
Poster: FireDroid: Hardening Security in Android
with System Call Interposition

Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, Wannes van der Mark
Department of Computer Science

University of Auckland
Auckland, New Zealand

Faculty Member
Email: {g.russello;a.blas;h.naderi;w.vandermark}@auckland.ac.nz

Keywords-Android security; system call interposition;

I. INTRODUCTION

Smartphones are the most successful consumer devices to
date reaching 821 million units sold to end users in the
last quarter of 2012 [1]. In this very competitive market,
smartphones equipped with the Android OS reached the 72.4%
of the total sold devices [2]. According to Google chairman
Erich Schmidt, 1.3 million Android devices are activated each
day [3]. As these simple statistics testify, the Android OS plays
an important role in the mobile device market.

Smartphones empower users with ubiquitous computing:
users can perform the same tasks as with laptops and desktops
but with more flexibility and mobility. Both in the private and
public sector, organisations’ employees rely on their smart-
phones for managing professional and personal computation
by installing business and entertainment applications. As a
consequence, these users require that their personal smart-
phones are connected to their work IT infrastructure. Organ-
isations are willing to support employee-owned smartphones
because of the increase in productivity of their employees.
Bring-Your-Own-device policy is getting very popular within
the business sector. Android penetration in the business sector
is on the rise and poses serious security challenges to IT
departments and CIOs [1].

However, because users can install third-party applications
on their smartphones, several security concerns may arise. For
instance, malicious applications can upload to remote servers
private information stored on the device such access contact
list, SMS and MMS. By exploiting pre-installed application
vulnerabilities [4], malware can reset the device to its factory
settings deleting all the data that it contains. This poses serious
security concerns to sensitive corporate data, especially when
the standard security mechanisms offered by the platform are
not sufficient to protect the users from such attacks. Alternative
solutions such as anti-virus software are not able to cope with
the rapid evolution of malware. As reported by Zhou and Jiang
in [5] the best anti-virus software still was not able to detected
21% of the malware currently in the wild.

In this paper, we propose FireDroid an effective security
solution for enforcing fine-grained security policies without
the need to recompile any internal modules of the Android

OS. FireDroid monitors the execution of system calls and it is
able to effectively confine the execution of processes within a
secure sandbox. FireDroid exploits the unique mechanism in
Android for spawning applications in order to automatically
monitor any applications executed in an Android device. In
this way, FireDroid does not require to modify the code of
an application for being able to enforce security policies. As
a main advantage compared to other approaches, FireDroid
is able to monitor any application and system code executed
in a device. This makes FireDroid very effective also for
controlling the execution of native code. We have implemented
FireDroid and evaluated its effectiveness against a large set of
real malware samples. Moreover, we show FireDroid can be
used to enforce policies to stop attacks that exploit vulnerabil-
ities of pre-installed applications and Android system services.

II. FIREDROID SYSTEM DESIGN

The main observation behind our approach is that although
most of the Android applications do not interact directly with
the Linux kernel, all their privileged operations rely on system
calls executed by the Linux kernel. As such, by controlling the
execution of system calls it is possible to control the behaviour
of applications.

FireDroid provides an interposition mechanism for interpo-
sition of system calls generated by the applications and enforc-
ing security policies to control their execution. FireDroid can
be thought as a network firewall controlling the interactions
between applications and kernel through system calls.

There are several ways in which system call interposition
can be realised. Because our main goal is to extend the
Android security without modifying applications, the Android
middleware, and underlying Linux OS, we decided to use
the ptrace() system call for tracing applications’ executions.
When FireDroid is deployed, each Linux process is monitored
by a FireDroid Application Monitor (FDAM). As shown in
Figure 1, the FDAM attaches to the target process through
ptrace() system call meaning that each time the target
process executes a system call, the kernel suspends the target
process and notifies the FDAM. Within the FDAM, the Policy
Enforcement Point (PEP) is responsible for gathering the
required information from the system call executed by the
target process including the parameters in the system call.



The PEP forwards this information to the Policy Decision
Point (PDP) that will retrieve the relevant policies from the
Policy Repository (PR) within the FDAM. The PR contains
policies specific to the process being monitored. Depending on
the policies, the PDP can decide to either allow or deny the
execution of the system call. Moreover, the policy evaluation
might also return to kill the target process. Another possible
outcome of the policy evaluation is to inform the user and to
ask his decision (either allow, deny or kill the process). To ask
the user, the PDP contacts the User Notification Component
in the FireDroid Service (FDS). The FDS also provides
a Policy Administration Point (PAP) to manage security
policies defined at device level. In FireDroid, the user can
dis/enable policies that can be applied to her device. However,
in a BYOD scenario, enterprise-specific policies can not be
managed by the user. In this case, the security administrator
can remotely manage the security policies by sending updated
policies. The Remote Policy Manager (RPM) component
handles the remote edit/update requests of policies. New
policies can be sent through SMS/MMS and/or Bluetooth
and stored in the Global Policy Repository. The PAP is
responsible for pushing policy updates to the PRs of each
FDAM.

App 1 

Process 1 

Android Middleware 

ptrace 

FireDroid Service 

U
se

r 
M

o
d

e
 

Ke
rn

el
 

M
o

d
e

 

A
n

d
ro

id
la

n
d

 
Li

n
u

x 
La

ye
r 

 

(1) 

PEP PDP PR 

FDAM 
allow/deny/kill 

ask 

GPR PAP 
User 

Notification App 1 

RPM 
SMS 
MMS 

BT 
… 

Fig. 1. FireDroid Details.

III. IMPLEMENTATION DETAILS

FireDroid controls applications’ behaviour by monitoring
their interaction with the OS. Other approaches, such as Janus
[6] and Systrace [7] have been proposed for system call
interposition for the Linux OS in fully-fledged machines. The
main difference between FireDroid and both Systrace and
Janus is related to the unique mechanism Android has for
starting applications. This mechanism makes the attachment
of Systrace and Janus to applications impractical in Android.

In more details, Systrace and Janos rely on the user to use a
shell to attach their monitoring process to a target application.
This attaching mechanism is not possible in Android where
applications are not launched as in typical Linux box. Android

applications are launched through the Zygote process. Zygote
is the only process authorised to fork a new process. Zygote
is started when Android is booted and represents the initiator
of all the applications that will be launched. Each time a new
application is started, Zygote forks a new process copying
its initialised structures. The sharing of this already linked
libraries as well as the initialized DVM and all the components
needed by an Android component to run allows a faster start-
up of the new application.

In FireDroid, we exploit this mechanism for automatically
attach to any applications launched in Android. We have im-
plemented a monitor process called FireDroid Main Monitor
(FDMM). The FDMM is only responsible for monitoring
when Zygote is executing a fork() system call. To be able
to monitor Zygote, the FDMM has to be its parent process.
Because Zygote is started when Android is booted, we have
to attach the FDMM to Zygote at booting time modifying
the Android starting up sequence. This is the only modifica-
tion required to enable FireDroid in an Android device. No
modification and recompilation of the Android Open Source
Project (AOSP) is require to have FireDroid fully functional
in Android.

IV. DEMO

We have fully implemented FireDroid and deployed it in
several devices including the Samsung Galaxy S3, Samsung
Galaxy Note II and HTC One X. During the Poster session
at the conference, we will provide a demo of FireDroid func-
tionality demonstrating no noticeable performance degradation
when FireDroid is enabled on a device.

V. ACKNOWLEDGEMENTS

We would like to thank Xiao Clark, Daniel Lewis, and Kris
Pritchard for their contributions to the realisation of FireDroid
and its demo. We also would like to extend our thanks to
Auckland UniServices Limited for its financial support.

REFERENCES

[1] http://www.gartner.com/it/page.jsp?id=2227215.
[2] http://www.gartner.com/it/page.jsp?id=2237315.
[3] http://news.cnet.com/8301-1035 3-57545513-94/

five-years-of-android-by-the-numbers/.
[4] http://www.computerworld.com/s/article/9231758/USSD

attack hit SIM cards and Samsung Android devices.
[5] Y. Zhou and X. Jiang, “Dissecting android malware:

Characterization and evolution,” in IEEE Symposium on
Security and Privacy, 2012, pp. 95–109.

[6] D. A. Wagner, “Janus: an approach for confinement of
untrusted applications,” EECS Department, University of
California, Tech. Rep. UCB/CSD-99-1056, 1999.

[7] N. Provos, “Improving host security with system call
policies,” in Proc. of the 12th conf. on USENIX Security
Symposium, vol. 12, Washington, DC, 2003, pp. 18–18.

http://www.gartner.com/it/page.jsp?id=2227215
http://www.gartner.com/it/page.jsp?id=2237315
http://news.cnet.com/8301-1035_3-57545513-94/five-years-of-android-by-the-numbers/
http://news.cnet.com/8301-1035_3-57545513-94/five-years-of-android-by-the-numbers/
http://www.computerworld.com/s/article/9231758/USSD_attack_hit_SIM_cards_and_Samsung_Android_devices
http://www.computerworld.com/s/article/9231758/USSD_attack_hit_SIM_cards_and_Samsung_Android_devices

	Introduction
	FireDroid System Design
	Implementation Details
	Demo
	Acknowledgements

