private file to the
adversary (d → s ⇒ a), then the adversary can indirectly
steal the private file. The whole process, a → d → s ⇒ a,
achieves the goal of s ⇒ a, causing an IFL.

In this paper, we devise new IFL attacks that exploit browser
interfaces, command interpreters, and embedded app servers
to leak files from very popular apps, such as Evernote and
Tencent QQ. Unlike prior works [51], [47] that only show local
IFL attacks on Android, we demonstrate that three out of our
four IFL attacks affect both Android and iOS. We summarize
these attacks below.

• sopIFL attacks bypass the same-origin policy (SOP),
which is enforced to protect resources originating from

1We borrow this term from the classic confused deputy problem [31] to
represent a trusted component in victim apps.
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Fig. 1. A high-level IFL model.

different origins (i.e., the combination of scheme, do-
main, and port), to steal private files via browsing inter-
face deputies. Although our prior work [47] has demon-
strated such attacks on Android by exploiting numerous
Android browsers’ SOP flaws on the file:// scheme,
we are extending it in this paper to a number of vulnerable
iOS apps, such as the very popular Evernote, Tencent
QQ, and Mail.Ru. We also confirm that the latest iOS 8
fails to enforce the appropriate SOP on file://. In
our analysis, the root case of this attack is that the legacy
web SOP is found to be inadequate for the local schemes,
such as file://. Eradicating the problem may call for
an enhanced SOP.

• aimIFL attacks also leverage browsing interfaces as
deputies, but they do not need to violate SOP. It can do
so by injecting and executing unauthorized JavaScripts
directly on target files, instead of requiring a malicious
file to bypass SOP to access target files as in the sopIFL
attacks. Popular Android browsers, such as Baidu, Yan-
dex, and 360 Browser, can be easily compromised in this
way, allowing their private files (e.g., cookie and brows-
ing history) to be stolen. The high-profile 360 Mobile
Safe and Baidu Search are also exploitable. Besides these
Android apps, we further uncover a vulnerable iOS app,
myVault.

• cmdIFL attacks exploit command interpreters as
deputies inside victim apps to execute unauthorized
commands for file leaks. We demonstrate that the top
command apps on Android, Terminal Emulator and SSH-
Droid, can be stealthily exploited to execute arbitrary
commands, possibly with the root privilege. This will
jeopardize their own files (e.g., command histories and



private configuration files), sensitive user photos stored
on SD cards, and even other apps’ private files.

• serverIFL attacks send unauthorized file extraction
requests to embedded app server deputies inside victim
apps to obtain private files. All of the tested popular
server apps, such as WiFi File Transfer (Android) and
Simple Transfer (iOS), are vulnerable to these attacks. It
is worth noting that both the cmdIFL and serverIFL
attacks use previously unexplored deputies—command
interpreters and embedded app servers—to launch IFL
attacks for the first time in mobile platforms.

Besides the cross-platform vulnerability, our IFL methods
also allow an adversary to launch the attacks remotely, without
implanting malicious apps in victim’s phones as in prior works
[51], [47]. These IFL attacks can be launched both locally
(in the same phone) and remotely (in an Intranet/Internet).
Table I highlights the identified IFL vulnerabilities and their
major attack channels. Besides local IFL attacks, we show that
browsers, such as Baidu and Yandex Browser, can be remotely
exploited by enticing the victim to access a web page. Email
apps (e.g., Mail.Ru) and social apps (e.g., QQ) can be similarly
compromised if the victim opens a malicious attachment or file
transmitted by a remote adversary. In other remote attacks, the
adversary can scan the whole Intranet, locate open ports, and
exploit vulnerable server apps installed on the victim phone.

Furthermore, we analyze the differences between Android
and iOS in terms of the impact of the IFL attacks. These
differences are caused by different system architectures and
app design practices between Android and iOS. Our analysis
shows that a common iOS app practice could lead to more
powerful and pervasive sopIFL attacks on iOS than Android.
On the other hand, three iOS system characteristics help lessen
the impacts on iOS for the other three IFL attacks. These
findings can help developers and OS providers build more
secure apps and mobile systems.

Ethical considerations. All of our vulnerability testing is
conducted using our own mobile devices and test accounts.
The tests never affect the data security of real-world users. As
the IFL attacks in mobile apps are client-side vulnerabilities,
they cannot affect the server-side integrity.

Real-world impacts. We have reported most of the identi-
fied vulnerabilities to their vendors in a responsible way and
are in the process of reporting the remaining vulnerabilities.
All of the contacted vendors have acknowledged our reports.
For example, Evernote has listed us in its security hall of
fame. Baidu has ranked one of our reports as the most valuable
vulnerability report of the second quarter of 2014, and Qihoo
360 has issued us the highest award in its mobile bug bounty
program history. We have also offered our suggestions to the
vendors to fix the identified vulnerabilities.

Contributions. To summarize, we make the following three
contributions:

• We devise four new IFL attacks that, for the first time,
can affect both Android and iOS and are exploitable not
only locally but also remotely. (Section III & IV)

• We identify a number of zero-day IFL vulnerabilities in

TABLE I
FOUR IFL VULNERABILITIES AND THEIR ATTACK CHANNELS.

Attack Channels
Remote Local

sopIFL
Evernote, Tencent QQ UC & QQ browsers

Mail.Ru 360 & Mail.Ru Cloud

aimIFL
Baidu, Yandex, and 360 browsers

360 Mobile Safe, Baidu Search, myVault
cmdIFL SSHDroid Terminal Emulator

serverIFL WiFi File Transfer, Simple Transfer

popular Android and iOS apps and uncover a serious SOP
issue in the latest iOS 8 system. (Section IV)

• We analyze the differences between Android and iOS in
terms of the IFL attacks’ impacts and propose several
methods to mitigate the attacks. (Section V & VI)

II. BACKGROUND

A. Sandbox-based App Isolation
Both Android and iOS use sandbox-based app isolation to

build a trustworthy mobile environment. Each app resides in
its own sandbox, with its code and data isolated from other
apps. This isolation is usually enforced at the kernel level. For
example, Android uses UNIX UID-based protection to isolate
each app, in which each app is treated as an independent user
and runs in a separate process with a unique uid.

Each app’s sensitive files are stored in their own system-
provided isolated (or private) file zone. Unless an app actively
leaks a file (i.e., a direct file leak), other apps have no access
to the protected files. The widely deployed SEAndroid MAC
system [41] further thwarts the risks incurred by direct file
leaks. However, IFLs can still occur in the presence of both
sandbox-based isolation and MAC. Although the actual exe-
cuter of the file access is the legal victim app, the file request
is actually initiated and crafted by an adversary. Encryption-
based defenses, such as encrypting all private app files, face
similar limitations as the MAC. To sum up, IFL remains a
serious, and yet unsolved, threat, which motivates our study.

B. Terminology
In Table II, we summarize the terms used throughout this

paper.
TABLE II

TERMS AND THEIR DESCRIPTIONS.

Term Description

Private files The files stored in apps’ isolated file zones. In nonlocal IFL
attacks, they also include files on a SD card, e.g., user photos.

Target file A private file the adversary wants to steal in an IFL attack.

Permission A form of privilege representation. For example, the INTERNET
permission on Android and the Contact permission on iOS.

Root A superuser privilege. For example, a rooted phone is a phone
that enables superuser privilege for apps.

Browsing Or browsing component. A component with browsing capabili-
interface ty, usually built with Android’s WebView or iOS’s UIWebView.

Command An app component that can interpret and execute commands.interpreter
App server A server component embedded in an app.

III. THE IFL ATTACKS

In this section, we first describe the adversary model and
then detail the four types of IFL attacks introduced in Sec-
tion I.



A. Adversary Model

We consider the following three types of adversaries in
our IFL attacks. A local adversary can launch only local
attacks, whereas the Intranet and Internet adversaries remote
IFL attacks.

• A local adversary is an attack app installed on the same
smartphone as the victim app. It requires few or no
permissions and does not exhibit any typical malicious
app behavior [50]. The root privilege is never used by
this attack app. We also do not consider screenshot
attacks [34] that require strong assumptions.

• An Intranet adversary resides in the same Intranet as
the victim’s mobile device. It can send network requests
to any other node within the Intranet. It can sniff the
nearby wireless traffic and retrieve unencrypted content.
We do not assume that it can launch effective ARP
spoofing attacks, as network administrators can detect
such anomalous events.

• An Internet adversary can be located in any host in the
Internet. It remotely compromises a victim by (i) enticing
a victim to browse a web page under the adversary’s
control, and/or (ii) sending the victim a malicious file
via email, chatting app, social network, and other means.

B. Bypassing SOP on Browsing Interfaces

The sopIFL attacks bypass SOP to steal private files via
browsing interfaces. The deputy in this attack is the browsing
interface or rendering engine, whose SOP enforcement is
flawed and cannot prevent malicious JavaScript codes from
accessing a private file. All apps that contain browsing com-
ponents are potential victims.

The file:// scheme is an ideal medium to launch the
sopIFL attacks. Two parts of SOP enforcement on file://
can be exploited to steal local private files. The adversary can
cross the origin from a web domain to access local file content,
if the cross-scheme SOP enforcement for http(s):// to
file:// (labelled as SOPf1) is broken. Alternatively, the
adversary can leverage a local malicious HTML file in one
path to steal a target file in another path. In this case, the
file:// SOP enforcement between the two file origins (la-
belled as SOPf2) must be bypassed. Since failure of enforcing
SOPf1 is rare in modern rendering engines, we focus on the
sopIFL attacks that will bypass the SOPf2.

Our recent study [47] shows that Android does not effec-
tively enforce SOPf2. However, little is known about iOS.
This is where our contribution for the sopIFL attacks lies.
Contrary to our expectation, these attacks can have higher
impact on the iOS ecosystem than the Android’s. Our testing
using iPhone 6 reveals that even the latest iOS 8 does not
properly enforce SOPf2. Indeed, iOS never guarantees this
policy (Section IV-A). In Section V, we identify a common
practice among the iOS apps that could lead to more pervasive
and powerful sopIFL attacks on iOS than Android.

We believe that the root problem is that the legacy SOP
cannot adequately cover the local schemes, such as file://.
The typical web SOP principle (i.e., the legacy SOP) allows

file A (at file:///dir1/a.html) to access file B (at
file:///dir2/b.txt) because the two origins share the
same scheme, domain (i.e., 127.0.0.1 or localhost), and port. In
practice, this legal behavior fails to meet the security require-
ments for file://, especially in the mobile environment.
Therefore, an enhanced SOP for local schemes, such as adding
the “path” element to the current three-element SOP tuples, is
needed for eradicating this vulnerability. We reported our iOS
findings to Apple on 19 January 2015 and suggested them to
use an enhanced file:// SOP at the system or engine level.

C. Unauthorized JavaScript Execution on Target Files

The aimIFL attacks could be regarded as an advanced
variant of the sopIFL attacks. Both attacks use the browsing
interface as the deputy, but the aimIFL attack does not violate
SOP. It can do so by injecting and executing unauthorized
JavaScripts directly on target files, instead of requiring a
malicious file to bypass SOP to access target files as in the
sopIFL attacks.

The aimIFL attacks usually consist of two steps. Unau-
thorized JavaScript codes are first injected into the target
file. This can be achieved in different ways, depending on
the type of the target files. For example, if the target is a
cookie file, the JavaScript codes can be injected via a website’s
cookie field. The target files are then loaded and rendered. The
previously injected JavaScript is executed to steal the current
file content via an HTML document object model variable,
such as document.body.innerHTML. As JavaScript only
accesses the current document, this attack does not violate
SOP, thus setting this attack apart from the sopIFL attack.

It is worth noting that the two steps can also be performed
simultaneously without the user’s knowledge. A victim user’s
private files will be stolen when he browses a web page under
the attacker’s control. In this paper, we focus on designing
remote aimIFL attacks, although they can also be conducted
locally.

We identify two types of remote aimIFL attacks illus-
trated in Fig. 2. In the first type, a web page tries to
load a target file through local schemes like file:// and
content://. The file can be loaded by a file link or an
HTML iframe. The link-based loading requires an extra user
clicking, whereas the iframe-based loading is automatic and
does not require any user action. Before loading the target
cookie file, the web page injects malicious JavaScript codes
(e.g., <script>alert(document.body.innerHTML)
</script>) via the web cookie field. Once the cookie
file is successfully loaded, the JavaScript inside it can steal
the cookie content. As will be shown in Section IV-B, the
popular 360 Mobile Safe, Baidu, and Yandex browsers are all
vulnerable to this type of aimIFL attack.

The second type of the aimIFL attacks does not actively
load and render target files. Instead, it exploits victim apps’
ability to load the content of target files into a renderable user
interface (UI), such as those containing WebView widgets.
For example, some browser apps load browsing histories
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Fig. 2. Remote aimIFL attacks.

from the history file into a renderable UI. Using this app-
loading feature, an adversary simply injects the JavaScript into
the target file. For example, as illustrated in Fig. 2(b), the
adversary injects an unauthorized JavaScript into the history
file through the title or URL field of a web page. When the user
switches to the renderable UI, a new history log containing the
malicious title or URL is displayed. The embedded JavaScript
is then executed to steal the history file. These passively loaded
files are usually rendered in the local domain (e.g., under
file://). The adversary can also combine an aimIFL
attack with a sopIFL attack to steal other private files that
are not loaded by the victim apps. We will detail the affected
apps in Section IV-B.

D. Unauthorized Command Execution on Command Inter-
preters

The cmdIFL attacks exploit command interpreters (as
deputies) inside victim apps to execute file operation related
commands for IFL attacks. We consider explicitly embedded
command interpreters, such as those in command terminal
apps. In other words, (remote) code execution vulnerabilities
contained in host apps are out of the scope.

An app is vulnerable to a cmdIFL attack only when it
can be injected with unauthorized commands. To leak private
files, the injected commands can (i) set a world-readable file
permission by invoking the chmod command, (ii) export a file
to a public SD card via the cp command, or (iii) send a file
to a remote server through commands like scp. If the victim
app has root permissions, all of these commands can be used
to steal private files in other, possibly more sensitive, apps.

To discover and exploit a cmdIFL vulnerability, an adver-
sary needs to identify channels that can be used to confuse
command interpreters to accept unauthorized commands. The
cross-app component communication channel [25], [23] on
Android can be used to launch local cmdIFL attacks, if the
command interpreter components are exposed. An adversary
can also exploit the URL scheme [44] to achieve the same, if

not better, attack impacts. Moreover, general remote cmdIFL
attacks are also possible, if the command interpreter accepts
remote command requests. In addition, victim apps’ configu-
rations stored in public storage can be changed to indirectly
inject commands. Accessibility services can also be misused
to mimic user commands [32].

A cmdIFL attack could also be launched through a GUI to
attack file manager apps. An adversary can force these apps
to perform unauthorized UI-based file operations to leak file
contents. However, this is not a real threat, because such file
operations have to be conducted by victim users and thus
are easily noticed. A smarter adversary can wait for users
to open a sensitive file and launch screenshot attacks [34] to
sniff the content. We exclude this scenario also from our treat
model, because this requires the adversary to closely monitor
the victim’s activity.

E. Unauthorized File Extraction via Embedded App Servers

The confused deputies here are the app servers embedded
in victim apps. An adversary sends unauthorized file extrac-
tion requests to exploit vulnerable embedded app servers for
obtaining private files. The affected app servers are mainly
file servers (e.g., those that support http:// and ftp://
requests) that provide users with file transmission service be-
tween phones and desktops. The command servers mentioned
in the last section are another type of candidate servers. Some
apps that support multi-function servers are also affected, such
as the very popular AirDroid app, which has over 10 million
installs.

A serverIFL attack can be conducted in three ways. First,
a local attack can be launched from another app installed on
the same smartphone as the victim app. It scans the local hosts’
ports and sends packets to the port listened to by the victim
app. Second, adversarial nodes (e.g., phones or laptops) in
the same Intranet can attack the victim app in another device.
Within the same Intranet, it is also easy for an adversary to
identify a port opened by the victim app. Third, we show that
remote serverIFL attacks are also possible. Attack vectors
are delivered through the victim’s desktop browsers when they
browse a malicious web page.

A successful serverIFL attack may need to bypass
authentication set up to protect the victim app, such as an
authentication code (e.g., user password) or a confirmation
action (e.g., clicking a confirmation button). Our evaluation in
Section IV-D, however, shows that the current authentication
in server apps is nearly broken. Some apps use no or weak
authentication (e.g., using only four random numbers). Almost
all channels for transmitting authentication codes and subse-
quent session tokens are unencrypted. An Intranet adversary
can easily sniff these secrets to bypass the authentication step.

IV. UNCOVERING IFL VULNERABILITIES IN ANDROID
AND IOS APPS

A. SopIFL Vulnerabilities

We uncover a number of vulnerable iOS apps summarized
in Table III. We evaluate them using an iPhone 6 (with the



TABLE III
IOS APPS VULNERABLE TO THE SOPIFL ATTACKS.
Category Vulnerable Apps Attack Channel

Browser UC, Mercury LocalBaidu, Sogou, QQ browsers

Cloud Drive Mail.Ru Cloud Local & WebBaidu Cloud, 360 Cloud
Note/Read Evernote, QQ Reader Local & Web

Email Mail.Ru Remote
Social Tencent QQ Remote
Utility Foxit Reader, OliveOffice Local

latest iOS 8) and an iPad 3 (with iOS 7). Our evaluation shows
that both iOS 7 and 8—which are used in around 95 percent
of all iOS devices [1]—do not enforce SOPf2 at the engine
level. Since all iOS apps can use only the default web engine,
the current solution for mitigating the sopIFL vulnerabilities
can only be done on the application level.

To launch a sopIFL attack on the iOS platform, a “ma-
licious” HTML file must be delivered to the victim app. We
have identified three such channels.
Local The adversary can design stealthy iOS apps (e.g., the

Jekyll app [45]) to launch local sopIFL attacks, because
some iOS apps accept external HTML files from other
apps through the “open with” feature2. Similarly, Android
browsers often use exposed browsing interfaces [47]. We
notice that local attacks can also be conducted “remotely”
by leveraging other apps’ remote channels. For example,
an adversary first sends an HTML file to the popular
WeChat app installed on a victim device. Since WeChat
will not open this type of file, it will ask the user to open
the file using another app. We find that browser and cloud
drive apps are likely to be affected by these local attacks.

Web An adversary can deliver attack vectors through the web
service interfaces of mobile apps. For example, cloud
drive and note apps support file sharing on the web. An
adversary can share an HTML file with a victim via web
interfaces.

Remote Remote sopIFL attacks are possible for some iOS
apps. The attachment mechanism in email apps is an ideal
channel to launch targeted remote sopIFL attacks. For
example, once a Mail.Ru iOS user opens an attached
HTML file from an adversary email, the adversary can
steal the victim’s private Mail.Ru files remotely. Simi-
larly, the file sending mechanism in social apps, such as
the popular Tencent QQ, can also be exploited.

Besides HTML files, we anticipate other types of files for
launching sopIFL attacks. For example, the commonly used
PDF and flash file formats can execute embedded JavaScript
codes in a desktop environment [5], [17]. The current mobile
systems have limited support for flash and only run basic
JavaScript in PDF files. Once these systems are improved, we
expect that these new attack vectors will bypass the existing
protection. For example, WeChat is immune to the current
sopIFL attacks by disabling the opening of HTML files.
However, it allows opening PDF files to be opened, which

2Two “open with” demos implemented in Dropbox and WeChat are
available at http://goo.gl/H7KXeM.

TABLE IV
APPS VULNERABLE TO THE AIMIFL ATTACKS.

Attack Name Vulnerable Apps
aimIFL-1 via file:// Baidu Browser, On The Road
aimIFL-1 via content:// 360 Mobile Safe

aimIFL-1 via intent:// Yandex and 360 browsers
Baidu Search, Baidu Browser

aimIFL-2 on Android
org.easyweb.browser

Internet Browser, Smart Browser
Shady Browser, Zirco Browser

aimIFL-2 on iOS myVault
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Fig. 3. An aimIFL-1 attack exploiting Baidu Browser.

could be exploited for future sopIFL attacks.

B. AimIFL Vulnerabilities

We summarize the aimIFL vulnerabilities in Table IV.
As discussed in Section III-C, these vulnerabilities can be
classified into two types: aimIFL-1 and aimIFL-2.

aimIFL-1 attacks. We attempt an aimIFL-1 attack via
file:// on two Android apps, Baidu Browser and On The
Road. We find it difficult to directly load a file:// content
(e.g., via an HTML iframe) from a web page on Android.
We thus use an alternative method that asks users to click a
file:// link embedded in a web page. This method is able
to exploit On The Road, as the app renders the file:// link
clickable. However, similar to desktop browsers, file://
links in Baidu Browser are not clickable. We find that an
adversary can entice a victim to long-press the link, allowing
Baidu Browser to pop up a dialog that the user can click.
The target file is then rendered and its contents are stolen
automatically. The attack procedure is illustrated in Fig. 3.

We find the content:// scheme on Android can also
be exploited by aimIFL-1 attacks. This scheme is used
to retrieve content or data from the corresponding content
provider components. Surprisingly, we find that a web page
can load a local file via the content:// scheme if the
associated content provider implements the openFile(Uri
uri, String mode) API. Launching aimIFL-1 attacks
via content:// is therefore even easier than file://.
We have successfully launched this attack to remotely exploit
360 Mobile Safe. Because of the seriousness of this exploit,
360 has issued us the highest award in its mobile bug bounty
program history.



Terada [43] points out that the intent:// scheme can be
used to remotely attack local Android components. Following
this idea, we independently identify several popular browsers
and the Baidu Search app that can be exploited by aimIFL-1
attacks via intent://. These victim apps satisfy the follow-
ing three conditions, which make them exploitable.

• They contain Intent.parseUri() to intercept an
intent:// URI and generate an Intent structure.
This Intent can invoke any component of the victim,
even a private component that has not been exposed
to other apps. An adversary can thus design a crafted
intent:// URI to deliver attack vectors to a target
component.

• They include a component that imports external Intent
parameters to WebView.loadUrl(String url).
An adversary can thus control this component to render
an arbitrary URI.

• The victim component in the last step allows file://
access and its JavaScript execution. The victim can there-
fore render a target file via file:// and execute its
embedded JavaScript codes.

All the aimIFL-1 attacks discussed above affect only
Android apps. We will explain why it is hard to launch
aimIFL-1 attacks on iOS in Section V.

aimIFL-2 attacks. Launching the aimIFL-2 attacks suc-
cessfully requires two conditions. The victim app must be
able to load the content of a target file into a WebView-
based UI gadget, and the adversary must be able to inject
an unauthorized JavaScript into the target file.

We use the first condition to facilitate the search for
vulnerabilities. We focus on Android browsers and iOS
WebView-based apps in [9] and inspect their screenshots
to choose which apps to install and test. The WebView.
loadDataWithBaseURL API is useful for locating vul-
nerable Android browsers, because developers often invoke
this API to load the local content and their associated assets.
We use this API and its first parameter value (e.g., starting
with “file://”) to search Android browser codes and identify a
vulnerable open source Zirco browser. Interestingly, this vul-
nerable Zirco design is also used in several other browsers, in-
cluding “Browser for Android” (org.easyweb.browser)
that affects around one million users.

One iOS app, myVault, is exploitable by the aimIFL-2
attack. This app allows users to store their private photos,
bookmarks, and passwords. Its bookmark store page is an entry
point where a “malicious” bookmark can be injected to steal
the victim’s bookmarks. Even worse, as iOS does not enforce
SOP well on file://, an adversary can therefore steal other
sensitive content through a crafted bookmark.

C. CmdIFL Vulnerabilities

Table V lists the identified cmdIFL vulnerabilities. We
select command terminal and server apps in Google Play,
because these apps are more likely to contain command
interpreters than normal apps. More specifically, we evaluate
the top apps, Terminal Emulator and SSHDroid, as they are the

TABLE V
CMDIFL VULNERABILITIES.

Apps Vulnerability Cause Attack # of
Channel Installs

Terminal The command component is exposed. Local 10M+Emulator

SSHDroid The command server is Local & 500K+weakly protected. Intranet

<activity-alias android:name="RunScript"  

 android:targetActivity="RemoteInterface" 

 android:permission="jackpal.androidterm.permission.RUN_SCRIPT"> 

      <intent-filter> 

 <action android:name="jackpal.androidterm.RUN_SCRIPT" /> 

 <category android:name="android.intent.category.DEFAULT" /> 

      </intent-filter> 

</activity-alias> 

<permission android:name="jackpal.androidterm.permission.RUN_SCRIPT" 

 android:protectionLevel="dangerous" ... > 

 

<activity android:name="RemoteInterface" 

 android:excludeFromRecents="true"> 

      <intent-filter> 

 <action a:name="jackpal.androidterm.OPEN_NEW_WINDOW"/> 

 <category android:name="android.intent.category.DEFAULT"/> 

      </intent-filter> 

</activity> 

2 

1 

Fig. 4. Manifest excerpt of Terminal Emulator.

most likely to be installed by users with these requirements.
For example, Terminal Emulator for Android has over 10
million installs, whereas the top two terminal apps have less
than 0.5 million installs.

Both tested command apps are found to be vulnerable to
the cmdIFL attacks. A local attack app can execute arbitrary
commands using the identity of Terminal Emulator, such as
exporting its private files (e.g., command histories and private
configuration files) to a public SD card. The root cause of this
vulnerability is that the exposed terminal command component
can be invoked by other local apps with arbitrary command
parameters. Interestingly, we find that Terminal Emulator tries
to protect its command component with a dangerous-level
permission, as shown in part (1) of Fig. 4. The rationale
behind this design is that all command invocations (via
the jackpal.androidterm.RUN_SCRIPT action) now
have the appropriate authorization through the permission
mechanism. Unfortunately, the adversary does not need to
touch the protected command proxy component (“RunScript”).
Instead, it directly invokes the underlying command compo-
nent (“RemoteInterface” in part (2) of Fig. 4), which is by
default exposed by Android’s intent filter mechanism [23].
Consequently, a crafted input can force the “RemoteInterface”
component to execute commands. We reported this issue and
its demo attack code to Terminal Emulator’s github page, and
helped the open-source community patch the app [14], [7].

The top command server app, SSHDroid, is vulnerable to
the local and Intranet cmdIFL attacks. This app works as
an SSH server listening to the default port of 22, but it
cannot prevent unauthorized connectors. An adversary does
not need to fingerprint SSHDroid, because SSHDroid gives
this information to any connector. SSHDroid only has two user
name choices, the “user” in the normal case or the “root” on a
rooted phone. It also uses the default “admin” password if the



TABLE VI
SERVERIFL SECURITY WEAKNESSES IN THE TOP 10 SERVER APPS.

App App Transmission Immune to Effective
# of Installs*Platform Id Name Protocol Port Encryption Authentication File Upload Connection

CSRF Alert

Android

1 AirDroid http 8888 × (setting) X (user confirm) X X 10M - 50M
2 WiFi File Transfer http 1234 × (setting) × (setting) × × 5M - 10M
3 Xender http 6789 × X (four numbers) X × 1M - 5M
4 WiFi File Explorer http 8000 × × (setting) H# × 1M - 5M
5 com.file.transfer ftp 2121 × × X × 100K - 500K

iOS

6 Simple Transfer http 80 × × (setting) X H# 1,504 Ratings
7 Photo Transfer WiFi http 8080 × X (six bytes) X × 865 Ratings
8 WiFi Photo Transfer http 15555 × × (setting) X × 661 Ratings
9 USB & Wi-Fi Flash Drive http 8080 × × × × 462 Ratings

10 Air Transfer http 8080 × × (setting) X × 138 Ratings
* The app install numbers were counted on November 1, 2014. We use rating numbers to estimate the popularity of the iOS apps.

user does not change it in the settings. Hence, an adversary has
enough pre-knowledge to exploit this app and steal its private
files. More alarmingly, SSHDroid always tries to work as the
“root”. If it is exploited on a rooted phone, an adversary can
execute root commands and steal the private files of all the
installed apps.

D. ServerIFL Vulnerabilities

We test the top ten server apps from Google Play and the
Apple App Store to evaluate the serverIFL vulnerabilities.
Table VI summarizes the statistics of their security metrics.
All of the tested apps have at least one security weakness that
can be exploited to launch the serverIFL attacks.

Surprisingly, none of these apps provide encrypted trans-
mission between file requesters (e.g., users’ desktop browsers)
and file servers (i.e., the tested apps). Eighty percent of the
apps do not implement this important security guarantee at all.
This can cause serious consequences in the wireless setting,
which is assumed in these apps’ user models. Two apps also
provide this functionality which, however, is not enabled by
default. We find that the apps’ SSL encryption (when manually
enabled in the setting) accepts only self-signed certificates,
which causes security warnings in client-side browsers, thus
hurting the user experience.

The authentication used in these apps is very weak. Seven
of the ten tested apps do not enforce authentication, including
the most popular iOS server app, Simple Transfer. An Intranet
adversary can thus easily send unauthorized file extraction
requests. The apps that conduct authentication still do not
have guaranteed security due to the aforementioned lack of
encrypted transmission. An adversary can sniff wireless traffic
to obtain the secret information used for authentication or
the cookies used for post-authentication transmission. The
secret information used for authentication is generally not
strong, such as the four-number verification code used in
app #3 and the six-character password in app #7. Brute-force
attacks are therefore practical. For example, to crack Xender’s
authentication, an adversary only needs to try 10,000 times at
most.

Remote serverIFL attacks are also possible. We propose
an improved file upload CSRF (cross-site request forgery)
attack [8] for this purpose. An adversary uploads an HTML
or PDF file with malicious JavaScript codes through the file

upload CSRF. After the victim opens the uploaded file in his
desktop browser, the embedded JavaScript runs in the same
domain as other target files and can steal arbitrary file content.
We only describe the test results here:

• Apps #2 and #9 suffer from file upload CSRF, making
remote serverIFL attacks possible.

• Apps #4, #5, and #8 do not support file upload function-
alities, making them immune to file upload CSRF. How-
ever, the paid version of app #4 supports file uploading.

• Apps #6 and #7 allow only uploading photo files, making
them non-vulnerable.

• Apps #3 and #10 do not support viewing uploaded
files. Therefore, the attack vector (i.e., the embedded
JavaScript) cannot be executed in the victim’s desktop
browser.

• One app, AirDroid, embeds a secret token into each
GET/POST request URL. As CSRF cannot obtain this
token, the app is safe.

Launching stealthy serverIFL attacks usually requires
that victim apps do not have an effective mechanism to
detect illegal connections. Our evaluation reveals that only two
apps have such detection capabilities. AirDroid alerts users to
confirm or reject each new incoming connection and breaks
the last connection. This mechanism is effective in preventing
stealthy connections, because it is hard for a local attack app to
disable or envelop AirDroid alerts. Simple Transfer displays a
“connected” UI when it accepts its first connection. However,
it does not further implement multiple-connection detections
or warnings. This weakness allows an adversary to stealthily
connect to a victim app after the victim has established its
initial connection with a legal user browser.

To launch effective serverIFL attacks, an attacker could
fingerprint common server apps in advance. As shown in
Table VI, the protocols used in the tested apps are quite
indistinguishable (basically HTTP). However, the opened ports
have sufficient variability for identifying the apps. Moreover,
for the apps with the same port numbers, an adversary can
leverage different HTTP responses to distinguish them. Once
the adversary has constructed a database of fingerprints, it can
launch targeted serverIFL attacks on the apps.

V. ANDROID VS IOS
Our evaluation reveals four major differences between An-

droid and iOS in terms of the impact of the IFL attacks. We



discuss their implications below.
Implication 1: The common practice in iOS apps to open

(untrusted) files in their own app domain could lead to more
pervasive and powerful sopIFL attacks on iOS than Android.

We compare the file-opening behavior in the iOS and
Android versions of representative apps in different categories.
We choose two file types, HTML and PDF, for their ability
to carry attack vectors. We find that most of the tested iOS
apps open the HTML files by themselves. In contrast, the
corresponding Android versions choose to let dedicated apps
(e.g., browsers) handle the HTML files. The PDF files have
similar results. Opening untrusted files within the app’s own
domain is thus a common practice in iOS apps, whereas
Android apps generally ask dedicated apps to open files.
However, Google Drive and WeChat for iOS also require
explicit user actions to open HTML files outside the app. But
similar to other iOS apps, they open PDF files internally.

This common practice produces more attack surfaces for
iOS apps than their Android versions. Asking dedicated apps
to handle untrusted files is a more secure design, because
potential attack vectors are then kept away from the user’s
private files. The tested Android apps generally use this prac-
tice, which makes them immune to sopIFL attacks. Hence,
sopIFL attacks on Android are nearly local attacks that force
files opened in exposed browsing interfaces, which only affects
browser apps and careless apps. In contrast, iOS cases are
more pervasive and span multiple app categories. They are
also more powerful and can be local, web, or remote attacks,
as they do not necessarily require locally exposed components.

There are many possible reasons for iOS’s this design.
We believe that the lack of flexible data sharing on iOS is
an important reason responsible for the apps to open files
by themselves. Indeed, the iOS data sharing involves a non-
lightweight process of “exporting and importing,” possibly due
to the lack of public SD cards and a content URI mechanism,
both of which are supported on Android.

Implication 2: The randomized app data directory on iOS
makes it difficult to conduct the aimIFL-1 attacks on iOS.

The aimIFL-1 attacks usually require the knowledge of
a full file path. However, iOS assigns a random directory
for each app’s data zone, which makes it difficult for a
remote attacker to construct the full path of a target file.
Moreover, this iOS randomness is performed at every in-
stallation. Therefore, the directory of an app reinstalled on
the same phone will be different after each new installation.
An example of a randomized app directory is 3570E343-
2A5A-484E-BC86-7B3CC611D634, with the unified
path prefix /private/var/mobile/Applications/
(on iOS 7) and /private/var/mobile/Containers/
Bundle/Application/ (on iOS 8).

In comparison, Android names app data directories
according to the app package name. An adversary can
easily construct the app directory using the pattern
/data/data/packagename/. As apps generally do
not use their own randomness within this directory, it is
straightforward to obtain the full file path. We only find

one exception: Firefox uses a random path strategy in
its Android app design. An example of its full file path
is /data/data/org.mozilla.firefox/files/
mozilla/62x7scuo.default/cookies.sqlite
with the randomized directory underlined.

As randomizing the app directory is useful for thwarting
the aimIFL-1 attacks on iOS, we recommend the Android
developers to use this practice in their own app design.

Implication 3: Apple’s strict app review prevents iOS apps
from executing bash commands. An adversary therefore cannot
find targets to launch the cmdIFL attacks on iOS.

As stated in [45], Apple has strict regulations for reviewing
iOS apps submitted to the App Store. Apple’s app review
guidelines [2] briefly describe many scenarios that can lead
to an app rejection. Among them, rule 2.8 states:

Apps that install or launch other executable code
will be rejected.

This rule implies that running interpreted codes (e.g., bash
scripts) is forbidden by Apple. We thus cannot locate any iOS
apps that contain command interpreters, which is a necessary
condition for launching the cmdIFL attacks. Although a few
iOS apps (e.g., ipash ME) claim that they provide command
execution for iOS, they actually only mimic the output and do
not run the native commands. They therefore receive customer
reviews saying “It’s a fake command line.”

To sum up, this iOS restriction makes it nearly impossible
to launch the cmdIFL attacks on iOS, because there are no
suitable app targets in the App Store.

Implication 4: iOS generally does not allow background
server behavior, which reduces the chance of the serverIFL
attacks on iOS.

The success of launching the serverIFL attacks depends
on whether the adversary can attack victim apps when the
phone screen is off or locked. If victim apps do not support
background servers, then the attack timing window is short-
ened, thus reducing the chance of a successful serverIFL
attack. The evaluation in Section IV-D indicates that iOS
server apps usually only work in the foreground. Of the top
five iOS server apps, only Air Transfer can be attacked when
the screen is off. In contrast, all of the top five Android apps
support background server behavior and are thus exploitable
in the same phone setting.

We find that it is not easy for iOS developers to implement
background server behavior. They require advanced tricks [10],
[15] and have to worry about violating Apple app review
policies. Thus, developing an app server that can run in the
background is uncommon on iOS.

VI. MITIGATION METHODS

Application-specific defenses are required to mitigate exist-
ing IFL risks. Developers can refer to Section IV for avoiding
the same flaws shown in the existing vulnerable apps. System
flaws in Android and iOS, such as the SOP flaw mentioned in
Section III-B, should be also timely fixed. Four implications
in Section V will be useful to improve both app and system
security at different levels. For example, it is prudent for iOS



apps not to open untrusted files in their own app domain and
instead to ask dedicated apps to handle them.

We now offer two more suggestions, NoJS and AuthAccess,
to further mitigate IFL attacks.

• NoJS: disabling JavaScript execution in local schemes to
safeguard against the sopIFL and aimIFL attacks. The
serverIFL attacks based on file upload CSRF can be
similarly stopped by opening uploaded files as plain texts.

• AuthAccess: restricting commands and network requests
to access apps’ private file zone. Each access should be
explicitly authorized by users. By doing so, the cmdIFL
and serverIFL attacks can be mitigated.

Beyond vendors’ own ad hoc fixes, a central mitigation
solution is desirable. A possible way is to extend the existing
SEAndroid MAC system [41] by leveraging the fine-grained
context information to differentiate IFL attack requests from
normal requests. Prior works [28], [26], [20], [21] have shown
how to collect and enforce process-related context for tackling
local permission leak attacks. The local IFL attacks can be
handled in a similar way. However, it is challenging for
context-based enforcement to mitigate the remote IFL attacks
because remote entities are usually not under defender’s
control and thus their context cannot be easily obtained.
To address this problem, recently proposed user-driven and
content-based access control [40], [37] may be useful. We
will investigate how to leverage them to develop an enhanced
context-based MAC system for the IFL attack mitigation in
our future work.

VII. RELATED WORK

File leaks in mobile apps. Compared with the IFLs studied
in this paper, direct file leaks are a more straightforward type
of file leak. Many of these leaks were caused by the setting
an insecure (e.g., world-readable) permission for its private
files in the apps. For example, Opera [12] and Lookout [16]
have made this error. On the other hand, the victim app writes
sensitive files to public storage (e.g., SD cards and system
debug logs). Outlook [13] and Evernote [6] put their users at
risk in this way. The recent SEAndroid MAC system defends
against these direct leaks, whereas our IFL is still an unsolved
threat. Moreover, these direct cases are just local leaks on
Android, whereas we propose multiple forms of remote file
leaks across both Android and iOS.

Some IFL attack instances have been studied before, but
they focus only on their specific problems. For example,
Zhou et al. [51] study an attack with exposed Android con-
tent providers as confused deputies. By issuing unauthorized
database queries to these components, an adversary can steal
victim apps’ database files. This attack is one kind of local IFL
attacks and only exists on Android. Another example is our
previous FileCross attacks [47], which belong to the sopIFL
attacks discussed in Section III-B. However, it [47] only shows
local sopIFL attacks on Android, whereas we demonstrate
that sopIFL issues also exist in a number of iOS apps and
can be remotely exploited.

It is worth noting that a blog post [11] reported two local
sopIFL issues in Dropbox and Google Drive iOS apps over
two years ago, but did not mention how to deliver the attack
vectors (as we do in Section IV-A). This blog post used the
old iOS systems before the recent iOS 7 and 8 to test the
problem and did not show that this issue is widespread in the
current iOS ecosystem. We are also the first to identify its
fundamental cause: the legacy web SOP does not adequately
cover the local schemes. Compared with all of these isolated
IFL studies, we are the first to systematically study both local
and remote IFL attacks across Android and iOS.

Confused deputy problems on mobile. The IFL attack
is a class of the general confused deputy problem [31]. A
number of previous works have studied the permission-related
confused deputy problem on Android, called permission leak
or privilege escalation [25]. They have proposed detection sys-
tems based on control- and data-flow analysis, including Com-
Droid [23], Woodpecker [30], CHEX [35], DroidChecker [22],
Epicc [39], and SEFA [48]. Some Android app analysis
frameworks, such as FlowDroid [18] and Amandroid [46], can
be extended to detect this problem. However, it is difficult for
these static tools to analyze the IFL vulnerabilities, because
most of the IFL attacks do not have explicit vulnerable
code patterns. Using dynamic analysis tools (e.g., [27], [49],
[42], [19]) to construct automatic IFL detectors is therefore
desirable. We leave this for our future work. Furthermore,
none of the aforementioned studies identify confused deputy
problems on iOS. But as shown in our IFL attacks, it is equally,
if not more, important to develop detection tools for iOS.

Mobile browser security. Our sopIFL and aimIFL
attacks are related to mobile browser security. Related works
have studied the threats to Android WebView [36], [24], [38],
[47], the security risks in HTML5-based mobile libraries [29]
and apps [33], and unauthorized origin crossing in several
popular Android and iOS apps [44]. Differently, our focus
is file leaks via vulnerable browser components. Only the
aforementioned work [47] shares the same goal as our study.
In addition, a prior work [33] injects unauthorized JavaScripts
into HTML5-based apps, and their technique is similar to our
aimIFL attacks. However, as their goal is to compromise
the victim website’s online credentials (instead of our goal of
stealing local files), they do not need to overcome our chal-
lenge of launching local file-stolen attacks from a web origin
due to the SOP restriction. Moreover, our aimIFL attacks
apply to all mobile apps that contain browser components,
rather than just the HTML5-based apps shown in [33].

VIII. CONCLUSION

In this paper, we systematically studied indirect file leaks
(IFLs) in mobile applications. In particular, we devised four
new IFL attacks that exploit browser interfaces, command
interpreters, and embedded app servers to leak private files
from popular apps. Unlike the previous attacks that work only
on Android, we demonstrated that these IFLs (three of them)
can affect both Android and iOS. The vulnerable apps include
Evernote, QQ, and Mail.Ru on iOS, and Baidu Browser, 360



Mobile Safe, and Terminal Emulator on Android. Moreover,
we showed that our four IFL attacks can be launched remotely,
without implanting malicious apps in victim’s smartphones.
This remote attack capability significantly increases the im-
pact of the IFL attacks. Finally, we analyzed the differences
between Android and iOS in terms of the IFL attacks’ impacts
and proposed several methods to mitigate the attacks.
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