
Graphical User Interface for Virtualized Mobile
Handsets

Janis Danisevskis, Michael Peter, Jan Nordholz, Matthias Petschick and Julian Vetter
Security in Telecommunications

Technische Universität Berlin
Email: {janis,peter,jnordholz,matthias,julian}@sec.t-labs.tu-berlin.de

Abstract—Type-1 hypervisors have been suggested as a solution
to bring your own device (BYOD) for their ability to enforce strong
isolation. However, the lack of graphics acceleration support,
crucial to good user experience, in mobile virtual machines
(VMs) has limited the appeal of such solutions. We present a
system architecture for providing access to graphics acceleration
hardware to mobile VMs as well as a trusted and identifiable
input and output path between the user and a VM. We built a
prototype based on a small type-1 hypervisor and determined the
GPU virtualization penalty on the performance to be only 5 %.
A small impact on the trusted computing base (TCB) makes our
architecture a viable solution even for high security demands.

I. INTRODUCTION

Bring your own device (BYOD) poses the challenge of
consolidating two seemingly contradictory philosophies on a
single mobile handset. Private users expect to be in full control
of their mobile device, benefiting from the extensibility that
makes their smartphone smart. On the other hand, enterprises
that issue smartphones to their employees are interested in
mitigating the threat of a malware infection [38], which comes
with the extensibility and may eventually yield information
leakage. To that end, they seek to enforce very strict policies,
which may be perceived as overly restrictive by the device
owner.

Virtualization has been suggested as a solution to this
quandary [29], [13], [25]. Its formidable isolation properties
make for a suitable platform for providing multiple mutually
distrusting environments that can enforce individual policies.
But more than in the desktop and server realm, the user
experience of mobile devices hinges on their graphics output
performance. The lack of virtualization solutions for graphics
processing units (GPU) on mobile handsets, however, is an
obstacle to the wide adoption of virtualization for BYOD.

We propose an architecture that allows for secure screen,
input, and GPU sharing. Our approach allows to convey to the
user the identity of the virtual machine (VM) in the foreground
in a manner resilient to forgery. To show the viability of the
approach, we implemented this architecture on the basis of
L4Android [29]. We evaluated our prototype using off-the-
shelf high-level benchmarks as well as specially tailored mi-
crobenchmarks. To quantify the GPU virtualization overhead
of our prototype more precisely, we built a setup where a
single VM was granted direct, non-virtualized access to the
GPU. We measured a frame rate penalty of 5 % against this
pass-through setup with a benchmark that drove the device into

saturation. The frame rate penalty of the pass-through setup
was 11 % versus a non virtualized environment. For typical
graphics processing demands as required by the graphical user
interface or mobile games, our prototype matches the native
frame rate of 60 Hz with ease and little impact on the system
load.

Our contributions are:
• We propose an architecture for efficient and secure

switching of user input and output for virtualized environ-
ments on mobile handsets. Our approach counters spoof-
ing and eavesdropping attacks on user input and output
by providing a trusted and identifiable path between each
virtual machine and the user.

• To the best of our knowledge, we present the first
academic work on providing secure access to GPU com-
puting resources to virtualized environments on mobile
handsets.

• We implemented a prototype of the proposed architecture.
• We evaluated the virtualization overhead of the prototyp-

ical implementation of our proposed architecture.
The outline of this paper is as follows: We present the

prerequisites, challenges and requirements for our proposed
architecture in Section II. In Section III and IV, we present the
architectural design of the secure I/O management and GPU-
virtualization scheme, respectively, followed by a description
of our prototypical implementation (Section V). In Section VI
and VII we discuss the TCB impact of our design and present
the performance evaluation, both based on our prototypical
implementation. We put our work into context in Section VIII
before we conclude with Section IX.

II. GUI FOR VIRTUALIZED HANDSETS

Graphical user interfaces (GUI) for virtualized environments
on mobile handsets differ from GUIs in the desktop domain.
Handsets are constrained in memory, computational capabili-
ties, energy consumption and screen size. Also, the concept of
a windowing system has proven impractical on mobile devices.
We therefore focus on an efficient scheme that allows one
virtualized environment to take possession of the screen at a
time. And we make great effort to keep performance impact
to a minimum while making no compromises on isolation and
thus security.

We now discuss the challenges in framebuffer and input
handling as well as in providing efficient access to GPU

computing resources to the virtualized environments. We then
pose the minimal requirements on the hardware and software
that we determined as needed to build our architecture upon.
But before we do so, we refine the BYOD use-case from the
introduction and introduce an attack model.

A. BYOD Exemplary Use-Case

A mobile handset—smartphone or tablet—shall be used
by a user both as personal and business phone. It therefore
provides two environments, the business and the private en-
vironment. In the business environment, the user can access
internal communication or documents that may be confidential.
To protect corporate assets, a policy enforced in the corporate
compartment may encompass the following provisions:

1) Restricted network access, e.g. all data communication
must be routed through the corporate IT-infrastructure
via a VPN.

2) Restricted extensibility, e.g. the user can install no or
only a restricted set of applications.

3) No information flow to or from other environments on
the same device.

The second environment is for personal use by the user and
should be free of any restrictions. Therefore the rules 1 and
2 do not apply here. Policy 3 is redundant if the only other
environment is the business environment, but it should be up
to the user otherwise and may well be desirable for privacy
reasons.

B. Attack Model

For the use case laid out in the previous section, we discuss
our attack scenario. We assume that one of the environments
has been infiltrated by an attacker. Because of its open and ex-
tensible nature, we deem the private environment more prone
to being infiltrated, possibly by tricking the user into installing
a Trojan horse. In any case, the attack model presumes one
environment being under the control of an attacker, who is
trying to subvert the policy of the other environment.

We address three categories of attacks that the attacker
may mount on the non compromised environment, namely
spoofing, eavesdropping and evasion of isolation.

Spoofing
By spoofing we refer to two very similar attacks with
a subtle distinction. The first is a social engineer-
ing technique also known as phishing. The attacker
presents a dialog on the screen that is familiar to
the user, thereby tricking the user into giving away
confidential information such as login credentials.
Felt and Wagner [20] investigate this technique on
mobile handsets, but the problem extends also to
virtualized mobile environments. With the second
attack, the attacker also shows the victim familiar
screen content but then uses the thus gained trust for
feeding it false information.

Eavesdropping
The attacker could try to eavesdrop on the user input
and/or output of the other environment. Malware

Private Business

Fig. 1. The output of two different virtual machines on the same device. A
label at the top of the screen, indicating the origin of the rendition in the
client area below, is provided by the system and cannot be changed by the
client VM.

that eavesdrops on user input is also known as a
keylogger. A prominent example on desktop sys-
tems —although not intended as malware—is the
program xeyes. It shows two eyes following the
mouse pointer traveling across the screen. It works
even if the program is not in focus, which means
it receives user input events (here mouse motion
events) that were not intended for it. Eavesdropping
on the output [30] can be worthwhile for an attacker
indeed as every potentially confidential piece of
information that is viewed by the user eventually
passes trough the framebuffer as an output image.
On mobile handsets with on-screen keyboards in
particular the output response to user input allows
logging of keystrokes [22].

Isolation evasion
Evading the isolation of the virtualized environment
by gaining code execution outside the protection
domain is the ultimate goal for an attacker. When this
happens, all isolation guarantees are null and void.
Kortchinsky [26] presents an exploit of a weakness of
a virtual VGA-adapter that results in code execution
outside the attackers virtual machine. Danisevskis
et al. [16] and Clark [10], [15] independently ex-
ploited two different bugs in two different mobile
GPU drivers working by the same principle. Both
manipulate the GPU’s memory management and use
the GPU as an agent for arbitrary memory access.
In both cases, this leads to privilege escalation and
code execution in the privileged domain. While their
work is not related to virtualization, a similar flaw
in a virtualizing GPU driver would have devastating
effects on the isolation guarantees of the respective
virtualization scheme.

C. Challenges in Input and Output Handling

A framebuffer is a region of memory that holds a bitmap
of coded color values. A display controller scans such a

framebuffer periodically and sends the color values to the
screen. Each VM has its own framebuffer, to which it renders
its output, and it is the responsibility of the virtualization layer
to arrange for the display controller to receive the output of
the currently visible VM.

If multiple VMs share a screen, it may not be apparent to
the user which one is currently visible. To counter spoofing
attacks, we need a way to inform the user about which virtual
environment she is interacting with. This could be done via
special hardware such as a multicolor light-emitting diode
(LED) or a label on the screen [28]. Figure 1 shows two
possible states of the screen with two distinct labels at the
top of the screen. The label could be color-coded, a string
of characters, or a geometric pattern, but most importantly, it
must never be forgeable or manipulatable by any of the virtual
environments.

Preventing eavesdropping is more a technical rather than a
user interface design issue. The system itself must be designed
such that input events are only ever reported to the virtual
environment indicated by the label rather than to anyone who
requests them. The same goes for the output path. Crosstalk on
the output path that could result from, e.g., sharing a common
framebuffer must be eliminated at all cost.

It is no coincidence that what we described above reminds
of the principals of identifiability and trusted path as defined
by Yee [37] and which is summarized by the author as: “The
system protects me from being fooled.”

We see little potential for isolation evasion in the handling
of framebuffer and input events because both related hardware
components display controller and touchscreen do not typi-
cally use direct memory access (DMA) for writing memory.
It is conceivable however that an attacker who gains control
over the display controller redirects the scanout region such
that memory that contains secret key material is sent to the
screen where it can be recovered with a camera.

D. Challenges in GPU Virtualization

GPU virtualization is not classical device virtualization.
From a virtualization point of view, GPUs behave much more
like CPUs. They are highly programmable devices that fetch
their programs from memory, which even in non-virtualized
environments come from mutually distrusting entities. And
they can read from and write to any region of the physical
memory they can access, which, just like on a CPU, is
governed by a memory management unit (MMU). Therefore
these access restrictions must be administered with great care
to prevent an attacker from evading a protection domain by
means of the GPU.

When virtualizing CPUs without support for memory man-
agement virtualization (e.g. nested paging), one needs to resort
to shadow paging [11]. This leads to considerable overhead
because CPU page tables are highly dynamic and are usually
populated lazily. As it turned out, the execution model of the
GPU, which is job oriented without support for preemption,
is better suited to virtualization.

GPU drivers assemble and lay out the jobs in memory
and populate the corresponding context accordingly prior to
starting the job on the GPU. Unlike process page tables, GPU
page tables are not populated lazily. This static behavior is
well suited for applying shadow paging to GPUs without the
performance overhead that comes with handling dynamic CPU
address spaces.

Now that we have motivated and presented the requirements
for our architectural design, we discuss the minimal require-
ments, both for hardware and software, we impose on the
target platform.

E. Hardware Model

We base our architecture on the following exemplary hard-
ware model. We assume there are three main components. One
is the CPU, or multiple CPUs for that matter. Furthermore
there are a GPU and a display controller. All three have
access to shared physical memory. Access to this memory by
the CPUs and the GPU, at least, is mediated by individual
memory management units (MMUs). The display controller
must support at least two scanout regions or overlays that can
be configured to service different parts of the screen.

F. System Model

An architecture such as the one we are proposing cannot
stand without a surrounding infrastructure. Therefore we state
the following minimal system requirements for our architec-
ture. It goes without saying that being a virtualization system,
the runtime environment shall support virtual machines (VM).
The system must have a trusted boot procedure that gives the
VMs integrity and the notion of a persistent identity. It shall
also provide a means for inter-VM communication with low
latency. The bandwidth of these channels does not need to
be high. In fact, a low latency notification mechanism, such
as virtual interrupts, suffices if shared memory regions across
VMs are available.

Each VM is assigned a portion of physical memory, called
guest physical memory. The virtualization layer maps each
guest’s physical memory to a region of host physical memory
assigned to that guest. Depending on the platform’s capabili-
ties, the mapping is either performed in hardware (nested page
tables) or software (shadow page tables).

III. SECURE INPUT AND OUTPUT

Smartphones typically have a touch screen and a few me-
chanical buttons. The screen is driven by a display controller.
It scans a given region of memory, interprets the content as a
map of color values and feeds them to the screen. We set out
to building a dependable mechanism to share these resources
between two or more VMs, thereby labeling the output at all
times as depicted in Figure 1.

Our architecture comprises five components as depicted in
Figure 3. Two device drivers, one driving the display controller
and one driving the input devices (touchscreen and mechanical
buttons). Next there are two switches for policy enforcement
for graphical output and input events, respectively. Finally,

input switchinput driver

display controller
driver

framebuffer
switch

client VM 1

client VM 2

policy master

vsync interrupt input events output data

Fig. 3. The I/O switching architecture with all five components (middle) in the context of the (touch)screen as (input)output device (left) and two client VMs
(right).

cl
ie

nt
 re

gi
on

label region

framebuffer
switch

client VM 1

client VM 2 cl
ie

nt
fr

am
eb

uf
fe

rs

label framebuffer

1

2
1

Fig. 2. A smartphone’s screen partitioned into label and client region (left),
the framebuffer switch (middle) and two client VMs (right).

there is a policy master. The switching components rely on the
service of their respective drivers and, in turn, provide similar
services to their clients, the virtual machines. Additionally, the
switching components provide an interface to allow setting of
the policy decision. It is important to note that the switchers
do not make policy decisions; rather they guarantee their
enforcement.

We now describe each of the components in terms of the
services they need and provide.

A. Framebuffer Management

The display controller driver provides an abstraction of
the screen. Thereby it partitions the screen into two logical
regions, the label region and the client region, as shown in
Figure 2. Using the display controller’s support for multiple
scan-out regions or overlays, each of the regions may be
backed by different framebuffers. The driver offers a service
to attach arbitrary buffers to the logical screen regions and
to retrieve information about the region’s geometry and pixel
layout.

The framebuffer switch relies on the service of the display
controller driver. It attaches a label framebuffer of its own
to the label region (Figure 2). And it draws a label into this
framebuffer, indicating the current policy decision.

To enforce policy, the framebuffer switch maintains a ses-
sion associated with each client. One of these sessions may be
active in accordance with the policy decision it receives via
its policy interface. Clients use the service of the framebuffer
switch to set their active framebuffer. Switching between mul-
tiple buffers is easily possible, allowing for the straightforward
implementation of double buffering. To announce a buffer,
clients communicate the guest physical address range of it to
the framebuffer switch, which knows how to map it to a host
physical address for a given client. The framebuffer switch
can then by means of the display controller driver attach the
active client’s announced framebuffer to the client region.

The display controller’s capability of laying out a limited set
of buffers on the screen is exploited by Android for offloading
compositing work from the GPU1. By using one of these
overlays for a secure label, we reduce the number of those
that the client can use by one. As Android cannot expect the
same number of overlays to be supported on all hardware
platforms, it can flexibly compensate for the loss by using
the GPU. Possibly remaining overlays can be made available
with our approach. We did not implement this feature in our
prototype, though.

The display controller generates a vsync interrupt on the
start of the vertical sync gap. The display controller driver,
which owns the device and receives that interrupt, forwards it
to the framebuffer switch which, in turn, passes it on to the
active client. Making this information available to the client is
important because some operating systems, such as Android,
use it to coordinate its rendering activities.

We have accomplished two things now. First, due to the
private nature of the client framebuffers, we have a trusted
path from the VM to the screen. Second, due to the labeling
mechanism, the user can identify the origin of the content.
What is more, neither the driver nor the switcher needs
access to the content of client framebuffer itself. There is no

1See: Hardware Composer at https://source.android.com/devices/graphics/
index.html#hardware composer

Kernel

user space
GPU driver

GPU abstraction
(OpenGL/EGL)

Application

GPU driver

1

2

Hardware
GPU

3

Fig. 4. A mobile GPU driver stack as found in a typical Android based
handset.

expensive copying of bulk data, e.g. image data, necessary.
Combining the label with the client output is done by the
display controller without assistance from the CPU.

B. Input Management

Input driver and input switcher are designed analogous to
the display controller driver and the framebuffer switch. The
input driver drives the touchscreen and mechanical buttons of
the device. In turn the switcher relies on the input driver’s
service to receive input events. It enforces a given policy by
passing input events on to the client that is active according
to the current policy decision.

The input switcher can raise a secure attention event when
it detects a secure attention sequence [35] or a gesture [28]
issued by the user. This event is never passed on to a client but
rather to a policy decision maker. This policy decision maker
could now switch input and output to the next VM or, instead,
direct input and output to itself and present the user with a
dialog. While our prototype has a policy decision maker, we
deliberately keep it out of the scope of our architectural design.

We now provided a trusted path from the input devices to the
VM. Identifiability for the input path relies on whether or not
input switch and framebuffer switch received the same policy
decision announcement. We therefore introduce the policy
master that has the sole purpose of keeping both switchers
in sync.

IV. SECURE GPU MULTIPLEXING

In Section III, we presented our secure framebuffer switch-
ing scheme. The client VMs still need an efficient way to
fill their framebuffers with content. Therefore they are given
access to the computational resources of the GPU. To do
this, we introduce a new component called the GPU server or
resource governor (GPU-RG). Before we explain the workings
of our proposed architecture, we present a typical driver stack
of a mobile GPU.

GPU job

GPU address spaceprocess address space

physical address space

1

2

3

4

5

2 2

Fig. 5. GPU address space population with physical memory buffers and
their relation to the process address space.

A. A Mobile GPU’s Driver Stack

A typical mobile GPU driver stack comprises a user part
(see Figure 4 1©) and a kernel part (2©). The user part of the
driver translates high-level API-calls—such as OpenGL—into
the instruction set of the GPU. It uses the kernel/user interface
(3©) of the kernel part to populate a GPU context with a job
for the GPU to run and, eventually, to start the execution of
the job.

The context population is depicted in Figure 5. Every
application requesting to use the GPU gets its own GPU
address space (1©) just as it gets its own process address space
(4©) on the CPU. The GPU address space is the environment
where the GPU program is executed in. To populate this
address space with actual physical memory, the application, by
means of the kernel-user interface, allocates physical memory
buffers (2©) and maps them into its own process address space
(3©) as well as into the GPU address space (5©). It then lays out
the job in memory by means of the process mappings (3©) such
that it forms a consistent executable job in the GPU address
space. To comply with the requests of the application, the
kernel driver constructs a page table that expresses a mapping
from the GPU address space of the application to physical
addresses. When the application requests to start a job, the
kernel driver activates the corresponding page table on the
GPU’s MMU and passes user supplied information about the
job layout on to the GPU.

B. The GPU Ressource Governor

Figure 6 shows our approach to providing mobile virtual
machines with access to graphics computing resources. Note
that as the mobile operating system moved into a virtual
machine, the kernel-user interface (3©) remains unaltered and
so does the user part (1©) of the driver. The hardware-facing
part of the kernel driver was replaced by a stub (4©) that
communicates with the GPU server (5©) via a communication
channel (6©), which is controlled by the underlying hypervisor.
The GPU server, which exercises full control over the GPU
including its MMU, may be a native user space application—if
the hypervisor supports those—or run inside a virtual machine.

The GPU server allows the creation of contexts just as
the kernel driver did before. In fact, it allows the creation of

Hardware
GPU

Guest Kernel

user space
GPU driver

GPU abstraction
(OpenGL/EGL)

Application

GPU driver
stub GPU server4

Hypervisor

1

virtual machine

Guest Kernel

user space
GPU driver

GPU abstraction
(OpenGL/EGL)

Application

GPU driver
stub

3

5

6 6

virtual machine

Fig. 6. The GPU server (middle) running as user space application serving
two client VMs (left/right) on top of hypervisor or microkernel.

host physical address space

GPU job

GPU address space

guest physical address space
2

3

VM2VM1 VM3

Fig. 7. Guest physical address space (gray, middle, left) and its representation
in physical memory (gray, bottom, right). A GPU address space (top, left) in
the context of two levels of translation due to virtualization.

multiple contexts per client, on which the guest-kernel drivers
can map their client’s contexts. For starting jobs, the stub
driver simply passes the user supplied information on to the
GPU server, which, in turn, activates the corresponding context
and starts the job on the GPU. That is if the GPU is idle,
otherwise the job is queued.

Complications arise when building the GPU context because
what a virtual machine considers physical memory is in
fact just another address space, the guest physical address
space (see Figure 7), adding another level of translation (2©).
However, the MMU of the GPU does not have this expressive
power. Therefore, the GPU server must construct a page
table that maps directly from the GPU address space to the
host physical address space (3©). This technique is called
shadow paging [11] and is widely applied in virtualization

if the underlying hardware does not support multiple layers
of translation. The mapping target is expressed in terms of
guest physical addresses, and eventually the GPU server,
which knows how guest physical addresses are mapped to host
physical ones for a given client, constructs the effective page
tables.

All information related to GPU jobs coming from the user
space must be considered to be not trustworthy. Sanitizing
this user supplied information, however, is not required as the
GPU’s MMU restricts memory accesses by the GPU.

V. PROTOTYPICAL IMPLEMENTATION

Our prototype encompasses all of the components we
described in Section III and Section IV: Two switches for
framebuffers and input events, the input and display controller
drivers, the policy master, and the GPU server. We imple-
mented all of these components individually, each running
inside their own protection domain. In this respect, our design
is very flexible. It may even be beneficial to integrate switchers
with their respective drivers to reduce communication over-
head.

We built our prototype on a Samsung Galaxy SIII GT-I9300.
It has an Exynos 4412 SoC2 featuring four ARM Cortex A9
CPU cores running at a maximum of 1.4 GHz clock frequency
and an ARM Mali 400MP GPU. The basis for our software
stack is L4Android [29] consisting of the Fiasco.OC3 micro-
kernel with its complementary runtime environment L4Re4

and L4Linux5, a modified Linux kernel that runs as user space
program on Fiasco.OC. We use Fiasco.OC and L4Re based
on public revision 38 and L4Linux based on Linux6 3.0.101.
Instead of the Android open source project (AOSP)[2], which
is used by L4Android, we use Cyanogenmod [3] CM-10.1.3
as user facing component.

The GPU shadow paging implementation of our prototype
has a noteworthy distinction. Unlike in typical shadow paging,
we do not have the stub driver of the client create guest page
tables; rather we let it forward every mapping request to the
GPU server, which, in turn, constructs a page table for the
GPU’s MMU on the clients’ behalf. This saves memory on
the client side, but of course, the memory used for these
page tables must be accounted for to prevent denial-of-service
attacks. Therefore, we use a quota mechanism to restrict the
amount of secondary memory that a client can use for page
tables on the server side. We would like to emphasize that this
shadow paging scheme is only concerned with the construction
of GPU address spaces. The page table management for task
address spaces is still performed by the microkernel, and its
performance is not affected by the user-level handling of the
GPU page tables.

An alternative implementation would be to maintain guest
GPU page tables on the client side. The GPU server would

2System on Chip
3http://os.inf.tu-dresden.de/fiasco.
4http://l4re.org
5http://os.inf.tu-dresden.de/L4/LinuxOnL4/
6http://kernel.org

Module SLOC
GPU server 2,679
display driver 2,382
frame-buffer switch 548
input driver 710
input switch 539
total 6,858

TABLE I
COMPONENT SIZES OF THE PROTOTYPE IN source lines of code (SLOC)

MEASURED WITH DAVID A. WHEELER’S “SLOCCOUNT”.

then derive the effective GPU page table for the next job from
the corresponding guest GPU page table on demand. This
scheme would restrict the secondary memory consumption
on the server side to one page table but would also incur
undesirable runtime overhead when switching GPU contexts.

VI. IMPACT ON TCB SIZE

Murray et al. [32] define the trusted computing base (TCB)
as “the set of components which a subsystem S trusts not to
violate[, although capable of doing so,] the security of S”. The
Fiasco.OC microkernel and the L4Re components sigma0 (the
root-pager), moe (the root-task), ned (the bootstrapper) and io
(the device manager) constitute the TCB of our prototype.
The subsystems we added in turn add to the TCB of the
subsystems, such as the VMs, that depend on their services.
Worse yet, some of these components such as the GPU
server and the display controller driver control DMA capable
devices, which gives them a means to violate the security of
even those subsystems that do not depend on their services.
The implications, however, depend on the capabilities of the
controlled device in question.

Table I shows the sizes of the components we added in
our implementation and Table II shows the sizes of the L4Re
components and the Fiasco.OC microkernel for comparison.
We can see that our additions are rather moderate. They appear
outright minuscule when compared to other GPU virtualization
techniques found in the desktop and server realm, which are
typically based on API-remoting. API-remoting places the
virtualization boundary at the application programming inter-
face, such as OpenGL or Direct3D. This removes hardware
dependency from the VMs at the cost of a larger TCB. Smow-
ton [35], for example, suggest a GPU virtualization scheme
for the Xen [9] hypervisor with an impact on the TCB of
80,000 SLOC even though his approach reduces TCB impact
when compared to other API-forwarding techniques. To be
fair, in Smowton’s approach, the vitualization boundary is both
hardware and API-independent, which makes it unique in the
field of GPU-virtualization. Trading hardware independence
for a tiny TCB is a fair trade-off for use-cases demanding
high security.

VII. EXPERIMENTAL RESULTS

Lacking a comparable virtualized mobile system, we com-
pare the graphics rendering performance of our prototype

7Includes a lua interpreter of size 14,124 SLOC.

Module SLOC
Fiasco.OC 28,943
moe 4,044
ned7 16,078
sigma0 1,023
io 12,864
total 62,952

TABLE II
COMPONENT SIZES OF THE ENVIRONMENT IN source lines of code (SLOC)

MEASURED WITH DAVID A. WHEELER’S “SLOCCOUNT”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Cube Blending Fog Teapot Quake III
Fr

a
m

e
-r

a
te

 (
fp

s)
Benchmark

native
GPU-RG

pass-through

Fig. 8. High level 3D Benchmarks. Four benchmarks (Cube, Blending, Fog
and Teapot) are part of the Android benchmark suite 0xbench by 0xlab. The
fifth is the ioquake based Android port of QuakeIII Arena QIII4A.

with a non-virtualized setup running on the same hardware
platform. For better comparability, we fixed the clock fre-
quencies of all CPU cores to 1.4 GHz and the GPU clock
frequency to 266 MHz. To quantify the performance impact
of our architecture as opposed to the impact suffered from
moving Android/Linux into a VM, we devised an intermediate
setup, where the resources of the GPU (memory mapped
device registers and interrupts) are passed through to one client
VM, which drives the GPU directly. Therefore benchmarks
will suffer the same overhead from system calls and shadow
paging as well as interrupt latency but without the anticipated
communication overhead of our GPU virtualization scheme. It
is important to note that the pass-through scenario is not fit for
production for two reasons. First, the GPU cannot be shared by
multiple VMs. Second, even more importantly, direct access
to the GPU allows the guest kernel of the particular VM to
break out of its isolation domain. Therefore it is but a vehicle
for performance evaluation.

First we measured the performance with a high-level 3D
benchmark. Figure 8 shows the absolute results of these bench-
marks. The first four benchmarks are part of the 0xbench [1]
benchmark suite. The fifth benchmark is the FOUR.DM_68
demo of QuakeIII Arena running on QIII4A [8], which is
the Android port of the ioquake3 [6] engine, in timedemo
mode. The benchmarks use different techniques whereby they
synchronize rendering to the display’s refresh rate of 60 Hz.
In any case, all benchmarks hit an artificial limit, which made
them useless for characterizing the virtualization overhead.

 0

 100

 200

 300

 400

 500

Cube unsynced

Fr
a
m

e
-r

a
te

 [
fp

s]

Benchmark

native
GPU-RG

pass-through

Fig. 9. Modified version of the 0xbench benchmark “Cube”.

experiment GP PP
native submit [µs] 15.0 25.2
pass-through submit [µs] 22.1 34.9

notify [µs] 3.6 3.2
GPU-RG submit [µs] 47.3 67.5

notify [µs] 52.8 49.7

TABLE III
RESULTS OF THE JOB_TOOL BENCHMARK. THE TABLE SHOWS THE TIME

IT TAKES TO SUBMIT A JOB TO AND RECEIVE A JOB COMPLETION
NOTIFICATION FROM THE MALI MP400 GPU’S

GEOMETRY PROCESSOR (GP) AND PIXEL PRESENTER (PP).

Therefore we released the handbrake of the “Cube” benchmark
by rendering it off-screen, decoupling it from the artificial re-
fresh rate limitation. The results for this benchmark are shown
in Figure 9 as “Cube unsynced”. The modified benchmark
drives all scenarios into saturation at between seven and eight
times the frame rate of the synchronized version. Compared
to the non-virtualized scenario, we see a frame rate penalty of
11 % for the pass-through scenario and 16 % for the GPU-RG
scenario.

Other GPU-virtualization approaches often incur massive
CPU load and contention on the virtual network interconnect.
Depending on the scenario, CPU overhead, even a significant
one, may be acceptable in the server and desktop realm,
because CPU cycles and energy are available in abundance,
and the achievable graphics performance is still worth the
cost. However, for mobile applications, where battery capacity
is usually at a premium, GPU virtualization must not entail
excessive CPU load. To measure the CPU load of our solution,
we developed the microbenchmark job_tool.

The job_tool benchmark measures the time it takes
to submit a precompiled GPU job.8 Also, we measured the
overhead when a job completion is signaled through an
interrupt. To do so, we instrumented the Fiasco.OC kernel
to log interrupt events and the guest kernel driver’s top-half

8We make sure that the job is submitted while the GPU is idle. Otherwise
the benchmark measures the time it takes to queue a job in the guest driver
which takes around 11µs in both scenarios pass-through and GPU-RG.

handler to log GPU interrupt events. 9 When job_tool gets
notified of a job completion, it evaluates the trace buffer entries
of the immediate past and determines the time it took for the
event to travel from the Fiasco.OC kernel to guest kernel’s top-
half handler. Note that this delay does not exist in the native
case as the interrupt registers directly in the Linux kernel.

Unlike most modern GPUs, the Mali 400MP does not have
a unified shader design but rather two distinct programmable
blocks for the geometry phase and the fragment phase, called
geometry processor (GP) and pixel presenter (PP) (sometimes
also pixel processor), respectively. The individual results are
presented in Table III.

We can see that job submission times increase by 7.1µs
(9.7µs) per GP (PP) job when the driver moves from bare
metal (native) into a VM (pass-through). This is well within
the range we would expect considering that system calls
in an L4Linux VM incur the cost of two address space
switches and four privilege level transitions rather than just
two privilege level transitions. Moving the GPU driver into
its own protection domain (GPU-RG) increases the cost of
a job submission by another 25.2µs (32.6µs), owing to the
additional context switches into the GPU-server.

Job completion notifications incur a cost of 49.2µs (46.5µs)
when comparing GPU-RG with pass-through. To understand
where this rather large difference came from, we discriminated
different measurements by the number of context switches
that occurred on the CPU handling the notification. We found
that the measurements in the pass-through scenario were
dominated by instances where no context switch happened
between the occurrence of an interrupt and its delivery to
the VM. Apparently the VM was already running most of
the time when the interrupt occurred. In the cases where
a context switch was necessary the delay rose from three
microseconds to approximately 22µs. With the interposition
of GPU-RG, the server was almost never running when the
interrupt occured, so at least two context switches where
necessary: The first switched to GPU-RG, and the second
switched to the designated client VM.

With this benchmark we measured the modified code paths
involved in the dynamic behavior of our architecture, which
is why we believe that this benchmark captures the extra CPU
load incurred by the system. Using GPU-RG increases the
time to handle a GPU job by 74.4µs (GP) and 79.1µs (PP)
compared to the pass-through scenario. To complement these
numbers, we determined that all of the high-level benchmarks
issue one set of jobs—encompassing one GP and four10 PP
jobs—per frame and the compositor of Android adds one more
set of jobs to produce the visible output. For a target frame
rate of 60 Hz, this is equivalent to an extra load of 4.6 % of
the CPU time incurred by one CPU core.

9The trace buffer is a facility in the microkernel that allows logging with
very low overhead. Each logged event is marked with a timestamp. The trace
buffer can be made accessible in VM processes.

10The ARM Mali 400MP GPU can be implemented with varying numbers
of PP-cores. The variant in our test device has four PP-cores and can thus
execute four PP-jobs in parallel.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

T
im

e
 i
n
 m

ic
ro

se
co

n
d

s

Number of pages attached

native
GPU-RG

Fig. 10. The figure shows the time it takes to map pages into the GPU address
space. Every data point is the average of 10,000 measurements. The numbers
were generated with map_tool.

The time needed to build a GPU context is also influenced
by our GPU server design. Because mapping request must now
be communicated to the server, we expected a communication
overhead. Context building happens infrequently, e.g., when an
application is started or when the scene of a game changes.
The performance of context building does not so much influ-
ence the framerate, rather it influences the load time of an
application. We designed the map_tool microbenchmark to
measure this overhead. It repeatedly attaches buffers of various
sizes to a GPU address space and measures the time needed
to complete the request. We show the results for buffer sizes
from 100 to 2,200 pages11 in Figure 10. Each data point is the
average of 10,000 measurements. We can see a conservative
30 % overhead compared to the native scenario. This does not
mean that load time of an application or a scene increases by
this ratio because attaching buffers to a context is but a small
fraction of this operation. Even for large buffers the absolute
overhead is limited to few milliseconds and hardly noticeable
by the user.

What is interesting about this plot is that a design decision
we took when building the prototype manifests as a step
between 1,000 and 1,100 pages and between 2,000 and 2,100
pages. As a performance optimization, we batched up to 1024
mapping requests. The steps in the plot constitute the points
where the request buffer fills up and an extra IPC-rountrip is
necessary to flush the buffer.

VIII. RELATED WORK

We group the related work into three categories: BYOD so-
lutions, secure graphical user interfaces and GPU virtualization
techniques.

a) BYOD:
VMware MVP [13] is a mobile hosted hypervisor12 solution
for Android. It features isolated Android domains for the fast
deployment of enterprise applications and policy enforcement.

11Due to the page table format, a page of 4,096 bytes is the granularity for
mapping requests.

12A hosted hypervisor is also referred to as Type-II hypervisor.

The authors acknowledge the onerosity of supporting a huge
diversity of device drivers. Their solution is pragmatic in
that they map a limited set of services to standard interfaces
provided by the host leaving out more complicated devices
such as the GPU, thereby trading user-experience for security
and a clear preference for compatibility and manageability. As
with all hosted hypervisors, the TCB of all VMs encompasses
the host kernel and all privileged host processes. We believe
that for applications with high security demands, the concept is
not well suited because unable to provide the resources needed
for leisure and gaming in a confined VM, it exposes the host
system to the hostile world of malware.

Cells [12] uses Linux containers and a driver namespace
concept to provide multiple runtime environments. It provides
the user with multiple virtual phones by duplicating the user-
space software stacks sharing a single underlying kernel.
This allows Cells to reuse device drivers with little or no
modifications and consequently provides near unhampered
graphics performance. Cells’ virtual phones have a large TCB
due to the application of the Linux kernel. Furthermore, there
is no secure label indicating the current environment to the
user.

vNative [18] hosts multiple Android-based VMs on a Xen
hypervisor for devices featuring an Intel Medfield SoC. Unlike
MVP and Cells, it allows full device pass-through to all VMs.
To tame DMA devices, vNative makes use of isolated memory
regions (IMR), a proprietory feature of the Medfield SoC. The
downside is that due to the pass-through architecture, only one
so-called foreground VM can make progress at a time while
background VMs are deprived of any computing resources.
Due to the strong dependency on IMR, the concept is limited
to a single platform. Also, there is no report of a graphical
VM identity indicator.

b) Secure GUI:
The EROS Window System (EWS) [34] “provides robust
traceability of user volition and is capable (with extension) of
enforcing mandatory access controls.” To that end, it features
unforgeable window labels and window decorations as well as
exclusive input event routing, the recipient window of which
is indicated by dimming all other windows. EWS is explicitly
not optimized for performance and there is no mention of
accelerated graphics.

Nitpicker [21] generalizes from the underlying system,
allowing legacy windowing systems running alongside other
(native) applications. It introduces the X-ray mode, which
changes the appearance of the windows to indicate identity
and focus and can be activated by the user when in doubt.
The authors state that a trusted boot process and client
authentication is required to reliably report the identity of the
clients (applications) to the user.

Crossover [28] transfers some of the ideas presented by
EWS and Nitpicker, such as secure labeling and trusted path,
to the mobile BYOD use-case. It is complementary to our
work in that it has a strong emphasis on usability aspects.
Besides providing for secure GPU sharing, we also improved
on the input and output switching in that we provide vsync and

double buffering support, both of which are essential features.
Crossover’s architecture does not allow for a VM to use
more than one hardware overlay. In contrast, our architecture
reserves only one hardware overlay and leaves all others for
the use by a guest VM. We have not implemented that feature
in our prototype.

c) GPU Virtualization:
Depending on the virtualization boundary, GPU virtualization
schemes can be grouped into the two categories: front-end
and back-end virtualization. Front-end virtualization schemes
use a high-level API, such as OpenGL, as the virtualization
boundary. Back-end schemes place the virtualization boundary
at or close to the hardware interface of the device.

Front-end virtualization schemes reuse commercially avail-
able drivers to provide a 3D rendering service. These con-
siderably large drivers need to be deployed on the host side
of the virtualization boundary and therefore inside the TCB.
This technique suffers overhead from marshaling and auditing
the remote API calls. Still, it holds appeal in that it hides the
physical hardware from the guest VMs, which is desirable for
heterogeneous environments where VMs are to be dynamically
migrated.

VMGL [27] is a classical front-end virtualization scheme. A
stub OpenGL library is deployed in the guest, marshaling and
transmiting OpenGL calls to the host using WireGL [24] over a
virtual network interconnect. It is complemented by VNC [33]
to support input, 2D output, and seamless integration into the
host’s window management.

Blink [23] extends OpenGL (BlinkGL) with the goal to
overcome the weaknesses of API forwarding. Versioned shared
objects reduce the bandwidth demands by passing large
objects, such as textures, by reference rather than sending
a serialized version via network. Stored procedures reduce
context switching overhead, e.g. for reacting to user input.
A Just-In-Time compiler further improves the performance of
the stored procedures. While Blink is compatible with legacy
OpenGL programs, only client applications using the BlinkGL
extension can benefit from the optimizations.

SVGA3D [19] emulates a SVGA adapter at the MMIO-
register level. It extends the VGA adapter with a command
set for 3D acceleration. On the host side this emulation is
performed using a high level API.

Xen3D [35] is a split-driver approach based on the Gal-
lium3D graphics driver framework. Gallium3D [5] comprises
an API specific State Tracker, a hardware specific Pipe Driver,
and a Window System Driver. All three parts are agnostic about
the intricacies of the implementation specifics of the respective
other parts, which requires generalized interfaces. Xen3D
uses this generalized intermediate representation between State
Tracker and Pipe Driver as the virtualization boundary. When
compared with the other front-end virtualization schemes, this
holds appeal in that it moves a great deal of the high-level
API abstraction into the guest, thereby reducing the impact on
the TCB size.

Back-end virtualization schemes forgo portability as they
require hardware specific software in the guest. The gain,

however, is performance and fidelity that is unmatched by
front-end schemes. Moreover, the impact on the TCB size can
be reduced by an order of magnitude.

Tian et al. [36] present a true back-end virtualization
scheme. GPU commands are directly executed by the GPU
rather then being emulated on the host side using a high-
level API. So as to gain interposition, they partially emu-
late an Intel GPU on MMIO-register level. In contrast we
use paravirtualization, which accepts guests modifications for
better performance due to less interaction between the guest
and the device virtualizer. Tian et al. have all guests share
the lower half of the GPU address space. While conflicts are
avoided by memory ballooning, there is no hardware-enforced
isolation between guests in that region. Isolation is achieved
through auditing command sequences for illegitimate memory
accesses—that is, accesses to memory regions belonging to
other guests. However, command streams need to be copied
or made non-writable prior to auditing in order to prevent
time of check time of use (TOCTOU) attacks. In contrast,
in our solution GPU address spaces are never shared. Guests
have their GPU jobs executed in an environment where access
is confined to memory alloted to the corresponding guest,
obviating the need for command stream auditing.

IX. CONCLUSION AND OUTLOOK

We proposed an architecture for building a hardware-
accelerated graphical user interface for virtualized environ-
ments on mobile handsets. The feasibility of the approach
was shown by means of a prototypical implementation serving
as a testbed for a series of experiments. For GPU-intensive
applications, the frame rate dropped by 5 % on top of an 11 %
drop due to CPU virtualization overhead. Our implementation
comprises less than 7,000 SLOC spread across five compo-
nents of individual sizes ranging from 539 SLOC to 2679
SLOC. The components, some of which are critical to the
system’s correct behavior due to their role in GPU page table
management, are small enough to allow for thorough auditing.
Our approach counters spoofing and eavesdropping attacks on
user input and output by providing a trusted and identifiable
path between each virtual machine and the user.

There have been reports of information leakage via in-GPU
memory and registers [31], [14], [17]. While we are not aware
of comparable research on mobile GPUs, we cannot rule out
the possibility of residual information remaining in the GPU
for other clients to extract after a job completes. Other than
providing a passive side channel, this could also be leveraged
to establish a covert channel between two supposedly isolated
domains. Unfortunately, an investigation of this matter requires
intimate knowledge about the hardware in question, which
manufacturers are reluctant to provide. Reverse engineering
efforts [7], [4] can provide researchers with valuable informa-
tion needed to address this issue in the future.

ACKNOWLEDGEMENTS

This work was partially supported by the EU FP7 Trustwor-
thy ICT program (FP7-ICT-2011.1.4) under grant agreement

no. 317888 (project NEMESYS).

REFERENCES

[1] 0xbench. https://code.google.com/p/0xbench/.
[2] Android open source project. https://source.android.com/.
[3] Cyanogenmod. http://www.cyanogenmod.org/.
[4] Freedreno project. https://freedreno.github.io/.
[5] Gallium3d. http://www.freedesktop.org/wiki/Software/gallium/.
[6] ioquake3. http://ioquake3.org/.
[7] Lima driver project. http://limadriver.org.
[8] Qiii4a. https://play.google.com/store/apps/details?id=com.n0n3m4.

QIII4A&hl=de.
[9] Xen. www.xenproject.org.

[10] Cve-2014-0972. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0972, 01 1014.

[11] K. Adams and O. Agesen. A comparison of software and hardware
techniques for x86 virtualization. In J. P. Shen and M. Martonosi, editors,
Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2006, San Jose, CA, USA, October 21-25, 2006, pages 2–13. ACM,
2006.

[12] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a
virtual mobile smartphone architecture. In T. Wobber and P. Druschel,
editors, Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011,
pages 173–187. ACM, 2011.

[13] K. C. Barr, P. P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,
H. Tuch, and B. Zoppis. The vmware mobile virtualization platform: is
that a hypervisor in your pocket? Operating Systems Review, 44(4):124–
135, 2010.

[14] S. Breß, S. Kiltz, and M. Schäler. Forensics on GPU coprocessing in
databases - research challenges, first experiments, and countermeasures.
In G. Saake, A. Henrich, W. Lehner, T. Neumann, and V. Köppen,
editors, Datenbanksysteme für Business, Technologie und Web (BTW), -
Workshopband, 15. Fachtagung des GI-Fachbereichs ”Datenbanken und
Informationssysteme” (DBIS), 11.-15.3.2013 in Magdeburg, Germany.
Proceedings, volume 216 of LNI, pages 115–129. GI, 2013.

[15] R. Clark. Kilroy. https://github.com/robclark/kilroy.
[16] J. Danisevskis, M. Piekarska, and J. Seifert. Dark side of the shader:

Mobile gpu-aided malware delivery. In H. Lee and D. Han, editors,
Information Security and Cryptology - ICISC 2013 - 16th International
Conference, Seoul, Korea, November 27-29, 2013, Revised Selected
Papers, volume 8565 of Lecture Notes in Computer Science, pages 483–
495. Springer, 2013.

[17] R. Di Pietro, F. Lombardi, and A. Villani. Cuda leaks: information
leakage in gpu architectures. arXiv preprint arXiv:1305.7383, 2013.

[18] Y. Dong, J. Mao, h. Guan, J. LI, and Y. Chen. A virtualization solution
for byod with dynamic platform context switch. Micro, IEEE, PP(99):1–
1, 2015.

[19] M. Dowty and J. Sugerman. Gpu virtualization on vmware’s hosted i/o
architecture. In first USENIX Workshop on I/O Virtualization, 2008.

[20] A. P. Felt and D. Wagner. Phishing on mobile devices. In In W2SP,
2011.

[21] N. Feske and C. Helmuth. A nitpicker’s guide to a minimal-complexity
secure GUI. In Proceedings of the 21st Annual Computer Security
Applications Conference, pages 85–94, 2005.

[22] T. Fiebig, J. Danisevskis, and M. Piekarska. A metric for the evaluation
and comparison of keylogger performance. In C. Kanich and P. Lardieri,
editors, 7th Workshop on Cyber Security Experimentation and Test,

CSET ’14, San Diego, CA, USA, August 18, 2014. USENIX Association,
2014.

[23] J. G. Hansen. Blink: Advanced display multiplexing for virtualized
applications. In Proceedings of the 17th International workshop on
Network and Operating Systems support for Digital Audio and Video,
2007.

[24] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Han-
rahan. Wiregl: a scalable graphics system for clusters. In Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques, pages 129–140. ACM, 2001.

[25] J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park,
and C.-R. Kim. Xen on arm: System virtualization using xen hypervisor
for arm-based secure mobile phones. In Consumer Communications and
Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 257–261.
IEEE, 2008.

[26] K. Kortchinsky. Cloudburst. Black Hat USA June, 2009.
[27] H. A. Lagar-cavilla and M. Satyanarayanan. Vmm-independent graphics

acceleration. In Proceedings of VEE 2007. ACM Press, 2007.
[28] M. Lange and S. Liebergeld. Crossover: secure and usable user interface

for mobile devices with multiple isolated OS personalities. In C. N. P. Jr.,
editor, Annual Computer Security Applications Conference, ACSAC ’13,
New Orleans, LA, USA, December 9-13, 2013, pages 249–257. ACM,
2013.

[29] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter.
L4android: A generic operation system framework for secure smart-
phones. In SPSM, 10 2011.

[30] C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker: How to milk your
android screen for secrets. In 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2013. The Internet Society, 2014.

[31] C. Maurice, C. Neumann, O. Heen, and A. Francillon. Confidentiality
issues on a GPU in a virtualized environment. In N. Christin and
R. Safavi-Naini, editors, Financial Cryptography and Data Security
- 18th International Conference, FC 2014, Christ Church, Barbados,
March 3-7, 2014, Revised Selected Papers, volume 8437 of Lecture
Notes in Computer Science, pages 119–135. Springer, 2014.

[32] D. G. Murray, G. Milos, and S. Hand. Improving xen security through
disaggregation. In Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, pages 151–
160, 2008.

[33] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual
network computing. Internet Computing, IEEE, 2(1):33–38, Jan 1998.

[34] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia. Design of
the eros trusted window system. In USENIX Security Symposium, pages
165–178, 2004.

[35] C. Smowton. Secure 3d graphics for virtual machines. In Proceedings
of the Second European Workshop on System Security, EUROSEC ’09,
pages 36–43, New York, NY, USA, 2009. ACM.

[36] K. Tian, Y. Dong, and D. Cowperthwaite. A full GPU virtualization
solution with mediated pass-through. In G. Gibson and N. Zeldovich,
editors, 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014., pages 121–132. USENIX
Association, 2014.

[37] K. Yee. User interaction design for secure systems. In R. H. Deng,
S. Qing, F. Bao, and J. Zhou, editors, Information and Communications
Security, 4th International Conference, ICICS 2002, Singapore, Decem-
ber 9-12, 2002, Proceedings, volume 2513 of Lecture Notes in Computer
Science, pages 278–290. Springer, 2002.

[38] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and
evolution. In 2012 IEEE Symposium on Security and Privacy, pages 95–
109, 5 2012.

