
Automated Verification of

Group Key Agreement Protocols

Benedikt Schmidt

IMDEA Software Institute

Madrid, Spain

Ralf Sasse

Institute of Information Security

Dept. of Computer Science

ETH Zurich, Switzerland

Cas Cremers

Dept. of Computer Science

University of Oxford, UK

David Basin

Institute of Information Security

Dept. of Computer Science

ETH Zurich, Switzerland

Abstract—We advance the state-of-the-art in automated sym-
bolic cryptographic protocol analysis by providing the first
algorithm that can handle Diffie-Hellman exponentiation, bilin-
ear pairing, and AC-operators. Our support for AC-operators
enables protocol specifications to use multisets, natural numbers,
and finite maps. We implement the algorithm in the TAMARIN

prover and provide the first symbolic correctness proofs for
group key agreement protocols that use Diffie-Hellman or bilinear
pairing, loops, and recursion, while at the same time supporting
advanced security properties, such as perfect forward secrecy
and eCK-security. We automatically verify a set of protocols,
including the STR, group Joux, and GDH protocols, thereby
demonstrating the effectiveness of our approach.

I. INTRODUCTION

Key exchange protocols are a core building block for secure

communication. They allow participants to establish a shared

symmetric key, which can in turn be used with primitives

such as symmetric encryption or message authentication codes,

for secure communication. Most key exchange protocols are

designed for two participants. However, in many scenarios,

such as video conferencing and secure group communication,

we would like efficient protocols to establish a shared key

among an arbitrary number of parties. Moreover, the protocol

should have strong security guarantees such as perfect forward

secrecy. This is the problem addressed by group key agreement

protocols, e.g. [1]–[3].

State-of-the-art group key agreement protocols are difficult

to analyze automatically because they should work with ar-

bitrarily many participants and they typically combine cryp-

tographic operations such as Diffie-Hellman exponentiation

and bilinear pairing with loops and mutable global state.

The current best practice to establish security guarantees for

such protocols is by pen-and-paper cryptographic proofs. This

approach is extremely valuable, but given the complexity of

group key agreement protocols and their advanced security

guarantees, it is also time-consuming and error-prone. For

example, manual analysis performed in [4] uncovered flaws

in the group protocols of the CLIQUES family [5], which

extends the protocols given in [3] and whose security was

claimed to follow from the proofs in [3]. It would clearly be

desirable to be able to apply methods and tools from Formal

Methods to support, and where possible automate, reasoning

in this domain.

There have been initial efforts at using symbolic methods

to analyze some basic group key agreement protocols that

do not use Diffie-Hellman or bilinear pairing. For example,

the CORAL tool [6] was used to find several attacks on

three such protocols. Similarly, the ProVerifList tool [7], a

variant of ProVerif that supports unbounded lists but no

equational theories, was used to prove a secrecy property of the

Asokan-Ginzboorg protocol. None of these methods support

the combination of AC-operators, which are needed to model

group aspects, and Diffie-Hellman/bilinear pairing, which are

the cryptographic primitives used to establish strong security

guarantees.

Contributions: Our main contributions are twofold. First,

we advance the state-of-the-art in automated symbolic analysis

by providing the first analysis algorithm that can handle Diffie-

Hellman exponentiation, bilinear pairing, and AC-operators.

The AC-operators enable us to model protocols that rely on

multisets or natural numbers, or use finite maps. For example,

we use finite maps to represent the trees of unbounded depth

used in group protocols. Our approach allows both verification

and falsification, in which case it generates attack traces. We

implement our algorithm in the TAMARIN prover, thereby

enabling the analysis of protocols that were previously outside

the scope of automated symbolic analysis tools.

Second, we use the resulting tool to provide the first

symbolic verification results for group key agreement proto-

cols that use Diffie-Hellman or bilinear pairing, loops, and

recursion. Our results include the automated verification of

identity-based protocols, tripartite group protocols, as well as

the STR [1], group Joux [2], and GDH [3] protocols. Taken

together, they show that our approach is effective and efficient:

the analysis times are on the order of seconds to minutes.

Organization: In Section II we introduce background on

group key protocols and we provide background on TAMARIN

in Section III. In Section IV we present the tool extensions

we developed. We explain our group protocol models and their

analysis in Section V. We describe related work in Section VI

and draw conclusions in Section VII. Readers mainly inter-

ested in the case studies in Section V are recommended to

first read the protocol descriptions in Section II-B.

STR

Group Joux

Joux

A1 : x1 A2 : x2 A3 : x3 A4 : x4 A5 : x5 A6 : x6 A7 : x7 A8 : x8 A7 : x′

7

A1, A2, A3 : k123 A4, A5, A6 : k456 A7, A8 : k78

A1 −A8 : k1−8

A1 : x1

gx1 gx2

A2 : x2

A1, A2 : gx1x2

gg
x1x2

A3 : x3

A4 : x4

gx3

gx4

A1, A2, A3 : gg
x1x2x3

A1, A2, A3, A4 : gg
g
x1x2x3x4

gg
g
x1x2x3

A1 : x1 A2 : x2 A3 : x3

A1, A2, A3 : e(P, P)x1x2x3

[x3]P[x2]P[x1]P

Fig. 1. The STR, Joux, and Group Joux protocols.

II. BACKGROUND ON GROUP PROTOCOLS

A. DH exponentiation and bilinear pairing

A Diffie-Hellman group G � �g� is a cyclic group of prime

order with generator g. We use multiplicative notation for G

and denote the n-fold product of g with gn. We consider

groups with a hard computational Diffie-Hellman problem, i.e.,

given gn and gm for random n and m, it is hard to compute

gnm.

A bilinear group is a triple �G,GT , ê� such that G and

GT are cyclic groups of prime order and ê � G �G � GT is

a non-degenerate bilinear map. We use additive notation for

G and denote the n-fold sum of P � G with �n�P . We use

multiplicative notation for GT and denote the n-fold product

of g � GT with gn. Since ê is bilinear and non-degenerate,

ê��n�P, �m�P � � ê�P,P �nm and ê�P,Q� is a generator of

GT if P and Q are generators of G.

B. Group key agreement

Group key agreement protocols allow a group of participants

to agree on a shared key. Unlike with key transport protocols,

the participants need not rely on a central server. Every

member contributes to the group key and thus is assured of

the key’s freshness. We consider protocols that can have an

arbitrary number of participants. In the following, we call a

randomly sampled private value (typically x or y) used in a

particular protocol session an ephemeral secret key and the

associated public value an ephemeral public key (typically gx

or gy for DH-based protocols).

STR: As a first example of a group key agreement protocol

consider the STR protocol [1,8]. In STR, the standard Diffie-

Hellman (DH) exchange is repeatedly applied for subgroups

with an additional member in each iteration. The members

comprise the leaves of a maximally unbalanced tree, as de-

picted in Figure 1. Then DH is applied to the two participants

at the lowest leaves, and at all other levels DH is applied

between an owner of the previous subgroup key and the next

participant. In the figure, xi represents the ephemeral secret

key of participant Ai, leaves represent participants that send

their ephemeral public key gxi , and inner nodes represent sub-

group keys. For example, participant A1 generates x1, sends

gx1 and receives gx2 , which allows A1 and A2 to compute the

first subgroup key gx1x2 . Next, participant A3 generates x3 and

sends gx3 , while participant A1 sends the exponentiated shared

subgroup key, gg
x1x2

. Here, we underline the term gx1x2 to

denote that it is the result of converting a group element to

an integer, which is required to use it as exponent. After

exchanging these messages, all three participants can compute

the subgroup key gg
x1x2x3 . Finally, participant A4 generates

x4 and sends gx4 . Participant A1 sends gg
g
x1x2x3

and all four

participants can compute the group key gg
g
x1x2x3x4 . We will

say that a protocol has subgroup keys when all subgroups have

their own key.

Joux: The tripartite Joux protocol is a three-party variant of

Diffie-Hellman based on bilinear pairing. We consider this as

a special case of group key agreement for just 3 participants.

The Joux protocol generates the shared key for all 3 members

in a single round, as shown in Figure 1: Participant A1 picks

an ephemeral secret key, say x1, and computes and broadcasts

X1 � �x1�P . Afterwards A1 receives X2 and X3 from the

other two participants and computes the joint shared key as

ê�X2,X3�
x1

� ê��x2�P, �x3�P �x1
� ê�P,P �x1x2x3 . The other

two participants act analogously.

Group Joux: The Joux protocol can be extended to the

group Joux protocol, which works for arbitrarily many par-

ticipants. Group Joux constructs a balanced tree of repeated

applications of the basic tripartite Joux protocol. At the leaves

it is run by three participants, and at inner nodes it is used

for three subgroups, each of which already has a subgroup

key. The groups and the flow of keying material are depicted

in Figure 1. If the number of participants is not a power of

three, then the protocol works with a minor change. Whenever

a node in the tree only has two children, those children do the

basic Joux exchange with the left child contributing a second,

dummy, key share. All numbers of participants can be dealt

with using a similar rearrangement of the tree.

As an example, consider group Joux for 8 participants, A1

through A8. We order them as shown in the leaves of Figure 1.

Thus, A1, A2, and A3 execute the normal Joux exchange as

described above and share the subgroup key k123. Similarly

A4, A5, and A6 get the key k456. For A7 and A8, the left

participant A7 also generates a dummy value x�7, so they can

create a key k78. At the next level, one representative for each

group, say the leftmost one, i.e., A1, A4, and A7 repeat the

process. This time, instead of picking new randomness, they

use some (publicly known) derivation function that maps the

subgroup key to a value usable for another round of the basic

Joux protocol. Finally they execute the basic Joux protocol

again and get the group key k1�8.

GDH: In GDH, each participant receives i messages of

the form gX from its predecessor, picks an ephemeral secret

key xi, exponentiates all received messages with xi and sends

them to its successor. Additionally, it forwards the last received

message. The first participant A1 is treated as having received

the generator g. The last participant also does not send the

last message (which is the group key) and either broadcasts

all messages or sends each to the appropriate recipient. With

the message from the last participant, each group member can

compute the group key gx1x2...xn .

We present a small example with 4 participants in Figure 2.

Each row represents the messages sent by a participant, and

the columns show the evolution of the message needed by the

participant listed in the header. We mark the round key for

each level with † and the final group key is gx1x2x3x4 . Only

the final group key must stay secret and all intermediate keys

are sent out.

The figure also depicts the flow of messages. Each partici-

pant performs the following actions. Participant A1 picks its

for A1 for A2 for A3 for A4 group key†

A1: g

��

gx1†

�� ���
�

�
�

A2: gx2

��

gx1

��

gx1x2†

�� ���
�

�
�

A3: gx2x3

��

gx1x3

��

gx1x2

��

gx1x2x3†

�� ���
�

�
�

A4: gx2x3x4 gx1x3x4 gx1x2x4 gx1x2x3 gx1x2x3x4†

Fig. 2. GDH

ephemeral secret key x1 and ‘receives’ g. It sends out g as

it is the last received message as well as gx1 . Participant A2

picks ephemeral secret key x2, receives g, and thus sends gx2 .

It also receives gx1 as the last message, so it sends gx1 back

out as well as gx1x2 . Participant A3 then picks x3, receives

gx2 , and sends gx2x3 . It receives gx1 and sends gx1x3 . Finally

it receives gx1x2 , so it sends gx1x2 and gx1x2x3 . The final

participant A4 picks x4, receives gx2x3 , and sends gx2x3x4 .

On receiving gx1x3 , it sends gx1x3x4 . After receiving gx1x2 ,

it sends gx1x2x4 . The last message received is gx1x2x3 , which

allows A4 to compute the group secret gx1x2x3x4 . Sending

gx1x2x3 (done when not the last member) is not needed as

that would only be for its own use. Of course, A4 does not

send out the group shared key. All the other participants know

their ephemeral secret key xi (with 1 � i � 4) and can therefore

compute the group shared key after receiving their designated

message from A4. Their designated message only lacks their

secret, e.g., A2’s message is gx1x3x4 .

III. BACKGROUND ON THE TAMARIN PROVER

In this section, we describe the TAMARIN prover [9,10] and

its support for induction [11]. We present the implementation

of our algorithms as TAMARIN extensions in Section IV, so

that the protocols from Section II-B can be analyzed with

the help of the extended tool. This section contains several

simplifications of the theory and algorithm from [9]. Full

details of this and other protocols are given in [12], with the

implementation and all case studies available at [13].

A. Security protocol model

In TAMARIN, the execution of a security protocol in the

context of an adversary is modeled as a labeled transition

system whose state consists of the adversary’s knowledge, the

messages on the network, information about freshly generated

values, and the protocol’s state. The adversary and the pro-

tocol interact by updating network messages and freshness

information. Adversary capabilities and protocols are specified

jointly as a set of (labeled) multiset rewriting rules. Security

properties are modeled as trace properties of the transition

system.

Cryptographic messages: To model cryptographic mes-

sages, we use an order-sorted term algebra and an equational

theory. The function symbols in the signature model the

algorithms that can be applied to messages, such as encryption

or decryption, and the equational theory models the properties

of the algorithms. We use the partially ordered set of sorts

consisting of the top sort msg and two incomparable subsorts

fr and pub. We use fr for fresh names modeling random

values such as keys or nonces and pub for public names

modeling known constants such as agent identities. To model

DH exponentiation, TAMARIN uses the signature

ΣDH � � ˆ , � ,1, �1, � , �, fst� �, snd� ��,

where x ˆ y denotes the exponentiation of the base x to the

power y, and the remaining operators model multiplication,

multiplicative unit, multiplicative inverse in Z
�

q (modeling the

corresponding operations on exponents), pairing, and projec-

tion. The properties of these operators are modeled by the

equational theory generated by

EDH � ��x ˆ y� ˆ z � x ˆ �y � z�, x ˆ 1 � x, x � y � y � x,

�x � y� � z � x � �y � z�, x � 1 � x, x � x�1 � 1,

fst��x, y�� � x, snd��x, y�� � y�.

The first two equations capture the properties of exponen-

tiation, the last two equations model projection, and the

remaining equations model the exponents as an abelian group.

To model additional cryptographic operators, such as signature

schemes or (a)symmetric encryption, the user can specify a

disjoint subterm-convergent equational theory. See [12] for

details.

Note that TAMARIN does not model multiplication of group

elements and addition of exponents. Full support for these

operations would require modeling the exponents as a field, for

which no unification algorithm is known. Furthermore, there

are undecidability results for unification in theories that are

more expressive than EDH [14].

Execution state: We model the states of our transition

system as finite multisets of facts. Facts are built from terms

over a signature ΣFact, partitioned into linear and persistent fact

symbols. We define the set of facts as the set � consisting of

all facts F �t1, . . . , tk� such that ti is a term and F is a k-

ary fact symbol. We denote the set of ground facts by �. We

say that a fact F �t1, . . . , tk� is linear if F is linear and it is

persistent if F is persistent. Linear facts model resources that

can only be consumed once, whereas persistent facts model

inexhaustible resources that can be consumed arbitrarily often.

We assume that the linear fact symbol Fr is included in ΣFact.

The semantics of Fr is fixed and the fact Fr�n� denotes that the

name n is freshly generated. The semantics of the remaining

fact symbols are defined by the multiset rewriting rules that

generate and consume them. In our examples, we prefix all

persistent protocol fact symbols with the ! symbol.

Rules: We use labeled multiset rewriting to define the

possible transitions of our transition system. A labeled multiset

rewriting rule is a triple �l, a, r� with l, a, r � ��, denoted

l��� a ��r. For ru � l��� a ��r, we define the premises as

prems�ru� � l, the actions as acts�ru � � a, and the con-

clusions as concs�ru� � r. We call a set of labeled multiset

rewriting rules a labeled multiset rewriting system. In the

following, we often drop the “labeled” qualifier.

Fresh name generation is handled by the rule FRESH,

which is defined as �������Fr�x�fr�. To define the protocol and

adversary rules, we assume that ΣFact includes the persistent

fact symbol K modeling messages known to the adversary,

the linear fact symbol Out modeling messages sent by the

protocol, and the linear fact symbol In modeling messages

sent by the adversary. The adversary’s message deduction

capabilities are captured by the following set of rules.

MD � � Out�x������K�x�, K�x���� K�x� ��In�x�,

Fr�x�fr������K�x�fr�, �������K�x�pub� �

� � K�x1�, . . . ,K�xn������K�f�x1, . . . , xn�� 	 f � Σn �

Note that we will define the semantics of the message deduc-

tion rules modulo EDH . This allows the adversary to deduce,

for example, x from x�1 since �x�1��1 �EDH
x.

The protocol rules are user-defined and must satisfy the

following conditions.

1) All variables that occur in conclusions are bound in

premises (except for public variables).

2) They respect fresh name creation, i.e., fresh names cannot

occur in rules and Fr can only be used in the premises.

3) They respect the semantics of K, In, and Out, i.e., K

cannot be used, In can only be used in the premises, and

Out can only be used in the conclusions.

4) Multiplication in the group of exponents cannot be di-

rectly used.

Their usage of protocol-specific facts is unrestricted.

Labeled operational semantics: To define the labeled op-

erational semantics of a multiset rewrite system R, we first

define the labeled transition relation

steps�R� � �� � ginstsEDH
�R � �FRESH�� � ��

as
l��� a ��r � ginstsEDH

�R � �FRESH��
S�

� �S �� lfacts�l�� �� r

lfacts�l� �� S pfacts�l� � S

�S, l��� a ��r,S�� � steps�R� ,

where each transition is labeled with the applied rule instance.

We use �� to denote the set of all (finite) multisets of ground

facts, ginstsEDH
to denote the set of ground EDH -instances of

the given rules, � to denote the multiset equivalents of the cor-

responding set operations, and lfacts�l� (respectively pfacts�l�)

to denote the multisets of linear (respectively persistent) facts

in l. A transition rewrites the state S with a ground instance of

FRESH or a rule from R. Since we perform multiset rewriting

modulo EDH , any applicable ground EDH -instance of a rule in

R��FRESH� can be used. An instance l��� a ��r is applicable

to S if the multiset of linear facts in l is included in S with

respect to multiset inclusion and the set of persistent facts in

l is included in S with respect to set inclusion. To obtain the

successor state S�, the consumed linear facts are removed and

the generated facts are added.

An execution of R is an alternating sequence

e � �S0, �l1��� a1 ��r1�, S1, . . . , Sk�1, �lk��� ak ��rk�, Sk�

of states and multiset rewriting rule instances such that

1) S0 � ��,

2) �Si�1, �li��� ai ��ri�, Si� � steps�R�, for 1 � i � k,

3) if ri � rj � �Fr�n��, then i � j.

We denote the set of executions of R with execs�R�. We define

the trace of such an execution e as

trace�e� � �set�a1�, . . . , set�ak��.

The trace is the sequence of sets of actions of the multiset

rewriting rule instances. We define the observable trace tr of

a trace tr as the subsequence of all actions in tr that are not

equal to �.

Trace formulas: To specify security properties, we use

sorted first-order formulas over the atoms f@i, t � t�, and

i � j, where f is a fact, t, t� are terms, and i, j are variables

of a new sort temp that models timepoints. For an equational

theory E, the satisfaction relation �tr , σ� �E ϕ between traces,

variable assignments, and formulas is defined as follows. For a

trace tr and variable assignment σ, the atom f@i is satisfied if

the fσ �E trσ�i�, the atom t � t� is satisfied if σ�t� �E σ�t��,

and the atom i � j is satisfied if σ�i� � σ�j�. The satisfaction

relation is then extended to the logical operators and quanti-

fiers as usual. A protocol P satisfies a security property ϕ,

written P �E ϕ, if for all traces tr � trace�execs�P � MD��
and all variable assignments σ, it holds that �tr , σ� �E ϕ.

B. Dependency Graphs

Instead of directly working in the multiset rewriting seman-

tics, TAMARIN uses symbolic reasoning modulo AC using

so-called dependency graphs. Dependency graphs consist of

the sequence of rewriting rule instances corresponding to a

protocol execution and their causal dependencies, similar to

strand spaces [15]. Schmidt et al. [9] showed that depen-

dency graphs modulo AC can be used instead of dependency

graphs modulo EDH . Additionally, TAMARIN exploits specific

normal message deductions and the corresponding normal

dependency graphs. Normal dependency graphs are weakly

Fig. 3. Dependency graph modulo EDH .

trace equivalent to the multiset rewriting semantics in that they

have the same observable traces.

Example 1 (Dependency Graph). Consider the protocol

P � � �Fr�x�,Fr�y��

��� Start�� ���St�x�,Out���g ˆ x� ˆ y, y�1���

, �St�x�, In�g ˆ x����� Fin�� �����,

which models a message deduction problem. Figure 3 shows

a dependency graph for an execution of P . Rule instances

are represented using inference rule notation with the actions

on the right. Nodes 1 and 2 are rule instances that create

fresh names. Node 3 is an instance of the first protocol rule.

Node 9 is an instance of the second protocol rule. Nodes 4–

8 are instances of message deduction rules and denote that

the adversary receives a pair of a group element and an

exponent, raises the first component to the power of the second

component, and sends the result to an instance of the second

protocol rule, Node 9. The edges denote causal dependencies:

an edge from a conclusion of node i to a premise of node

j denotes that the corresponding fact is generated by i and

consumed by j. Since this is a dependency graph modulo

EDH , all nodes are ground EDH -instances of rules from

P �MD � �FRESH�.

Formally, let E be an equational theory and R be a set of

multiset rewriting rules. dg � �I,D� is a dependency graph

modulo E for R if I � �ginstsE�R��FRESH����, D � N
2
�N

2,

and dg satisfies the conditions DG1–4 listed below. These con-

ditions employ the following definitions. We call �1, . . . , 	I 	�
the nodes and D the edges of dg. �i, u� � �j, v� denotes the

edge ��i, u�, �j, v��. Let I � �l1��� a1 ��r1, . . . , ln��� an ��rn�.
The trace of dg is trace�dg� � �set�a1�, . . . , set�an��. A con-

clusion of dg is a pair �i, u� such that i is a node of dg and

u � �1, . . . , 	ri 	�. The corresponding conclusion fact is �ri�u.

A premise of dg is a pair �i, u� such that i is a node of dg

and u � �1, . . . , 	li	�. The corresponding premise fact is �li�u.

A conclusion or premise is linear if its fact is linear.

DG1 For every edge �i, u� � �j, v� � D, it holds that i � j

and the conclusion fact of �i, u� is syntactically equal

to the premise fact of �j, v�.

DG2 Every premise has exactly one incoming edge.

DG3 Every linear conclusion has at most one outgoing edge.

DG4 The FRESH rule instances in I are unique.

The set of all dependency graphs modulo E for R is denoted

by dgraphsE�R�. For all multiset rewriting systems R, the

multiset rewriting semantics given in the previous section and

dependency graphs modulo EDH have the same set of traces,

i.e., trace�execs�R�� � trace�dgraphsEDH
�R��.

C. Normal Dependency Graphs modulo AC

TAMARIN’s effectiveness depends on two main elements:

the reduction of reasoning modulo EDH to reasoning modulo

AC and the use of normal forms during deduction. To perform

the reduction to reasoning modulo AC , we use the presenta-

tion DH,AC of EDH by a convergent rewriting system DH

Coerce rules: COERCE
K

�

y�x�

K
��x�

Communication rules: IRECV
Out�x�

K
�

d�x�
ISEND

K
��x�

In�x�
[K�x�]

Construction rules:

K
��x� K

��y�

K
��x ˆ y� K

��x�pub�

Fr�x�fr�

K
��x�fr�

K
��x�

K
��x�1� K

��1�

K
��x� K

��y�

K
���x, y��

K
��x�

K
��fst�x��

K
��x�

K
��snd�x��

K
��x1� . . . K

��xn� K
��xn�1� . . . K

��xl�

K
���x1 � . . . � xn� � �xn�1 � . . . � xl�

�1�

Deconstruction rules:

K
�

d�x ˆ y� K
��y�1�

K
�

d�x�

K
�

d�x ˆ y�1� K
��y�

K
�

d�x�

K
�

d�x ˆ �y � z�1�� K
��y�1 � z�

K
�

d�x�

K
�

d��x, y��

K
�

d�x�

K
�

d��x, y��

K
�

d�y�

K
�

d�x
�1�

K
�

d�x�

Exponentiation rules: K
�

d�x ˆ y� K
��z�

K
�

e�x ˆ �y � z��

K
�

d�x ˆ y� K
��y�1 � z�

K
�

e�x ˆ z�
�

K
�

d�x ˆ �y � z�1�� K
��a � b�1�

K
�

e�x ˆ �y � a � �z � b��1��

Fig. 4. Normal message deduction rules ND. We use y in COERCE to denote that the premise can be either K�

d
�x� or K�

e�x�. Rules containing n and l

denote all variants for n � 1 and l � 2. There are 42 exponentiation rules computed from the DH,AC -variants of the exponentiation rule. We use NDdestr to
denote the set of deconstruction and exponentiation rules.

and the equational theory AC . We exploit that this presentation

has the finite variant property, which means that for all terms

t, there is a finite set �t�DH with the following property: for

all EDH -instances s of t, there exists a t� � �t�DH such

that s is an AC -instance of t�. Intuitively, the complete set

of variants �t�DH covers all instantiations of t and the finite

variant property guarantees that there exists such a finite set for

all terms t. In the following, we use t�DH to denote t’s normal

form with respect to DH,AC . For more details, including the

definition of DH,AC , see [12]. Below we provide some details

on the definitions of normal form deductions needed for our

extensions in the next section.

We first introduce normal forms for message deduction.

In particular, message deduction steps in dependency graphs

modulo AC use rules from �MD�DH . These rules still allow

redundant steps, some of which are eliminated by tagging the

rules to limit their applicability.

�MD�DH is partitioned into five subsets: communication

rules for sending and receiving messages, multiplication rules

consisting of all DH,AC -variants of the rule for multiplication,

construction rules that apply a function symbol to arguments,

deconstruction rules that extract a subterm from an argument,

and the remaining exponentiation rules, which are all DH,AC -

variants of the rule for exponentiation and are neither construc-

tion nor deconstruction rules.

We want to enforce normal message deductions, which

satisfy the following normal-form condition. All messages

are deduced by extracting subterms from messages sent by

the protocol, optionally modifying the exponent of extracted

exponentiations, and finally applying function symbols to these

messages. This allows us to search for message deductions by

applying deconstruction and exponentiation rules to messages

sent by the protocol top-down and applying construction rules

to messages received by the protocol bottom-up until both

meet in the middle. To achieve this, we introduce three new

fact symbols. K
�

d�m� denotes that m has been extracted from a

message sent by the protocol. K
�

e�m� denotes that m has been

deduced by modifying the exponent of an extracted message.

Finally, K
��m� denotes that m has been deduced using a

normal message deduction.

Figure 4 shows the normal message deduction rules ND.

For example, the COERCE rule is used to switch from message

deconstruction or exponentiation to message construction. The

multiplication rules are replaced by l-ary construction rules for

multiplication, which are sufficient to capture all possibilities

under TAMARIN’s restrictions.

Additionally, TAMARIN enforces further normal-form condi-

tions by reasoning over normal dependency graphs, which use

the normal message deduction rules. To state the dependency-

graph normal-form conditions, we define the non-inverse fac-

tors of a term t as

nifactors�t� �

�����
	
����

nifactors�a� � nifactors�b� if t � a � b

nifactors�a� if t � a�1

�t� otherwise.

Formally, a normal dependency graph for a protocol P is a

dependency graph dg such that dg � dgraphsAC ��P �DH
�ND�

and the conditions N1–N6 in Figure 5 are satisfied.

Condition N1 ensures that all rule instances are �DH -normal.

Condition N2 formalizes that the adversary constructs all

products directly by multiplying their components. Condi-

tion N3 ensures that the same message never has multiple

N1 The dependency graph dg is �DH -normal.

N2 There is no multiplication rule that has a premise fact of

the form K
��t � s� and all conclusion facts K

��t � s� are

conclusions of a multiplication rule.

N3 If there are two conclusions c and c� with conclusion facts

K
�

y�m� and K
�

y��m�� or with conclusion facts K
��m� and

K
��m�� such that m �AC m�, then c � c�.

N4 No instance of COERCE deduces a pair or an inverse.

N5 If there is a conclusion �i,1� with fact K
�

y�m� and a

conclusion �j,1� with fact K
��m�� such that m �AC m�,

then i � j and j is an instance of COERCE or the

construction rule for pairing or the one for inversion.

N6 There is no node K
�

d�a�,K
��b������K

�

e�c ˆ d� such that c

does not contain any fresh names and nifactors�d� �AC

nifactors�b�.

Fig. 5. TAMARIN’s normal-form conditions

N7 There is no construction rule for � that has a premise

of the form K
��s � t�. All conclusion facts of the form

K
��s � t� are conclusions of a construction rule for �.

N8 The conclusion of a deconstruction rule for � is never of

the form K
�

d�s � t�.

N9 There is no node �K�

d�a�,K
��b�������K

�

e��d�c� such that c

does not contain any fresh names and nifactors�d� �ACC

nifactors�b�.

N10 There is no node i labeled with

�K�

d��t1�p�,K
�

d��t2�q�������K
�

d�ê�p, q� ˆ u� such that

there is a node j labeled with

�K�

d�ê�p, q� ˆ u�,K��v�������K
�

d�ê�p, q� ˆ w�, an edge

�i,1� � �j,1�, nifactors�ti� �ACC nifactors�v� for i �

1 or i � 2, and ê�p, q� does not contain any fresh names.

N11 There is no node

�K�

d��a�p�,K
�

d��b�q�������K
�

d�ê�p, q� ˆ �a � b�� such that

the send-nodes of the first and second premise are labeled

with ru1 and ru2 and fsyms�ru2� �fs fsyms�ru1�.

Fig. 6. Our new normal-form conditions for AC operators and bilinear pairing.
We explain these in Section IV-C.

K
�

y or K
�

deductions. Condition N4 ensures that pairs and

inverses are never deduced by COERCE. Condition N5 forbids

two types of redundancies. First, if there is already a normal

deduction for a message, then there is no need for a later

deconstruction of the same message. Second, if there is already

a deconstruction of a message, then the COERCE rule should

be used to create a normal deduction unless it is forbidden by

condition N4. Condition N6 forbids instances of exponentiation

rules that can be directly replaced by the construction rule for

exponentiation.

We write ndgraphs�P � to denote the set of all normal

dependency graphs of P . Critically, normal dependency graphs

capture exactly the same observable traces as the multiset

rewriting semantics.

Our search algorithm exploits the following fact about

normal dependency graphs to reason about the possible origins

of K
�

y-premises. Let dg � �I,D� � ndgraphs�P � and define

the deconstruction chain relation �dg as the smallest relation

such that i �dg p if �i,1� is a K
�

y-conclusion in dg and

(a) �i,1� � p � D or (b) there is a premise �j,1� in dg such

that �i,1� � �j,1� � D and j �dg p. Then it holds that for

every K
�

y-premise p of dg, there is a node i in dg such that

Ii � ginstsacDH�IRECV� and i�dg p. In our search algorithm,

this allows a forward search starting from a protocol send

followed by IRECV to find the provider of a K
�

y-premise.

D. TAMARIN’s search algorithm

We briefly review TAMARIN’s algorithm, which tries to

determine whether P �EDH
ϕ for a protocol P and a trace

property ϕ. The algorithm uses constraint solving to perform

a complete search for counter-examples to P �EDH
ϕ, i.e., it

attempts a proof by contradiction. This problem is undecidable

and the algorithm does not always terminate. Nevertheless,

it often finds a counter-example (an attack) or succeeds in

unbounded verification.

1) Syntax and Semantics of Constraints: In the remainder of

this section, let ri range over multiset rewriting rule instances,

f over facts, i and j over temporal variables, u and v over

natural numbers, and ϕ over guarded trace formulas. Intu-

itively, a trace formula is guarded if all quantified variables

are guarded or bounded by fact atoms. A graph constraint is

either a node i � ri , an edge �i, u� � �j, v�, a deconstruction

chain �i, u� � �j, v�, or a provides i � f , which denotes that

f is the first conclusion of the node i. A constraint is a graph

constraint or a guarded trace formula.

A structure is a pair �dg, θ� of a dependency graph dg �

�I,D� and a valuation θ. The application of the homomorphic

extension of θ to a rule instance ri is denoted by ri θ. The

structure �dg, θ� satisfies a constraint γ, written �dg, θ� � γ

if:

�dg, θ� � i � ri iff θ�i���1, . . . , �I �� and ri θ �AC Iθ�i�

�dg, θ� � �i, u�� �j, v� iff �θ�i�, u�� �θ�j�, v� �D

�dg, θ� � �i, u�� �j, v� iff �θ�i�, u��dg �θ�j�, v�

�dg, θ� � i�f iff concs�Iθ�i��1 �AC fθ

�dg, θ� � ϕ iff �trace�dg�, θ� �AC ϕ

A constraint system Γ is a finite set of constraints. The struc-

ture �dg, θ� satisfies Γ, written �dg, θ� � Γ, if �dg, θ� satisfies

each constraint in Γ. �dg, θ� is a P -model of Γ, if dg is a

normal dependency graph for P and �dg, θ� � Γ. A P -solution

of Γ is a normal dependency graph dg for P such that there

is a valuation θ with �dg, θ� � Γ.

2) Constraint-Solving Algorithm: Let P be a protocol and

ϕ a guarded trace property. The algorithm searches for a

counter-example to P �EDH
ϕ by trying to construct a P -

solution to the constraint system �ϕ̂�, where ϕ̂ is �ϕ rewritten

into negation normal form. The algorithm is based on the

constraint-reduction relation �P between constraint systems

and sets of constraint systems. Sets of constraint systems are

used to represent case distinctions.

1: function SOLVE(P �EDH
ϕ)

2: ϕ̂� �ϕ rewritten into negation normal form

3: Ω� ��ϕ̂��
4: while Ω � � and solved�Ω� � � do

5: choose Γ�P �Γ1, . . . ,Γk� such that Γ �Ω

6: Ω � �Ω � �Γ�� � �Γ1, . . . ,Γk�

7: if solved�Ω� � �
8: then return “attack(s) found: ”, solved�Ω�
9: else return “verification successful”

Fig. 7. Pseudocode of the constraint solving algorithm.

Intuitively, �P refines constraint systems and the algorithm

refines the initial constraint system �ϕ̂� until it either en-

counters a solved system or all systems contain (trivially)

contradictory constraints. In the following, we first give the

definition of �P and then present the algorithm.

A subset of the rules defining the constraint-reduction

relation �P is given in Figure 8. There are two types of

constraint-reduction rules: (1) simplification rules that remove

contradictory constraint systems or refine constraint systems

by simplifying constraints and (2) case distinction rules that

refine constraint systems by adding further constraints. For, a

constraint system Γ, its actions as�Γ� are defined as

as�Γ� � �f@i ��r a. �i � l��� a ��r� � Γ � f � a�

and the temporal order of Γ is

��Γ� � ��i, j� � �i � j� � Γ 	 �u v. ��i, u�� �j, v�� � Γ

	 ��i, u�� �j, v�� � Γ�� .

TAMARIN’s constraint-solving algorithm is shown in Fig-

ure 7. It uses a set of constraint systems as its state Ω. It starts

with the state ��ϕ̂��. Afterwards, in lines 4–6, it repeatedly

applies constraint-reduction steps as long as the state is non-

empty and does not contain a solved constraint system. To

formalize the loop condition, solved�Ω� is used to denote the

set of solved constraint systems in Ω. The automated analysis

uses a heuristic to make the choice in line 5. Upon termination

of the while-loop, the algorithm has either found a solved

constraint system (an attack) or it proved that ��ϕ̂�� has no

P -solution and therefore P �EDH
ϕ holds.

The correctness of TAMARIN’s algorithm follows from two

theorems from [9], paraphrased below:

Theorem 1. ([9]) The constraint-reduction relation �P is

sound and complete; i.e., for every Γ �P �Γ1, . . . ,Γn�, the

set of P -solutions of Γ is equal to the union of the sets of

P -solutions of all Γi, with 1 � i � n.

Theorem 2. ([9]) A P -solution can be constructed from

every solved system in the state Ω of the constraint-solving

algorithm.

E. Lemmas, axioms, and induction

Note that lemmas and axioms can be handled by adding

guarded trace formulas to the initial constraint system.

TAMARIN’s support for induction exploits this capability. To

prove a property ϕ by induction, TAMARIN first checks if

the empty trace satisfies ϕ. Afterwards, TAMARIN performs

a (complete) search for counterexamples with an additional

axiom ϕ� that encodes that init�tr� satisfies ϕ, where init�tr� �
tr1, . . . , tr �tr��1. To define ϕ�, a new trace atom is added that

allows TAMARIN to translate ϕ into ϕ� such that tr �AC ϕ�

iff init�tr� �AC ϕ.

IV. EXTENDING TAMARIN WITH AC OPERATORS AND

BILINEAR PAIRINGS

In this section we present our extensions to TAMARIN’s

theory and algorithm to support AC operators and bilinear

pairings, as described in Section II-A. We will present case

studies later in Section V.

Conceptually, extending TAMARIN’s theory with new oper-

ators requires the following steps. First, the signature must be

extended and an appropriate equational theory must be chosen

(e.g., possessing the finite variant property). In most cases, it

suffices to add a message deduction rule for each new operator.

Then, the variants of the new message deduction rules must be

annotated appropriately with tags to obtain the normal message

deduction rules. Once this is done, one can attempt to prove

properties using the algorithm. For most operators this will

fail because the new equations and rules typically lead to

state space explosion or non-termination. For example, bilinear

pairing is a commutative operator, and adding its equations

and rules leads to many different ways of deriving the same

message, causing the analysis to fail. This can be countered by

specifying appropriate normal forms that restrict the ways that

particular messages can be derived. Finally, constraint solving

rules are added to the constraint solving procedure. These

rules typically enforce normal form conditions or construct

derivation paths for the new operators.

In the following, we go through the above steps for AC

operators and bilinear pairings. The main design choices are

choosing the normal forms and constraint solving rules. While

some of these choices are canonical, the overall design space

is large, and is ultimately justified by the effectiveness and

efficiency of the algorithm on case studies. In general, our aim

is to reduce the kinds of redundancy that arise in derivations,

while avoiding too many case distinctions.

A. Modeling the new operators

To support the new operators presented in Section II-A, we

extend ΣDH and EDH as follows. We define:

ΣBP � ΣDH � � ê� , �, � � ,
 �

and

EBP � EDH � ��z���y�x� � �z � y�x, �1�x � x,

ê�x, y� � ê�y, x�, ê��z�x, y� � ê�x, y� ˆ z,

x
 �y
 z� � �x
 y�
 z, x
 y � y
 x �.

We use a fixed public name P and terms �s�P to model

elements of the group G. The bilinear map sends two terms

Example trace formula reduction rules:

S� � Γ �P �Γσ1� � . . . � �Γσk� if �t1 � t2� � Γ and unify
AC

�t1, t2� � �σ1, . . . , σk�

S�,� � Γ �P � if ��t � t� �AC Γ

S�,@ � Γ �P � if ��f@i� � Γ and �f@i� � as�Γ�

S@ � Γ �P �i � ri1, f � g1, Γ� � . . . � �i � rik, f � gk, Γ�
if �f@i� � Γ and ��ri1, g1�, . . . , �rik, gk�� � ��ru , g� � ru � �P �DH � �ISEND� � g � acts�ru ��

Example graph constraint reduction rules:

SULabel � Γ �P �ri � ri �, Γ� if �i � ri , i � ri �� � Γ

SAcyc � Γ �P � if i �Γ i

SUFresh � Γ �P �Γ, i � j, u � v� if �i � ri , j � ru � � Γ and �prems�ri��u � �prems�ru��v � Fr�m�

S� � Γ �P � if �i � ri � � Γ and ri not �DH -normal

Example message deduction constraint reduction rules:

SPrem,K� � Γ �P �Γ, j � K
��m�, j � i�

if �i � ri � � Γ, prems�ri �u � K
��m� for some u, and j freshly chosen

S
�,K� � Γ �P �Γ, i � �K��m1�, . . . ,K

��mk�	���	��K��m�	� � �Γ, i � �K�

y�m�	���	��K��m�	�
if �i � K

��m�� � Γ, m � f�m1, . . . ,mk�, f � ��,
 , �, �1�, and y freshly chosen

SPrem,K�
y

� Γ �P �Γ, j � �i, u�, j � Out�z����	�K
�

d�z��

if �i � ri � � Γ, prems�ri �u � K
�

y�m� for some u and y, and j, z freshly chosen

S� � Γ �P
�Γ, i � ri , �i,1� � �k,w��
� �Γ, i � ri , �i,1�� �j,1�, j � ru1, j � �k,w�� � . . . � �Γ, i � ri , �i,1� � �j,1�, j � ru l, j � �k,w��

if �i � ri , i � �k,w�� �AC Γ, �concs�ri ��1 � �K
�

d�x� � x � �pub�, �ru1, . . . , ru l� � NDdestr, and y freshly chosen

We write Γ�a�b� for the substitution of all occurrences of b with a in Γ. We write Γ�P Γ1 � . . . � Γn for Γ �P �Γ1, . . . ,Γn�,

which denotes an n-fold case distinction. We overload notation and write � for the empty set of constraint systems.

Fig. 8. A subset of the rules defining TAMARIN’s constraint-reduction relation �P . The full set is given in [12] and is similar to the rules in [9].

Constraint solving rules for message deduction with respect to �:

S�,� � Γ �P �i	 K
��t�, i � j,Γ�

if �j 	K
��m�� � Γ, root�m� � �, j freshly chosen, and t � elems�m�
 �msg .

S�,� � Γ �P x��1,...,l��i � ru, �i,1�� �j,1�, j � rux, j � �k,w�,Γ�
if �concs�ru��1 � K

�

d�t� and t � a � b for some a and b, elems�t� � �msg � known�

Γ�i�,

�ru1, . . . , rul� � �K
�

d�t����	�K
�

d�m� � m � elems�t�
 �msg�, and j freshly chosen

Constraint solving rules for bilinear pairing that ensure N9–N11:

SN9 � Γ �P �

if � i � �K�

d�a�,K
��b�	���	�K

�

e��d	c� � �AC Γ,

vars�c� � �pub , St�c� � FN � �, and nifactors�d� � nifactors�b�

SN10 � Γ �P �

if � �j,1�� �i,1�, i � �K�

d��t1	p�,K
�

d��t2	q�	���	�K
�

d�ê�p, q� ˆ c�,
j � �K�

d��t1	p�,K
�

d��t2	q�	���	�K
�

d�ê�p, q� ˆ c� � �AC Γ,

vars�p, q� � �pub , St�p, q� � FN � �, and nifactors�ti� � nifactors�d� for i � 1 or i � 2

SN11 � Γ �P �

if � k � �K�

d��a	p�,K
�

d��b	q�	���	�K
�

d�ê�p, q� ˆ c�, k1 � ri1, k2 � ri2,
i1 � ru1, �i1, u1� � �k1,1�, k1 � j,1�,
i2 � ru2, �i2, u2� � �k1,1�, k2 � j,2� � �AC Γ,

ri1 and ri2 are instances of IRECV and fsyms�ru2� 	fs fsyms�ru1�

Fig. 9. New constraint reduction rules for AC operators and bilinear pairing, explained in Section IV-D.

�s�P and �t�P to ê��s�P, �t�P� �EBP
ê�P,P� ˆ �s � t�. The

elements of the group GT are therefore modeled as terms

ê�P,P�ˆu. We use the � operator to model non-empty multisets.

For example, A �B �C models the multiset consisting of A, B,

and C.

The extended signature ΣBP yields additional message de-

duction rules for constructing multisets and performing scalar

multiplication and bilinear pairings. To allow the adversary

to extract elements from multisets, we extend the message

deduction rules MD with the rule K�x � y������K�x�.

We denote the outermost function symbol of a term t by

root�t�. We relax the definition of guarded trace property to

allow for subterms t with root�t� � � in addition to variables,

public names and irreducible function symbols from Σ�� .

This enables the use of � in security properties. We explain the

usefulness and usage of � in the context of group protocols,

in Section V-A.

B. Example: Joux protocol

We formalize the Joux protocol, described in Section II-B,

in Figure 10. We explain our formalization from the point of

view of a participant A1 creating a group with participants

A2 and A3. In the first step rule, A1 chooses his ephemeral

secret key x1 as well as two peers A2 and A3 and sends

�x1�P on the authentic channel !AO�A1, . . .�. The protocol

state fact St�A1,A2 � A3, x1� denotes that A1 now expects

responses from A2 and A3 and will compute the shared key

using x1. In the second step rule, A1 waits for the messages

from the two peers sent on their authentic channels which

contain their ephemeral public keys, and upon receiving both

messages computes the session key as ê�X2,X3� ˆ x1. The

SessionKey-fact denotes that A1 accepts the given key with

the given partners.

The security property is given in Figure 11. It states that

whenever k is a session key then the adversary can not know k.

C. Verification theory

We extend TAMARIN’s verification theory to enable reason-

ing with respect to the new operators. First, we adapt depen-

dency graphs modulo AC to account for the new equations in

EBP . Then, we extend the set of normal message deduction

rules to account for the new operators. Finally, to enable

verification with respect to this new theory, we introduce new

normal-form conditions for the new deduction rules. These

will be exploited by the new constraint reduction rules that

we present in Section IV-D.

Dependency graphs modulo ACC: We define the set of

equations ACC as

ACC � AC � �x � �y � z� � �x � y� � z, x � y � y � x,

ê�x, y� � ê�y, x��

and the rewriting system BP as

BP � DH � ��z���y�z�� �z � y�x, �1�x� x,

ê��y�x, z� � ê�x, z� ˆ y�.

First step:

Fr�x1������St�A1,A2 �A3, x1�, !AO�A1, �x1�P�

Second step:

St�A1,A2 �A3, x1�, !AO�A2,X2�, !AO�A3,X2�

��� SessionKey�A1,A2 �A3, ê�X2,X3� ˆ x1� ����

Overhear message:

!AO�A,X������Out�X�

Fig. 10. Multiset rewriting rules formalizing Joux where A1,A2,A3 � �pub.

���A1A2A3 i1 i2 k.

// adversary knows the session key k for A1, A2, and A3

�SessionKey�A1,A2 �A3, k�@i1 � K�k�@i2��

Fig. 11. Joux security property.

BP,ACC is a finite variant decomposition [12,16] of EBP

for the following reasons. First, �BP � ACC � is an equa-

tional representation of EBP . Second, ACC is regular, sort-

preserving, and all variables are of sort msg. Third, BP is sort-

decreasing and BP,ACC -rewriting is convergent and coherent.

We have used the AProVE termination tool [17] and the Maude

Church-Rosser and Coherence Checker [18,19] to verify both

properties. Fourth, there is a complete and finitary ACC -

unification algorithm. Finally, the finite variant property can

be established for BP ,ACC as follows. Comon-Lundh and

Delaune [20] prove that DH,AC has the finite variant property.

Since the new rules defined in BP work on operators not

defined before, and all new operators are bounded, we can

conclude the boundedness of BP . This gives us the finite

variant property according to [16].

Normal Message deduction: To define the new message

deduction rules, we extend the meaning of K�
-facts as follows.

K
�

d�m� means that m is an extracted subterm or the result of

applying ê to an extracted subterm. We extend the meaning

of K
�

e�m� to include that m can be the result of changing the

scalar in an extracted scalar multiplication.

The normal message deduction rules NDBP for bilinear

pairing and � are given in Figure 12, and extend the set ND.

Scalar multiplication is treated similar to exponentiation, i.e.,

there is a construction rule, there are deconstruction rules,

and scalar multiplication rules that use the fact symbol K
�

e

in the conclusion. For bilinear pairing, there is a construction

rule and there are bilinear pairing rules corresponding to the

non-trivial variants of ê�x, y�. They cover all the different

possible ways to normalize the product of the scalars from

the two scalar multiplications given as arguments to ê. The

message in the conclusion of a bilinear pairing rule is al-

ways an exponentiation and can therefore only be used by

COERCE, an exponentiation rule, or a deconstruction rule for

exponentiation. Note that for the first bilinear pairing rule, the

first premise is a scalar multiplication and uses K
�

d and the

second premises uses K
�

and cannot be a scalar multiplication

if the instance is in normal form. For all remaining bilinear

Construction rules:
K
��x� K

��y�

K
���y�x�

K
��x� K

��y�

K
��ê�x, y��

K
��x1� . . . K

��xk�

K
��x1 � . . . � xk�

Deconstruction rules:

K
�

d��y�x� K
�

d�y
�1�

K
�

d�x�

K
�

d��y
�1�x� K

��y�

K
�

d�x�

K
�

d��y � z
�1�x� K

��y�1 � z�

K
�

d�x�

K
�

d�x � y�

K
�

d�x�

Scalar multiplication rules:

K
�

d��y�x� K
��z�

K
�

e��y � z�x�

K
�

e��y�x� K
��y�1 � z�

K
�

e��z�x�
�

K
�

d��y1 � y
�1
2 �x� K

��z1 � z
�1
2 �

K
�

e��y1 � z1 � �y2 � z2�
�1�x�

Bilinear pairing rules:

K
�

d��z�x� K
��y�

K
�

d�ê�x, y� ˆ z�

K
�

d��z1�x� K
�

d��z2�y�

K
�

d�ê�x, y� ˆ z1 � z2�
�

K
�

d��y1 � y
�1
2 �x1� K

�

d��z1 � z
�1
2 �x2�

K
�

d�ê�x1, x2� ˆ �y1 � z1 � �y2 � z2�
�1��

Fig. 12. The normal message deduction rules NDBP for bilinear pairing. There are construction rules for � for all k � 1. There are 42 scalar multiplication
rules and 28 bilinear pairing rules computed from the BP,ACC -variants of the corresponding rules.

pairing rules, both premises are scalar multiplications and use

K
�

d-facts.

Normal Dependency Graphs: TAMARIN’s search systemat-

ically explores all dependency graphs that represent a set of

traces, see Section III-B. By introducing dependency graph

normal forms, we reduce the number of dependency graphs

that need to be explored, effectively excluding dependency

graphs whose traces are subsumed by other (normal) depen-

dency graphs.

To enable the verification of our extension of TAMARIN,

we introduce five new normal-form conditions, depicted in

Figure 6. To state the conditions, we introduce auxiliary

definitions. A node i labeled with an instance of a protocol

rule is the send-node of the premise �j, u� in dg if there is a

node k labeled with an instance of IRECV such that there is

an edge �i, v� � �k,1� for some k, v and a chain k�dg �j, u�.

Intuitively, the send-node of a premise K
�

y�m� is the protocol

rule that sends the message from which m is extracted. We

denote the sequence of fact symbols occurring in a multiset

rewriting rule ru with fsyms�ru�. We also assume given a

total order �fs on sequences of fact symbols.

The condition N7 is similar to condition N2 for multiplica-

tion, but deals with � instead. The condition N8 ensures that

the deconstruction rule for � never extracts a multiset. Together

with N7, this enforces that multisets are completely decon-

structed and then constructed from scratch. The condition N9

directly corresponds to condition N6 for exponentiation and

forbids unnecessary uses of scalar multiplication rules.

The condition N10 prevents deductions where an exponen-

tiation rule is applied to the result of a bilinear pairing rule

such that the deduction can be replaced by a simpler one.

The condition N11 prevents redundant cases resulting from

the commutativity of ê, where two dependency graphs only

differ in the order of premises of a bilinear pairing rule. This

is especially problematic for the second bilinear pairing rule

in Figure 12 which is symmetric and occurs very often. We

therefore enforce that the send-node of the second premise

cannot be smaller than the send-node of the first premise.

Since we want to evaluate this condition on symbolic constraint

systems, we choose a partial order on rule instances that

considers only the fact symbols.

D. Constraint Solving

We now present five new constraint solving rules required

for � and bilinear pairing. We first introduce two additional

definitions. The messages known before i in Γ are defined as

known�
Γ�i� � �m � �j.j �Γ i � j � K

��m��.

The set of elements of a term t is defined as

elems�t� �
�		

		�

elems�a� � elems�b� if t � a � b

�t� otherwise.

The new constraint solving rules for � are shown in Figure 9.

The rule ��,� directly introduces constraints for the premises

of the construction rule for � instead of introducing a node

constraint for the rule itself. The rule ��,� solves chains that

start at conclusions K
�

d�a � b�. To ensure that the original rule

�� is never used for such conclusions, we redefine �� and

add the additional side condition that �concs�ri��1 �� K
�

d�s�t�
for all terms s and t. The new rule ��,� handles this case

by adding one case for every element of a � b that is not a

message variable. The rule is only applicable if all elements

of a � b that are message variables are known before. The

rule’s correctness depends on three normal form conditions.

Condition N5 allows us to ignore all cases where a message

that is already K
�
-known is extracted. Condition N7 allows

us to ignore the COERCE case since K
��a � b� is never the

conclusion of COERCE. Finally, condition N8 allows us to

ignore all cases where a term of the form a � b is extracted.

The constraint solving rules that ensure the new normal

form conditions are also shown in Figure 9: the conditions of

each of these rules specify the negation of the corresponding

normal form, in which case the constraint system has no

solution (�).

The resulting constraint solving relation is sound and

complete, and we can still obtain P -solutions from solved

constraint systems. The full proof is given in [12].

E. Example: Joux protocol verification

We now explain the verification of the unsigned Joux

protocol from Section IV-B. For a full description of the

verification of a signed version of Joux, with perfect forward

secrecy, we refer to [12].

The key computation in the second step rule applies ê to

two message variables and raises the result to the power of the

ephemeral secret key. The main challenge in the automated

proof is to compute an exhaustive case distinction that lists all

possible ways the adversary can deduce a term of the form uˆv.

Using the extended constraint solving algorithm, TAMARIN

computes the following five cases:

(i) Construct an exponentiation from the known base u,

which is not an exponentiation, and the non-inverse

factors of the exponent v.

(ii) Apply the bilinear map ê to a scalar multiplication

extracted from a message of the first step rule, and an

arbitrary other message that is not a scalar multiplication.

Note that if the other message is a scalar multiplication

then the result is not normal.

(iii) Extract the scalar multiplications from two protocol

sends and apply the bilinear map to both.

(iv) Perform the same steps as in (ii) and use an exponentia-

tion rule to multiply the exponent of this deduction with

a factor.

(v) Perform the same steps as in (iii) and use an exponentia-

tion rule to multiply the exponent of this deduction with

a factor.

The automated analysis proceeds along the following lines:

Due to the form of the messages received, the key must be

of the form ê�P,P� ˆ �x1 � x2 � x3�, where x1, x2 and x3

are fresh names that are used as ephemeral secret keys by

the participants. Then the computed case distinction is used to

derive all possible sources of this exponentiation. All these

cases are shown to be contradictions because they require

the adversary to know one of the ephemeral secret keys, but

the adversary does not know (and cannot deduce) any of the

ephemeral secret keys.

V. CASE STUDIES

In this section we report on case studies to validate the

effectiveness and efficiency of our TAMARIN extension. The

extension has been integrated into the latest TAMARIN ver-

sion [13]. We give an overview of our case studies in Table I.

In sections V-A through V-D we present details of the analysis

of three different group key agreement protocols, STR, group

Joux, and GDH. Afterwards, in Section V-E, we report on

further case studies that include tripartite and identity-based

protocols, and summarize our experimental results.

A. Modeling group protocols

The three group protocols use different structures. For

example, STR and group Joux have subgroup keys, but GDH

does not. We explain the different challenges arising for these

protocols and how we successively tackled them.

In our experience, the protocols that have subgroup keys

are easier to analyze, as fewer lemmas are needed since the

intermediate keys are directly available. But the verification

does not depend on having subgroup keys and we can verify

GDH with TAMARIN after establishing some lemmas stating

properties of the partial keys. Note that in all three protocols,

the number of participants is indeed unbounded and we do not

introduce any such limitations in our models.

We now show how the new operators from Section IV-A

enable us to model group protocols. We use a unary represen-

tation for non-zero natural numbers which uses the constant 1
and the AC-operator �. Based on this representation, we can

axiomatize “x less than y” as �z.x � z � y. In our models,

we abbreviate this formula with x �nat y and use standard

notation for numbers.

We use the constant empty to represent the empty finite map

and the pair �k, v� to represent the mapping from the key k to

the value v. The finite map that maps ki to vi for i � 1 to n

is then represented as empty � �k1, v1� � . . . � �kn, vn�. We use

matching (modulo AC) to perform map lookups. That is, to

look up the value x for the key k in the map m, we match m

with �k,x� �m � binding the remainder of the map to m�.

Additionally, all of our protocol formalizations contain

several axioms (not shown explicitly) defining the meaning

of certain facts: Eq�x, y� formalizes x � y, InEq�x, y� for-

malizes x �� y, Less�x, y� formalizes x �nat y, and Uniq�x�
formalizes that for each x, there is at most one Uniq�x� in the

trace. We use an authentic channel !AO for communication,

which the adversary can read, using the last rule shown in

Figure 10.

We model the adversary’s interaction with the protocol by

queries. For each query Q with arguments a1, . . . , ak, we de-

fine a rule with rule name Q�a1, . . . , ak�. In the corresponding

rewrite rule, we add the premise In��Q, a1, . . . , ak�� and the

action Uniq��Q, a1, . . . , ak��.

B. STR

Recall STR as explained in Section II-B, in particular

Figure 1. We describe our formalization of the group creation

and the group leader A1 in detail, given in three rules in

Figure 13. We only briefly describe the three rules used for

participants A2–Ak. We introduce a function te to model the

conversion of group elements to exponents, which was denoted

by underlining in Section II-B. Because it might be possible to

invert the conversion function te, we also introduce its inverse

function ite and the equation ite�te�x�� � x.

The Create-Group rule stores the three parameters given in

the query in a persistent fact !Group. The Uniq action ensures

that each group identifier can only be used once. The size of

the group is given by the number k and pMap is the mapping

from numbers 1, . . . , k to public names.

Create-Group (gid , k,pMap):

����� Uniq�gid� �� !Group�gid , k,pMap�

Start-Leader (gid):

!Group�gid , k, �1,A� � �2,B� � pM
��,Fr�esk�,

!AO�B, �EpkOf, gid ,2, Y ��

��� Accept�gid ,A,1,2, k, Y ˆ esk� ��

!AO�A, �GpkFor, gid ,2,g ˆ esk��,

Leader�gid ,A,3, Y ˆ esk�

Step-Leader (gid , j):

Leader�gid ,A, j, key�, !Group�gid , k, �j,B� � pMap�,

!AO�B, �EpkOf, gid , j, Y �

��� Accept�gid ,A,1, j, k, Y ˆ te�key��,Less�j, k � 1� ��

!AO�A, �GpkFor, gid , j,g ˆ te�key���,

Leader�gid ,A, j � 1, Y ˆ te�key��

Fig. 13. Multiset rewriting rules for leader in STR. EpkOf,GpkFor � pub.

���i1 i2 gid A i j k key .

�Accept�gid ,A, i, j, k, key �@i1 � K�key�@i2��

Fig. 14. STR secrecy lemma: adversary does not know any accepted keys.

The Start-Leader rule takes an existing !Group fact and

reads the group identifier gid . In the map from indices to

names, pMap , it finds the public name A of the leader with

index 1 and finds the public name B for the second participant

with index 2. It generates a new ephemeral secret key esk for

A. On B’s authentic channel, it receives a message stating that

the content Y is an ephemeral public key (shown by EpkOf)
for group gid from participant 2. With this, it can log the

accepting fact Accept for that gid , name A, index 1, noting

the subgroup key is for the first two participants, the total

group size is k, and the key is Y ˆ esk. Then it sends on

A’s authentic channel a message that contains the subgroup’s

ephemeral public key (shown by GpkFor) for group gid for

consumption by participant 2 and the key is g ˆ esk. It then

stores in a Leader fact the group identifier gid , the name of

the leader A, the index of the next participant to communicate

with, 3, and the current subgroup key Y ˆ esk. Note that, with

the message sent here, participant B can compute the same

subgroup key, as it also has its own ephemeral secret key used

to generate the ephemeral public key that was received by this

rule.

The Step-Leader rule is queried for a given group identifier

gid and index j. Note that the adversary can only query these

in sequential order as the Leader fact is not persistent and the

index is incremented each time it is called. From the Leader

fact with matching gid and j, it retrieves the leader name A

and the subgroup key key . From the !Group fact it retrieves

the public name B associated with index j. It receives on B’s

authentic channel the message that Y is the ephemeral public

key of B for this group. It logs the action Accept with the

group identifier, name A, index 1, index j to show the key is

for the subgroup A1–Aj , the group size k and the actual new

subgroup key Y ˆ te�key�. It also logs a Less fact to ensure

that j is in bounds, i.e., smaller than k � 1. On A’s authentic

channel it sends the subgroup’s ephemeral public key for this

group gid , designated for participant B with index j, which is

g ˆ te�key�. The Leader fact is stored again, with incremented

index j � 1 and the new subgroup key Y ˆ te�key�.

The other participants A2–Ak use three rules. In their first

rule they pick their ephemeral secret key and send on their

authentic channel the associated ephemeral public key for

the group. In their second rule they receive their subgroup’s

ephemeral public key from the leader and compute the sub-

group key. Their last rule is just like the Step-Leader rule,

but without sending anything. That is, it receives the ephemeral

public key of the participants with higher index in order and

computes successively the next subgroup key until done.

The secrecy claim is given in the form of the lemma shown

in Figure 14. TAMARIN automatically proves this lemma using

induction as described in Section III-E. Without induction,

TAMARIN’s backwards search would not terminate, because it

keeps repeatedly unfolding ‘one more step’ of the loops when

trying to prove the secrecy of STR for an arbitrary number of

participants.

When using induction, TAMARIN first checks the empty

trace which trivially satisfies the secrecy lemma as no Accept

fact was logged yet. For the induction step, TAMARIN’s

backward search first shows that that the adversary cannot

compute the new key without knowing either the previous

subgroup key key or some ephemeral secret key esk. It then

uses the induction hypothesis to show that the secrecy lemma

holds for the subgroup key key and the first case is therefore

impossible. Finally, it shows that the second case is also

impossible because the adversary cannot deduce esk.

For STR, we analyze two different versions: one using

explicitly authentic channels, which we presented, and another

version using insecure channels and signatures. See Table I in

Section V-E for the different verification run times.

C. From Joux to group Joux

For the analysis of group Joux, we refer to Section IV-B for

the Joux protocol and to Section V-B for the use of induction.

We have shown in Figure 1 how group Joux extends the Joux

protocol. Note that the extension described in Section IV-A is

needed for both the bilinear pairing, and the representation of

the tree by maps. The TAMARIN tool verifies the secrecy of

the group key automatically, when induction is enabled. See

the table in Section V-E for more details.

D. GDH

Figure 15 depicts the multiset rewriting rules for GDH, as

presented in Section II-B. The Create-Group rule stores the

two parameters, the group identifier gid and the number of

participants k, in the !Group fact. It also logs an action fact

to ensure that each group identifier is only used once and

checks that the group size is not one.

The Start-Participant rule with a given gid , participant

index i, and participant name A, reads the group size k from

the !Group fact and generates a new ephemeral secret key

esk. It logs a number of actions: two uniqueness constraints,

so that each index i and name A are only used once per gid ,

as well as a less-than fact Less ensuring that i � �1, . . . , k�. It

also logs in the Esk fact that esk is the ephemeral secret key

of i. It stores the participant state fact !Pstate with the group

identifier, participant index and name, and the participant’s

secret. Separately, a mapping !Pmap, parametric on the group

identifier, from participant index to name is stored.

In the rule Send-First for a group identifier gid , the state

must contain the participant state fact for that gid with index 1,

name A, and ephemeral secret key esk. It sends two messages

on A’s authentic channel for this group’s participant 2, one

with g as the key for 1, and the other with g ˆesk as the round

key for 2. In WaitAccept, it stores its information so it can

accept using the last rule.

The rule Recv-Others gets the acting participant A’s index

i and the index j whose assigned partial key is modified. The

state contains facts ensuring that the received message is from

the predecessor B, with index l, of i, and the key is for j. On

its authentic channel A sends the received key, exponentiated

with its ephemeral secret key esk, for further handling by the

participant with index i � 1. It also logs that participant i has

responded to this message in the Exp fact. Note that receiving

g ˆ y (as opposed to a message variable Y) models that the

recipient performs a group element check. Note too that the

exponent is not directly used by the protocol, and only appears

in the action.

The Recv-Roundkey rule for participant i receives from

A’s predecessor B, with index l, the partial key g ˆ y marked

as RoundKey. We use InEq�i, k� to ensure that A is not

the last participant. The rule also logs that this message has

been consumed by way of Exp. It sends two messages on its

authentic channel, both to the successor participant. One is its

own partial key, g ˆ y, and the other is the successor’s round

key, �g ˆ y� ˆ esk. In WaitAccept, it stores its information to

be used when accepting the group key in the last rule.

The last participant can execute the Recv-Roundkey-Last

rule. The index k of A is the group size, and it receives a

message from its predecessor B containing the round key gˆy

for k. This allows A to accept by logging the Accept fact with

the group identifier, its name, its index, and the group key

�g ˆy� ˆesk. Note that it does not need to send any message as

that has already happened in the Recv-Others rule steps for

k.

All other participants accept using the last rule Accept and

require their WaitAccept fact in the state. They receive the

partial key assigned to them from the last participant B, which

they raise to the power of their ephemeral secret key esk and

log in the Accept their name, their index, and the group key

�g ˆ y� ˆ esk. Note that the index in the received message is

k � 1 for group size k

This concludes our description of the GDH rules and we

now describe the verification. We prove the secrecy for the key

Create-Group (gid, k):

����� Uniq�gid�, InEq�k,1� �� !Group�gid , k�

Start-Participant �gid , i,A�:

!Group�gid , k�,Fr�esk�

��� Uniq��gid , i��,Uniq��gid ,A��,Less�i, k � 1�,Esk�i, esk� ��

!Pstate�gid , i,A, esk�, !Pmap�gid , i,A�

Send-First �gid�:

!Pstate�gid ,1,A, esk������

!AO�A, �gid ,2,KeyFor,1,g��,

!AO�A, �gid ,2,RoundKey,g ˆ esk��,

WaitAccept�gid ,1,A, esk�

Recv-Others �gid , i, j�:

!Pstate�gid , i,A, esk�, !Pmap�gid , l,B�,

!AO�B, �gid , i,KeyFor, j,g ˆ y��

��� Exp�i, y�,Eq�l � 1, i�,Less�j, i� ��

!AO�A, �gid , i � 1,KeyFor, j, �g ˆ y� ˆ esk��

Recv-Roundkey �gid , i�:

!Pstate�gid , i,A, esk�, !Pmap�gid , l,B�, !Group�gid , k�,

!AO�B, �gid , i,RoundKey,g ˆ y��

��� Exp�i, y�,Eq�l � 1, i�, InEq�i, k� ��

!AO�A, �gid , i � 1,KeyFor, i,g ˆ y��,

!AO�A, �gid , i � 1,RoundKey, �g ˆ y� ˆ esk��,

WaitAccept�gid , i,A, esk�

Recv-Roundkey-Last �gid�:

!Pstate�gid , k,A, esk�, !Pmap�gid , l,B�, !Group�gid , k�,

!AO�B, �gid , k,RoundKey,g ˆ y��

��� Exp�k, y�,Eq�l � 1, k�,Accept�gid ,A, k, �g ˆ y� ˆ esk� �� ��

Accept �gid , i�:

WaitAccept�gid , i,A, esk�, !Group�gid , k�,

!Pmap�gid , k,B�, !AO�B, �gid , k � 1,KeyFor, i,g ˆ y��

��� Accept�gid ,A, i, �g ˆ y� ˆ esk� �� ��

Fig. 15. Multiset rewriting rules formalizing GDH. KeyFor,RoundKey �

pub.

���j1 j2 gid i A key .�Accept�gid ,A, i, key�@j1 � K�key�@j2��

Fig. 16. GDH security property: adversary does not know accepted keys.

�i1 i2 r1 r2 esk x.

// if esk is an ephemeral secret key that appears in an exponent,

�Esk�r1, esk�@i1 � Exp�r2, x � esk�@i2

// then it was created in an earlier round

� r1 �nat r2�

Fig. 17. GDH Lemma 1.

of any group member, which is formalized in Figure 16. To

prove this, we needed to specify some intermediate lemmas,

which we outline next. TAMARIN automatically proves the

lemmas and reuses them to prove the secrecy property.

Lemma presentation: We present three key lemmas here.

Note that there are also nine more auxiliary lemmas. For those,

Protocol Adversary model Result Time [s]

Group protocols:
STR authentic channels proof 4.8
STR with signatures PFS proof 15.3
Group-Joux authentic channels proof 102.1
GDH authentic channels proof 152.7

Tripartite protocols:
SIGJOUX PFS proof 90.7
SIGJOUX PFS, eph-reveal attack 99.8
TAK1 weakened eCK-like proof 56.8
TAK1 eCK-like attack 77.2

Identity-based protocols:
RYY wPFS proof 8.3
RYY wPFS, eph-reveal attack 7.9
Scott wPFS proof 19.3
Scott wPFS, eph-reveal attack 26.2
Chen-Kudla eCK-like proof 61.0
Chen-Kudla eCK attack 45.3

TABLE I
OVERVIEW OF CASE STUDIES

and additional details, we refer the reader to [13]. Each lemma

can be reused to prove subsequent lemmas and the actual proof

goal. The key lemmas are:

1) All factors of an exponent that are ephemeral secret keys

have been created by a participant in an earlier round.

2) For no round is the round key sent the same as one of

the keys sent for another participant.

3) All factors of all received exponents are secret.

We explain the first lemma, depicted in Figure 17, in more

detail. It states that for all ephemeral secret keys esk from

round r1 that also appear as a factor of an exponent in round

r2, it holds that r1 � r2. TAMARIN proves this using induction.

It first proves an auxiliary lemma that all factors are ephemeral

secret keys and afterwards that each of them has been created

in an earlier round.

E. Experimental Results

Table I provides an overview of our case studies (available

at [13]). We discussed the models for the group protocols

in detail in the previous section. Note that for STR we

verified a model that uses authentic channels and a model

using insecure channels with signatures where the adversary

can reveal signing keys. For group Joux and for GDH we

considered the case of authentic channels. For the two STR

versions and Group Joux, TAMARIN performs the proof fully

automatically and does not require any intermediate lemmas.

For GDH, we give intermediate lemmas that TAMARIN can

prove automatically.

Additionally, we analyzed two tripartite protocols: the

signed Joux protocol and the TAK1 protocol from [21]. For the

signed Joux protocol TAMARIN verifies that it satisfies perfect

forward secrecy (PFS). If we additionally allow the adversary

to learn ephemeral secret keys, TAMARIN finds an attack.

For the TAK1 protocol, TAMARIN finds an attack against

the eCK-security property that uses ephemeral key reveals

combined with long-term key reveals. TAMARIN proves a

weakened security property, which disallows the adversary

from revealing both an ephemeral key and a long-term key.

Finally, we analyze three identity-based protocols that use

bilinear pairings. TAMARIN shows that the RYY protocol [22]

provides weak perfect forward secrecy (wPFS), but is vul-

nerable against ephemeral key reveal attacks. For the Scott

protocol [23] we obtain a similar result. Our last protocol,

Chen-Kudla [24], uses point addition. We do not support this

operation and the required equalities, like �c���a�P � �b�Q� �
��c a�P � �c b�Q�, in our model, and approximate the point

addition with the associative and commutative operator �.

TAMARIN verifies that the protocol is secure in an eCK-like

model, in which it is allowed to reveal the ephemeral keys of

some, but not all agents involved in a session. If we remove

this restriction, TAMARIN finds an attack.

VI. RELATED WORK

There have been other applications of symbolic methods to

find attacks on group key agreement protocols. In particular,

the CORAL tool [6] was used to automatically find six attacks

on three different protocols. CORAL can only perform falsifi-

cation but not verification, i.e., the absence of an attack is not

equivalent to a verification of security. Additionally, CORAL

cannot handle the protocols covered in our work since it does

not support Diffie-Hellman or bilinear pairings.

Meadows et al. used the NPA tool for the formal analysis of

an abstract version of the GDOI protocol [25], which is a key

transport protocol with a trusted central key server. Maude-

NPA [26] is a more recent incarnation of the NPA tool based

on rewriting logic. It is an automated tool capable of analyz-

ing secrecy properties of DH protocols by using backwards

narrowing with a DH-theory with the finite variant property.

Maude-NPA does not support bilinear pairing. However, our

bilinear pairing theory with the finite variant property from

Section IV could be used as a basis to extend Maude-NPA

with bilinear pairing.

Pankova et al. [27] give a transformation from a Horn theory

modulo bilinear pairing to a Horn theory that can be analyzed

with ProVerif, similar to the transformation given by Küsters

and Truderung [28] for DH. In comparison to these two works,

we can handle AC operators, do not require the so-called

exponent-ground property of protocols, and provide support

for specifying advanced security properties.

ProVerifList [7] uses a modified version of the basic

ProVerif algorithm to enable the verification of protocols with

unbounded lists. ProVerifList supports only a strict subset of

ProVerif’s features. In particular, it does not support equational

theories.

There are also early results on the symbolic analysis of

bilinear pairing protocols to establish computational guaran-

tees. Kremer and Mazaré propose in [29] a manual symbolic

analysis method for secrecy with respect to a passive adversary

that is computationally sound. They extend Bellare-Rogaway’s

soundness results to bilinear pairing. In contrast, while we do

not prove computational soundness, our approach deals with

active adversaries and a large class of security properties.

VII. CONCLUSIONS

We have presented the first algorithm for the symbolic

falsification and verification of group key agreement protocols

using Diffie-Hellman exponentiation, bilinear pairing and AC-

operators, by extending the algorithm underlying TAMARIN

with support for AC-operators and bilinear pairing. Case

studies show both the effectiveness and efficiency of our

approach.

Our extensions are of independent interest. For example, the

AC operators can be used to model lists, maps, and multisets.

Bilinear pairings are used in many types of protocol, including

identity-based protocols.

As future work, it would be interesting to analyze other

variants of protocols that have subgroup keys, such as tree

group Diffie-Hellman (TGDH) [30], analyze further advanced

security properties, or include dynamic group operations such

as join and leave. Furthermore, TAMARIN’s scope may also

facilitate the analysis of systems that use group protocols as

components. For example, the SafeSlinger [31] protocol incor-

porates the STR protocol to generate shared keying material

for secure communication among a group of participants at

the same physical location.

Our current equational theory does not support point addi-

tion and group element multiplication, which is a restriction

shared with the other automated approaches. We therefore

cannot yet accurately model protocols such as HMQV or

Burmester-Desmedt [32]. As future work, we would like to

investigate support for such protocols.

REFERENCES

[1] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A secure audio
teleconference system,” in Proceedings on Advances in Cryptology,

CRYPTO. Springer-Verlag New York, Inc., 1990, pp. 520–528.
[2] R. Barua, R. Dutta, and P. Sarkar, “Extending Joux’s protocol to multi

party key agreement,” INDOCRYPT 2003, pp. 33–60, 2003.
[3] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution

extended to group communication,” in ACM Conference on Computer

and Communications Security (CCS). ACM, 1996, pp. 31–37.
[4] O. Pereira and J. Quisquater, “Security analysis of the cliques protocols

suites: first results,” in Trusted Information: The New Decade Challenge,

16th Annual Working Conference on Information Security, IFIP/Sec,

IFIP Conference Proceedings, 2001, pp. 151–166.
[5] M. Steiner, G. Tsudik, and M. Waidner, “Cliques: A new approach

to group key agreement,” in Proceedings of the 18th International

Conference on Distributed Computing Systems. IEEE, 1998, pp. 380–
387.

[6] G. Steel and A. Bundy, “Attacking group protocols by refuting incorrect
inductive conjectures,” J. Autom. Reasoning, vol. 36, no. 1-2, pp. 149–
176, 2006.

[7] B. Blanchet and M. Paiola, “Automatic verification of protocols with
lists of unbounded length,” in ACM Conference on Computer and

Communications Security (CCS). ACM, 2013, pp. 573–584.
[8] Y. Kim, A. Perrig, G. Tsudik et al., “Communication-efficient group

key agreement,” in Proceedings of the IFIP TC11 Sixteenth Annual

Working Conference on Information Security: Trusted Information: The

New Decade Challenge. Kluwer, BV, 2001, pp. 229–244.
[9] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis of

Diffie-Hellman protocols and advanced security properties,” in Computer

Security Foundations Symposium (CSF). IEEE, 2012, pp. 78–94.

[10] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols,” in Computer Aided

Verification, 25th International Conference, CAV 2013, Princeton, USA,

Proc., ser. LNCS, vol. 8044. Springer, 2013, pp. 696–701.
[11] S. Meier, “Advancing automated security protocol verification,” PhD

dissertation, ETH Zurich, 2012.
[12] B. Schmidt, “Formal Analysis of Key Exchange Protocols and Physical

Protocols,” PhD dissertation, 2012.
[13] S. Meier, B. Schmidt, and C. Cremers, “The TAMARIN prover:

source code and case studies,” March 2014, available at http://tamarin-
prover.github.io.

[14] D. Kapur, P. Narendran, and L. Wang, “Undecidability of unification
over two theories of modular exponentiation,” in Seventeenth Interna-

tional Workshop on Unification (UNIF-2003), Valencia, Spain, 2003.
[15] F. J. Thayer, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving

security protocols correct,” Journal of Computer Security, vol. 7, no. 1,
pp. 191–230, 1999.

[16] S. Escobar, R. Sasse, and J. Meseguer, “Folding variant narrowing and
optimal variant termination,” Journal of Logic and Algebraic Program-

ming, vol. 81, no. 7-8, pp. 898–928, 2012.
[17] J. Giesl, P. Schneider-Kamp, and R. Thiemann, “Automatic termination

proofs in the dependency pair framework,” in IJCAR, ser. LNCS, vol.
4130. Springer, 2006, pp. 281–286.

[18] F. Durán and J. Meseguer, “A Church-Rosser checker tool for conditional
order-sorted equational Maude specifications,” in Rewriting Logic and
Its Applications - 8th International Workshop, WRLA 2010, Revised

Selected Papers, ser. LNCS, vol. 6381. Springer, 2010, pp. 69–85.
[19] ——, “A Maude coherence checker tool for conditional order-sorted

rewrite theories,” in Rewriting Logic and Its Applications - 8th Interna-

tional Workshop, WRLA 2010, Revised Selected Papers, ser. LNCS, vol.
6381. Springer, 2010, pp. 86–103.

[20] H. Comon-Lundh and S. Delaune, “The finite variant property: How to
get rid of some algebraic properties,” in RTA, ser. LNCS, J. Giesl, Ed.,
vol. 3467. Springer, 2005, pp. 294–307.

[21] S. Al-Riyami and K. Paterson, “Tripartite authenticated key agreement
protocols from pairings,” Cryptography and Coding, pp. 332–359, 2003.

[22] E. Ryu, E. Yoon, and K. Yoo, “An efficient ID-based authenticated key
agreement protocol from pairings,” NETWORKING 2004. Networking

Technologies, Services, and Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless Communications, pp.
1458–1463, 2004.

[23] M. Scott, “Authenticated ID-based key exchange and remote log-in with
simple token and pin number,” IACR eprint, vol. 164, 2002.

[24] L. Chen and C. Kudla, “Identity based authenticated key agreement
protocols from pairings,” in Computer Security Foundations Workshop

(CSFW). IEEE, 2003, pp. 219–233.
[25] C. Meadows, P. F. Syverson, and I. Cervesato, “Formal specification and

analysis of the group domain of interpretation protocol using NPATRL
and the NRL protocol analyzer,” Journal of Computer Security, vol. 12,
no. 6, pp. 893–931, 2004.

[26] S. Escobar, C. Meadows, and J. Meseguer, “Maude-NPA: Cryptographic
protocol analysis modulo equational properties,” in FOSAD, ser. LNCS,
vol. 5705. Springer, 2007, pp. 1–50.

[27] A. Pankova and P. Laud, “Symbolic analysis of cryptographic protocols
containing bilinear pairings,” in Computer Security Foundations Sympo-

sium (CSF). IEEE, 2012, pp. 63–77.
[28] R. Küsters and T. Truderung, “Using ProVerif to analyze protocols

with Diffie-Hellman exponentiation,” in Computer Security Foundations

Symposium (CSF). IEEE, 2009, pp. 157–171.
[29] S. Kremer and L. Mazaré, “Computationally sound analysis of protocols

using bilinear pairings,” Journal of Computer Security, vol. 18, no. 6,
pp. 999–1033, Sep. 2010.

[30] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,”
ACM Transactions on Information and System Security (TISSEC), vol. 7,
no. 1, pp. 60–96, 2004.

[31] M. Farb, Y.-H. Lin, M. Burman, G. S. Chandok, J. McCune,
and A. Perrig, “SafeSlinger: Easy-to-use and secure public key
exchange,” CyLab, Carnegie Mellon University, Tech. Rep., 2012,
http://sparrow.ece.cmu.edu/group/pub/SafeSlinger.pdf.

[32] M. Burmester and Y. Desmedt, “A secure and efficient conference
key distribution system,” in Advances in Cryptology - EUROCRYPT’94.
Springer, 1995, pp. 275–286.

