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Abstract—Verifiability is a central property of modern e-voting
systems. Intuitively, verifiability means that voters can check that
their votes were actually counted and that the published result
of the election is correct, even if the voting machines/authorities
are (partially) untrusted.

In this paper, we raise awareness of a simple attack, which we
call a clash attack, on the verifiability of e-voting systems. The
main idea behind this attack is that voting machines manage to
provide different voters with the same receipt. As a result, the
voting authorities can safely replace ballots by new ballots, and
by this, manipulate the election without being detected.

This attack does not seem to have attracted much attention in
the literature. Even though the attack is quite simple, we show
that, under reasonable trust assumptions, it applies to several e-
voting systems that have been designed to provide verifiability. In
particular, we show that it applies to the prominent ThreeBallot
and VAV voting systems as well as to two e-voting systems that
have been deployed in real elections: the Wombat Voting system
and a variant of the Helios voting system.

We discuss countermeasures for each of these systems and for
(various variants of) Helios provide a formal analysis based on
a rigorous definition of verifiability. More precisely, our analysis
of Helios is with respect to the more general and in the area of
e-voting often overlooked notion of accountability.
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I. INTRODUCTION

Verifiability is a fundamental property of modern e-voting

systems. Intuitively, a verifiable e-voting system allows voters

to make sure that their votes were actually counted and

that the published result of the election is correct, even if

voting machines/authorities are (partially) untrusted. In order

to achieve verifiability, voters are typically provided with some

kind of receipt which they can use—together with additional

data published on a bulletin board, such as encrypted ballots

and zero-knowledge proofs—to check that their votes were

counted and that voting machines/authorities followed the

prescribed procedure.

The main goal of this paper is to raise awareness of a simple

attack on verifiability, which does not seem to have attracted

much attention in the literature, and to discuss and (formally)

analyze countermeasures. The simple idea behind the attack,

which we call a clash attack, is as follows: Voting machines

try to provide different voters with the same receipt—hence,

the name of the attack. As a result, authorities can safely

replace ballots by new ballots on the bulletin board, and thus,

manipulate the election without being detected. We show that,

surprisingly, several e-voting systems that have been designed

to provide verifiability, among them systems that have been

used in real elections, are vulnerable to this attack, under

realistic trust assumptions on voting machines and authorities.

Our findings illustrate that this attack is a potentially dangerous

attack for a large class of e-voting systems. We note that the

clash attack can work even if voters and election observers

know exactly how many and which voters voted. So clash

attacks are different from and more subtle than the well-known

ballot stuffing attacks (see, e.g., [4] for ballot stuffing attacks).

More precisely, the contribution of this paper is as follows.

Contribution of this Paper. We show that the clash attack

applies to the prominent voting systems ThreeBallot and VAV

[12], the Wombat voting system [16], which was used in an

election at an Israeli college, and variants of the Helios voting

system [1]. In the variant of Helios where each ballot (basically

an encrypted vote) is published on the bulletin board next to

the name of the voter who cast the ballot, the clash attack

does not work (see below); we refer to this variant as the

original variant of Helios. However, this variant is not an

option for many elections. One reason is that the mere fact of

voting is often required to be confidential by law, see e.g., [2].

Moreover, it might be possible to break the encryption of votes

in the future, which would then reveal how specific voters

voted. Therefore, another variant of Helios was proposed [2]

where voters are provided with aliases (the variant of Helios
with aliases). In this variant, ballots are published on the

bulletin board along with the aliases, instead of the names of

voters. This variant of Helios has been used for a presidential

election at a Belgian university [2] and also for the IACR

renewal of the board of directors election [5]. We show that

for this variant of Helios the clash attack works, under the

realistic assumption that the assignment of aliases to voters

is not trusted. Another natural variant of Helios is to merely

publish the ballots without voter names/aliases or to publish

the ballots detached from the voter names/aliases (the variant
of Helios with detached names). We show that for this variant

of Helios too the clash attack can be carried out successfully.

We discuss several countermeasures for the discovered clash

attacks. Since Helios is probably the most prominent and

practical e-voting system among the ones we have studied,

we also carry out formal analysis for the different variants

of Helios (with our countermeasures applied, if necessary):

the original variant, the variant with aliases, and the variant
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with detached names. More specifically, we do not only study

the verifiability property for Helios but also the accountability

property. This analysis is of independent interest since so

far verifiability has only very rarely been formally analyzed

for concrete e-voting systems [8], [14], [6], [15], [10] and

accountability has almost never been studied (formally or

informally) for concrete e-voting systems, with the formal

analysis of the Bingo voting system carried in [10] being an

exception.
Rigorous cryptographic definitions of accountability and

verifiability were introduced by Küsters et al. in [10]. Our

analysis uses these definitions. Intuitively, in the context of

voting, accountability means that if the published outcome of

the election is not correct, i.e., does not correspond to how

the voters actually voted, and hence, some party must have

misbehaved (intentionally or unintentionally), then someone—

ideally (a group of) voting authorities—can be held account-

able for the misbehavior. It was shown in [10] that verifiability

can be seen as a special case of accountability. A very

useful feature of the definitions by Küsters et al. is that

they permit to precisely measure the level of accountability

(verifiability) an e-voting system provides: it can be precisely

captured under which conditions which (group of) parties can

be held accountable and how likely it is that misbehavior

goes unnoticed. Our formal analysis of Helios shows that we

obtain different levels of accountability for the three variants

of Helios—the original variant, the variant with aliases, and

the variant with detached names.
Orthogonally to the clash attack, our formal analysis also

reveals some quite obvious, but serious problem with the

accountability of the Helios system: If a voter claims that

her ballot is not published or not correctly displayed on the

bulletin board, then it is unclear whether the voter misbehaved,

e.g., simply lied, or the authority/bulletin board tried to cheat.

Fixing this problem would probably require a major redesign

of the system.

Related Work. As mentioned, our formal analysis of Helios

uses the definitions of accountability and verifiability proposed

by Küsters et al. [10]. Their definition of verifiability takes a

global view on verifiability, unlike the traditional notions of

individual and universal verifiability. It was recently demon-

strated in [9] by attacks on the verifiability of ThreeBallot and

VAV [12] that individual and universal verifiability in general

do not imply (global) verifiability. We note that the attacks

found in [9] use specific details of ThreeBallot and VAV and

are very different from the clash attack considered here, which

applies to a much broader class of e-voting systems (see also

Section IV-C).
The clash attack should not be confused with the so-called

trash attack [3]. The idea of the trash attack is that if voters

throw away their (paper) receipt, then authorities who find

these receipts could conclude that these voters will not check

their receipts on the bulletin board, and hence, ballots of such

voters can safely be modified. In contrast, the clash attack also

works if all voters check their receipts.
Helios was analyzed by Kremer et al. [8] with respect to

verifiability in a symbolic Dolev-Yao style model, rather than a

cryptographic model; accountability has not been studied for

Helios so far. The definition of verifiability and the model

of Helios Kremer et al. use is quite coarse. For example,

their definition of verifiability assumes that all voters are

honest. (The attack in [9] demonstrates that the existence of

dishonest voters may introduce new attacks.). Also, unlike

the definition in [10], their definition does not allow them

to measure the level of verifiability, i.e., to calculate the

probability that manipulations go undetected, and to precisely

determine under what circumstances it is guaranteed that the

election can be carried out without complaints. While their

definition of verifiability in principle captures clash attacks,

Helios is modeled by Kremer et al. in such a way that clash

attacks are excluded and these attacks are not discussed in

their paper. We also note that Kremer et al. do not model

the auditing of ballots by voters. In their model, ballots are

simply guaranteed to contain the vote intended by the voter; in

fact, since Kremer et al. have a possibilistic model, faithfully

modeling the audit process would be rather tricky.

A logic-based formulation of accountability was presented

in [7], which, however, does not seem to have been applied to

a concrete protocol.

Structure of the Paper. In the following three sections,

the clash attacks on the Wombat voting system, the variants

of Helios as well as ThreeBallot and VAV are discussed

informally. For the formal treatment of Helios, in Section V

we first recall the definitions of accountability and verifiability

proposed by Küsters et al. in [10]. We then formally analyze

accountability and verifiability of the different variants of

Helios in the subsequent sections. We conclude in Section IX.

Some more details are provided in the appendix; see our

technical report [11] for full details.

II. WOMBAT VOTING

In this section, we briefly recall the Wombat voting system,

present the clash attack on this system, and sketch some

countermeasures.

A. The System

The Wombat voting system was recently developed under

the lead of Alon Rosen, Amnon Ta-shma, Ben Riva, and

Jonathan Ben-Nun and was used in an election at the Inter-

disciplinay Center (IDC) in Herzliya, Israel [16], in which

the students union chairman and vice-chairman as well as the

director of a school within IDC were elected. It is a voting

booth scheme which consists of the following steps:

1. A voter presents her id-card at the polling station, where

a number of clerks check that the voter is eligible and has

not voted so far.

2. The voter enters the voting booth and indicates her choice

by pressing the name of her candidate on the touchscreen of

the voting machine. The voting machine then prints a ballot

consisting of the chosen candidate’s name (in plaintext) and

the encryption of this name (with some threshold public key

scheme), together with a (random-looking) serial number.
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3. The voter can now either opt for casting this ballot or for

auditing it. If she chooses to audit, the machine supplies

the random coins used in the encryption, which allows the

voter (or anyone else)1 to check that the previously printed

encryption is indeed an encryption of the chosen candidate.

This audited ballot is not valid anymore and the voter can

vote again.

4. If eventually the voter decides to cast a ballot, she de-

taches the candidate’s name (in plaintext) from the part

containing the encryption and the serial number. The latter

part is scanned by the clerks and published on a bulletin

board. The part of the ballot with the candidate’s name

in clear is put into a separate box. This paper trail can,

if inconsistencies occur, be used for manual recounting.

However, as we will see later, our attack will not cause

any observable inconsistencies; therefore, there will be no

reason for a manual recount.

5. The part with the encrypted ballot and the random-looking

serial number serves as a receipt for the voter. Having this

data, the voter can check that her ballot indeed appears on

the bulletin board.

6. When the voting phase is finished, the data on the bulletin

board is first sent through a mixnet and then decrypted (in

a threshold manner) by a group of trustees.

B. The Clash Attack on Wombat Voting

The authors of this system say that, under the (reasonable)

assumption that one trusts the clerks to only let eligible voters

vote once, the integrity of the system is always preserved

even in the case “where a hacker gets full control of both

the software and all the secret keys of the system [...] Thus,

if the elections pass audit and are successfully verified by

voters, then voters can be assured that the election results are

correct.”.2 This, however, is not true! The Wombat scheme is

vulnerable to the clash attack if the voting machine and the

bulletin board collaborate (which definitely is a scenario in the

scope of “a hacker gets full control of the system”), even if

all voters check their receipts and all published data, such as

zero-knowledge proofs, are successfully verified.

The clash attack on the Wombat system works as follows:

In the extreme case, the voting machine uses, for every ballot,

the same random coin r for encrypting a vote and, for every

candidate c, the same serial number sc in all the ballots that

contain a vote for c. As a result, voters who voted for the

same candidate c will get the same receipt, namely a receipt

containing the ciphertext Encpk(c,r) and the serial number

sc. Now the bulletin board, for every candidate c, can leave

only one original ballot, and safely replace all the remaining

ones by ballots of its choice. Note that every voter will find

“her” ballot on the bulletin board, as one copy of every

ballot produced in the voting phase is kept. So, the bulletin

board (although manipulated) appears to be consistent and the

remaining phase—the tallying of the ballots as they appear on

1The authors of the Wombat system implemented an Android app for that
purpose, available at https://market.android.com/details?id=com.veriballot.

2http://www.wombat-voting.com/faq

the bulletin board—can follow the prescribed procedure. Note

that the attack works even if everybody knows exactly how

many and which voters voted.

The general observation is that for every duplicated receipt,

produced by the voting machine, the bulletin board can safely

manipulate one vote. So the attack is successful even if the

voting machine is more subtle than described above and uses

many more random coins and serial numbers.

We emphasize that in the current procedure clerks and

voters are not obligated to detect duplicated receipts. Also,

for humans, noticing duplicates is not easy anyway in the

Wombat system since an encrypted vote is presented as a QR

code (a two dimensional bar code) and the serial numbers

are, as mentioned, random-looking. Hence, without writing

down serial numbers, it is quite hard for voters and clerks to

notice duplicates. In particular, clerks will not get suspicious

if the voting machine produces duplicated receipts only from

time to time. Moreover, the voting machine can easily prevent

that a single voter sees duplicated receipts by using new

serial numbers and new randomness for the cast ballot and

the one audited by the voter. (Note that the clash attack will

nevertheless be very effective.)

We also note that for the clash attack to work, it is not

necessary that the voting machine is completely corrupted. It

is sufficient if the part of the machine that is responsible for

the random number generation is flawed (and produces some

number of clashes).

As mentioned before, the Wombat voting system keeps a

paper trail. So if the paper ballots were recounted, the clash

attack would be detected. However, the point of a verifiable

voting system is to make the recounting superfluous in cases

were there have been no complaints. The clash attack for the

Wombat system shows that it is possible to manipulate the

outcome of the election without risking any complaints.

C. Countermeasures

The above scheme can be fixed in several ways in order to

prevent our attack. One possible fix is to print serial numbers

on receipts in advance, instead of letting the voting machine

print these numbers, and in case one does not trust the process

of printing the serial numbers, check that no number is printed

twice. Another fix is to let the clerks collect all serial numbers

of ballots that were cast and check whether duplicates occur.

Assuming that the clerks are trusted (or there is a least one

honest clerk among the group of clerks), this again prevents

the clash attack, or more precisely, the clash attack would be

detected by the clerks.

Similarly, voters might compare their receipts and, by this,

prevent the clash attack; how this is done exactly, should

however be made explicit in the voting procedure. We note that

publishing/comparing receipts naively may have negative con-

sequences regarding privacy, analogously to a setting where

receipts are published along with the names of voters (see

Section I).

A formal analysis of the Wombat voting system with these

fixes applied would be very similar to the formal analysis we
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carry out for the variants of Helios in this paper. Since the

Helios voting scheme is more influential, we only focus on

the formal analysis of Helios in this paper.

III. HELIOS

We now recall several variants of the Helios voting sys-

tem, present the clash attacks on these systems, as far as

applicable, and discuss countermeasures. A formal analysis

of Helios (with the countermeasures applied) is carried out in

the subsequent sections.

A. The System

There are different variants of Helios and still new versions

of Helios are proposed. However, all these variants have the

following structure:

1. Voters can use their browsers to create and submit ballots.

More precisely, the browser (or, more precisely, the voter’s

client program run in the browser) encrypts the choice of

a voter, resulting in a ballot; if a variant of Helios with

homomorphic encryption is used, the ballot also contains

a zero-knowledge proof testifying the well-formedness of

the ballot. A voter can then opt for casting that ballot or

for auditing it. If the voter chooses to audit the ballot,

the browser provides the voter with the used randomness.

The voter is then supposed to check, with the help of a

trusted tool, that the browser in fact encrypted the voter’s

choice, i.e., whether the voter’s choice encrypted using

the randomness provided by the browser indeed yields the

audited ballot. Audited ballots cannot be cast. Voters are

therefore asked to vote again.

2. Once a voter has decided to cast the ballot, she is asked

to authenticate herself using some credential. The authen-

tication can be done directly on the voting server or on an

intermediate authentication server, which, after a successful

authentication, passes the ballot to the voting server.

3. The ballots are published on a bulletin board after the

voting phase is finished. (Below we also comment on

the case were ballots are visible on the bulletin board

immediately.)

4. The ballots are now first sent through a verifiable mixnet

and then decrypted by a set of trustees, or, if an homo-

morphic encryption scheme is used, the ballots are first

multiplied and then the resulting ciphertext is decrypted.

We mention that in Helios, typically the voters may revote,

that is, after having submitted a ballot, at any point before the

voting phase is finished, a voter may submit a new ballot which

replaces the old one. However, for the ease of presentation,

we assume that voters do not revote. We emphasize that

our results—both positive and negative ones—still hold true

without this simplification.

The variants of Helios differ, besides other things that are

not relevant for the clash attack, in the kind of information

posted on the bulletin board:

The original variant: In the original variant [1], the name of

a voter is published next to the voter’s ballot. This variant

is immune to our attack (see Section VI for a formal

analysis). However, as already mentioned in the introduc-

tion, this variant of Helios has several disadvantages: (a)

everybody learns who abstained from voting, information

that in some cases must not be revealed by law, see, e.g.,

[2], and (b) it is possible that in the future, the encryption

scheme used to encrypt votes can be broken, and hence,

votes of individual voters would be revealed.

Helios with aliases: In a variant of Helios proposed in [2]

and used in two real elections [5], [2], voters obtain

aliases from the election authority in a registration phase.

In this variant ballots of voters are published on the

bulletin board next to these aliases, instead of the actual

names of the voters. Besides being additional work, the

issuing of aliases is security relevant, as will become clear

in Section III-B.

Helios with detached names: Other natural variants of He-

lios without the disadvantages mentioned above are that

the names of voters are not published at all on the bulletin

board or that the names are published in lexicographic or-

der, detached from the ballots. The former variant has the

advantage that nobody learns who abstained from voting,

whereas in the latter variant ballot stuffing (i.e., adding a

ballot for every voter that did not vote) is somewhat more

difficult for voting authorities. However, both variants are

vulnerable to the clash attack, as discussed next.

B. Clash Attacks on the Variants of Helios with Aliases and
Detached Names

We now show how the clash attack can be mounted on the

variant of Helios with aliases and the variant with detached

names as described in Section III-A; as mentioned, the original

variant of Helios is immune to the clash attack. Note that

Helios shares a lot of ideas with the Wombat voting system

as far as the clash attack is concerned. The main difference

is that in Helios, instead of a voting machine, voters use their

browsers to cast ballots.

Helios with Detached Names. For the clash attack to work

for this variant of Helios, we assume that the browser (i.e.

the client program run in the browser) and the bulletin board

are dishonest; the tallying will be done correctly. Now, the

browser works as follows for every voter. It always uses the

same sequence r1,r2, . . . of random coins: r1 is used to produce

the first ballot (i.e. the first ballot contains an encrypted vote

of the form Encpk(c,r1), where c is the candidate chosen by

the voter), r2 is used to produce the second ballot, and so on.3

As a result, many identical ballots reach the bulletin board.

More precisely, all the voters who vote for the same candidate

and have audited their ballots the same number of times cast

identical ballots and obtain identical receipts. The bulletin

board can then safely replace all but one of each of the

duplicates by arbitrary ballots (i.e., encryptions of candidates

of its choice), and hence, safely manipulate the result of the

election. In fact, nobody will detect any manipulation: every

3If homomorphic encryption is used, the random coins ri are also used to
procedure the mentioned zero-knowledge proofs.
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voter who cast her ballot can check that her name, in the case

where names are published (detached from ballots), as well as

her ballot appears on the bulletin board. Note that the attack

works even if voters know exactly how many and which voters

voted.

Helios with Aliases. Here we assume that the browser (i.e.,

the client program run in the browser), the bulletin board,

and the authority in charge of issuing aliases to voters are

dishonest; the tallying will again be done correctly.

It is realistic to assume that an adversary knows for sure

for some voters that they will vote and how they will vote,

provided that the voters do not have too many choices. For

example, very active members of a political party will not

abstain from voting and vote for the same political party,

namely their party. Now, the idea behind the clash attack for

Helios with aliases is that the authority in charge of issuing

aliases to voters could issue the same alias to two or more

voters for which the authority knows that they will make

the same choice, i.e., vote for the same candidate/party. All

browsers, or at least those for voters with the same aliases,

always use the same randomness for preparing the ballots. By

this, a voter who obtained the same alias as another voter

will obtain the same receipt, and again, the bulletin board can

replace all but one of those duplicates by arbitrary ballots.

Provided that those voters who were issued the same alias in

fact vote for the same candidate/party (the adversary would

not risk to issue the same alias if he could not be sure of

that), no manipulation will be detected: every voter who cast

a ballot can check that the ballot next to “her” alias coincides

with “her” receipt. Again, we note that the attack works even

if voters know exactly how many and which voters voted.

An important difference to the clash attack for Helios with

detached names is that now the browser always uses the same

random coins (at least for those voters who obtained the same

alias). If the browser used a sequence r1,r2, . . . of random

coins to encrypt consecutive choices of voters, as in the case

of Helios with detached names, the attack would very likely

be detected: If two voters with the same alias, say a, choose

to audit their ballots a different number of times, then two

different ballots, say b1 and b2, are produced for them. Now,

the bulletin board can only publish one of these ballots on the

bulletin board along with the alias a. (There should be at most

one entry on the bulletin board for every alias.) But then, one

of the voters with alias a could detect a mismatch.

This is why in the clash attack on Helios with aliases,

the same random coins r are used to encrypt all the votes

for voters who share the same alias. Consequently, all the

ballots produced for such a voter are the same. Note that

the audit procedure, as proposed in [2], only mandates to

check whether the audited ballot is indeed an encryption of

the chosen candidate. It does not required to check whether

the ballots produced in the consecutive steps are different

(use different random coins). Therefore, as long as this audit

procedure is carried out, no manipulation is detected. Also note

that voters are not asked to remember the ballots produced in

different steps and that these ballots (or their fingerprint) are

quite hard to remember since their representations are rather

long strings. Voters will therefore typically not remember these

strings but simply copy and paste them for the purpose of

auditing and otherwise forget about them.

We finally note that the clash attack is more risky to carry

out, if ballots (along with the aliases) are published on the

bulletin board not after the voting phase is finished but right

away—which also means that the election turnout is published

before the end of the election phase. For example, this is done

in the IACR election [5]: A voter with alias a might check

the bulletin board before she votes by herself and then might

detect that the bulletin board already contains an entry for a,

namely one generated by another voter with the same alias.

C. Countermeasures

Helios with Detached Names. To prevent the clash attack

on Helios with detached names, we let the voter contribute

to the randomness that is used for encryption. One way of

implementing this is to ask the voter to type in a “random”

string before the ballot is produced by the browser. The voter-

provided randomness is then combined with the random coins

generated by the browser using a collision resistant hash

function h.4 More specifically, the voting procedure consists

of the following steps:

1. The voter indicates her choice c and provides a random

string rv (similarly to a one-time password). For simplicity

of the argument, we assume such random strings to all have

the same length (e.g., eight characters).

2. The browser chooses a random coin rb, then computes r =
h(rb||rv), and uses r to encrypt the voter’s choice, where

rb||rv denotes the concatenation of rb and rv.

3. Now, if the voter chooses to audit the ballot, the browser

is supposed to provide its random coin rb. This allows

the voter (by using some independent program) to check

whether the ballot has been produced correctly: the voter

recalculates the encryption of her choice using rb and the

random string rv provided by herself.

Intuitively, the above procedure prevents the clash attack (or

at least makes it very risky for the adversary) because it is

quite unlikely that two voters who choose the same candidate

also choose the same voter-provided random string for the

ballot cast. Note that due to the collision resistance of h it is

computationally infeasible for the browser, given two different

voter-provided random strings rv and r′v of the same length to

produce random coins rb and r′b such that h(rb||rv) = h(r′b||r′v).
In Section VII we formally show that this variant of Helios

provides a reasonable level of accountability and verifiability.

(We also formally show that this variant of Helios without the

fix does not provide a sufficient level of accountability and

verifiability.) Clearly, the level of security achieved depends

on the entropy of the voter-provided randomness.

4To prove vote privacy of this variant of Helios, a stronger assumption
on h is necessary. Basically, h has to produce random strings when given
random strings as input, which is, for instance, the case when h is modeled
as a random oracle.
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(a) A: o
B: x

A: o
B: x

A: x
B: o (b) A: x

B: x
A: o
B: o

A: o
B: x

Fig. 1. Two ways of voting for the second candidate (candidate B) in the
ThreeBallot protocol, where x represents a marked position and o represents
an unmarked position. All the other possibilities of voting for B can be
obtained as permutations of these two.

Helios with Aliases. One way of preventing the clash attack is

to apply the same countermeasure as the one described above

for Helios with detached names. Another countermeasure,

which would not work for Helios with detached names, is

the following:

As discussed, for the clash attack on Helios with aliases to

be effective, a browser has to always use the same randomness

(for each ballot of a given voter), which then leads to identical

ballots. A natural countermeasure is therefore to modify the

audit procedure voters carry out as follows: In addition to

checking whether the audited ballot in fact is computed with

the voter’s choice and the random coins provided by the

browser for that ballot, a voter also makes sure that all ballots

(including the submitted ballot) constructed by the browser are

different. For this purpose, a voter would typically record the

ballots in some way, e.g., by having them emailed to her, and

then compare these ballots.

The intuition behind this countermeasure is that the browser

now has to use fresh ballots in every round. Now, if two voters

are assigned the same alias, they may choose to audit their

ballots a different number of times and, by the above, submit

different ballots with the same alias. Hence, the clash attack

would be detected with non-negligible probability.

We prove in Section VIII that this variant of Helios in fact

has a relatively good level of accountability and verifiability.

Conversely, we also formally show that this variant of Helios

without the fix does not provide a sufficient level of account-

ability and verifiability.

IV. THREEBALLOT AND VAV

We now briefly recall the ThreeBallot and VAV voting

systems [13], [12], following the representation in [9]. Then

we discuss how the clash attack applies to these systems.

A. The ThreeBallot System

In ThreeBallot [12], a voter is given a multi-ballot consisting

of three simple ballots, also called a three-ballot. On every

simple ballot the candidates are printed in the same fixed order.

In the secrecy of a voting booth, the voter is supposed to fill

out all three simple ballots in the following way: She marks

the candidate of her choice on exactly two simple ballots and

every other candidate on exactly one simple ballot; Figure 1

shows two ways of voting for candidate B in an election with

two candidates, candidate A and candidate B. After this, she

feeds all three simple ballots to a voting machine (some kind

of scanner) and indicates the simple ballot she wants to get

as a receipt. The machine checks the well-formedness of the

three-ballot, prints secretly random numbers on each simple

ballot, where numbers on different simple ballots are chosen

independently, and gives the voter a copy of the chosen simple

ballot, with the random number printed on it. Note that the

voter does not get to see the random numbers of the remaining

two simple ballots. As usual for ThreeBallot, we assume that

the machine is constructed in such a way that it does not

get to know which simple ballot has been taken as a receipt.

The scanner keeps all three simple ballots (now separated)

in a ballot box. We assume that clerks guarantee that only

registered voters can vote and that every voter votes at most

once.

In the tallying phase, the voting machine posts all (electronic

copies of) the cast simple ballots in a random order on the

bulletin board. From the ballots shown on the bulletin board

the result can easily be computed: the number of votes for the

i-th candidate is the number of simple ballots with the i-th
position marked minus the total number of votes, which is the

total number of simple ballots on the bulletin board divided

by three.

ThreeBallot was meant to provide (some level of) verifiabil-

ity. A crucial assumption for this, already made in the original

paper [12], is that neither the scanner, the voting authority, nor

the bulletin board know which simple ballots have been taken

as receipts by honest voters before all ballots are published on

the bulletin board. Now the intuition behind why ThreeBallot

provides (some level of) verifiability is that it should be risky

for any party to remove or alter simple ballots in order to

manipulate the result since the probability that the modification

of k simple ballots goes undetected is merely ( 2
3 )

k.

Unfortunately, as we will see in Section IV-C, this argument,

found in the literature, is flawed.

B. The VAV System

In VAV [12], a voter is given a three-ballot consisting of

three simple ballots. On every simple ballot the candidates

are printed in the same fixed order. On the top of one of

those simple ballots the letter A is printed; on the top of the

remaining two simple ballots the letter V is printed. In the

secrecy of a voting booth, the voter is supposed to fill out her

three-ballot in the following way: (S1) She marks the position

next to the candidate of her choice on one of the V-ballots

and then (S2) she marks the position next to some randomly

chosen candidate on the two remaining simple ballots, one

V- and one A-ballot. Figure 2 shows all three ways of filling

out the three-ballot for candidate 1 in an election with three

candidates. After this, she feeds all three simple ballots to

a voting machine (some kind of scanner) and indicates the

simple ballot she wants to get as a receipt. The machine checks

the well-formedness of the three-ballot, prints secretly random

numbers on each simple ballot, where numbers on different

simple ballots are chosen independently, and gives the voter

a copy of the chosen simple ballot, with the random number

printed on it. Note that the voter does not get to see the random

numbers of the remaining two simple ballots. The scanner

keeps all simple ballots (now separated) in a ballot box.

In the tallying phase, the voting machine posts all the

(electronic copies of) cast simple ballots in a random order
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(a)

V
1 : x
2 : o
3 : o

A
1 : x
2 : o
3 : o

V
1 : x
2 : o
3 : o

(b)

V
1 : x
2 : o
3 : o

A
1 : o
2 : x
3 : o

V
1 : o
2 : x
3 : o

(c)

V
1 : x
2 : o
3 : o

A
1 : o
2 : o
3 : x

V
1 : o
2 : o
3 : x

Fig. 2. Three ways of voting for the candidate 1 in the VAV protocol, where
x represents a marked position and o represents an unmarked position.

on the bulletin board. From the ballots shown on the bulletin

board the result can easily be computed: All A-ballots and

the corresponding V-ballots (i.e. V-ballots marked at the same

position) are removed. From the remaining V-ballots the

number of votes for each candidate can directly be read off.

Similarly to ThreeBallot, VAV is supposed to provide (some

level of) verifiability because it should be risky for any party

to remove or alter simple ballots in order to manipulate the

result, again under the assumption that neither the scanner, the

voting authority, nor the bulletin board know which simple

ballots have been taken as receipts by honest voters before all

ballots are published on the bulletin board.

C. The Clash Attack on ThreeBallot and VAV

We first present the clash attack on ThreeBallot. We assume

that the voting machine (i.e., the scanner) and the bulletin

board are dishonest.

The idea of the attack is as follows: The voting machine

simply prints the same serial number on those simple ballots

which have the same pattern, i.e., where the same candidates

are marked. We note that it is not necessary that all such

simple ballots get the same serial number. It suffices if some

get the same number. (Roughly speaking, the number of

clashes corresponds to the number of votes that can safely be

manipulated.) The bulletin board can now safely replace all

but one simple ballot with the same serial number by simple

ballots of its choice (with new serial numbers). The bulletin

board only needs to make sure that altogether the published

set of simple ballots remains consistent, i.e., the set of simple

ballots can be grouped into a set of well-formed three-ballots,

and hence, votes. This can in fact easily be done as follows:

First, it is not hard to see that a given consistent set of simple

ballots can efficiently be grouped into a set of consistent three-

ballots. Now, for example, if we have two three-ballots of the

form
A: x
B: x

A: o
B: x

A: o
B: o and A: x

B: o
A: o
B: x

A: x
B: o

in that set and the simple ballots in the middle of these two

three-ballots have the same serial number, then the bulletin

board can replace the simple ballot of the first three-ballot,

say, by A: x
B: o , which turns the first three-ballot from a vote for

B into a vote for A; similarly for other cases.

Since the bulletin board stays consistent and all voters find

“their” receipt on the bulletin board, the clash attack goes

unnoticed. We emphasize that this attack works even if the

scanner and the bulletin board do not know which simple

ballots voters chose as receipts. Also note that clerks in polling

stations do not necessarily get to see simple ballots with the

serial numbers printed on them and voters typically only get

to see their receipts; occasionally maybe a few more receipts

of other voters. So it is rather unlikely that duplicates will be

noticed, and moreover, voters and clerks are not required to

check for duplicates.

Similarly to the Wombat voting system, ThreeBallot keeps a

paper trail and recounting of ballots would uncover the clash

attack. But again, the point of a verifiable voting system is

to make the recounting superfluous in cases where there have

been no complaints.

Given the clash attack on ThreeBallot presented above, it is

easy to see how the clash attack on VAV works. The main idea

is the same: The scanner prints the same serial number on (at

least some) simple ballots with the same pattern. The bulletin

board can then safely modify duplicated simple ballots and by

this manipulate the result of the election.

As already mentioned in the introduction, in [9] another

attack on the verifiability of ThreeBallot and VAV was pre-

sented. This attack assumes a dishonest bulletin board and

a dishonest voter (or alternatively a dishonest scanner). The

main idea here is that the dishonest voter tells the bulletin

board the serial number of its receipt. The bulletin board can

then change this voters receipt on the bulletin board, which

altogether corresponds to a voter casting an invalid three-

ballot, say one where on all three simple ballots candidate

B is marked. Now, the trick is that this invalid three-ballot

together with a three-ballot which represents a vote for A form

two votes for B. So, the attack presented in [9] and the one

presented here are quite different: the trust assumptions are

different and the basic ideas are different, in particular, clashes

do not play a role in [9].

One countermeasure for the clash attack, which is similar

to one of the proposals for the Wombat system, would be

to print serial numbers on ballots in advance and possibly

conceal them (with a scratch strip) or, alternatively, let a

different machine, which does not learn the patterns, print

the serial numbers. However, since ThreeBallot and VAV have

other quite serious problems with verifiability [9], we do not

elaborate further on countermeasures for these systems.

V. ACCOUNTABILITY AND VERIFIABILITY

In this section, we briefly recall the definition of (com-

putational) accountability and verifiability of [10]. We start

with the notion of a protocol. For the purpose of this paper, a

protocol describes a voting system, including the honest and

possible dishonest behavior of parties.
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A. Protocols

A protocol P specifies the set of agents and channels these

agents can communicate over. Moreover, P specifies, for every

agent a, a set Πa of all programs a can run and a set Π̂a ⊆Πa
of honest programs of a, i.e., the set of programs that a runs if

a is honest. (Formally, a program is modeled as a probabilistic

polynomial-time interactive Turing machine.)

Let P be a protocol with agents a1, . . . ,an. An instance of
P is a process of the form π = (πa1

‖ . . . ‖ πan) with πai ∈Πai ,

where ‖ denotes process composition. An agent ai is honest
in such an instance, if πai ∈ Π̂ai . A run of P is a run of some

instance of P. An agent ai is honest in a run r, if r is a run of

an instance of P with honest ai. A property γ of P is a subset

of the set of all runs of P. By ¬γ we denote the complement

of γ .

B. Accountability

The definition of accountability is w.r.t. an agent J of the

protocol who is supposed to blame protocol participants in

case of misbehavior. The agent J, sometimes referred to as a

judge, can be a “regular” protocol participant or an (external)

judge, who is typically provided with additional information

by other, possibly untrusted protocol participants.

Informally speaking, accountability requires two conditions

to be satisfied:

(i) (fairness) J (almost) never blames protocol participants

who are honest, i.e., run their honest program.

(ii) (completeness) If, in a run, some desired goal of the pro-

tocol is not met—due to the misbehavior of one or more

protocol participants—then J blames those participants

who misbehaved, or at least some of them (see below).

For example, for voting protocols a desired goal could be that

the published result of the election corresponds to the actual

votes cast by the voters. The completeness condition then

guarantees that if in a run of the protocol the published result

of the election does not correspond to the actual votes cast by

the voters (a fact that must be due to the misbehavior of one

or more protocol participants), then one or more participants

are held accountable by J; by the fairness condition they are

rightly held accountable.

To specify the completeness condition in a fine-grained way,

the notions of verdict and an accountability property are used.

A verdict is a positive boolean formula ψ built from

propositions of the form dis(a), for an agent a, where

dis(a) is intended to express that a misbehaved (behaved

dishonestly), i.e., did not follow the prescribed protocol. For

example, in a voting protocol with a voting machine M
and auditors A1, . . . ,Ar, a verdict (of a judge) of the form

dis(M)∨ (dis(A1)∧ . . .∧ dis(Ar)) expresses the judge’s belief

that either the voting machine misbehaved or all the auditors

misbehaved. We will denote by Fdis the set of all verdicts.

The agent J, i.e., the judge, can state a verdict ψ by sending

ψ on its dedicated output channel decisionJ . For a protocol P
and an instance π of P, a verdict ψ is true in π , written π |=ψ ,

iff the formula ψ evaluates to true with the proposition dis(a)
set to false, if a is honest in π , and set to true otherwise.

An accountability constraint is a tuple (α,ψ1, . . . ,
ψk), written (α ⇒ ψ1 | · · · | ψk), where α is a property of

P and ψ1, . . . ,ψk ∈Fdis. Such a constraint covers a run r, if

r ∈ α .
Intuitively, in a constraint C = (α ⇒ ψ1 | · · · | ψk) the set α

contains runs in which some desired goal of the protocol is not
met (due to the misbehavior of some protocol participant). The

formulas ψ1, . . . ,ψk are the possible (minimal) verdicts that are

supposed to be stated by J in such a case; J is free to state

stronger verdicts (by the fairness condition these verdicts will

be true). Formally, for a run r, J ensures C in r, if either r /∈ α
or J states in r a verdict ψ that implies one of ψ1, . . . ,ψk (in

the sense of propositional logic).
In practice, so-called individual accountability is highly

desirable in order to deter parties from misbehaving. Formally,

(α ⇒ ψ1 | · · · | ψk) provides individual accountability, if for

every i ∈ {1, . . . ,k}, there exists a party a such that ψi implies

dis(a). In other words, each ψ1, . . . ,ψk determines at least one

misbehaving party.
A set Φ of constraints for protocol P is called an account-

ability property of P. Typically, an accountability property Φ
covers all relevant cases in which desired goals for P are not

met, i.e., whenever some desired goal of P is not satisfied

in a given run r due to some misbehavior of some protocol

participant, then there exists a constraint in Φ which covers r.
As usual, a function f from the natural numbers to the

interval [0,1] is negligible if, for every c > 0, there exists

�0 such that f (�) ≤ 1
�c , for all � > �0. The function f is

overwhelming if the function 1− f is negligible. A function

f is δ -bounded if, for every c > 0 there exists �0 such that

f (�)≤ δ + 1
�c , for all � > �0.

Let P be a protocol with the set Σ of agents and Φ be

an accountability property of P. Let π be an instance of P,

and J ∈ Σ be an agent of P. We write Pr[π(1�) 
→ ¬(J : Φ)]
to denote the probability that π , with security parameter 1�,

produces a run such that J does not ensure C in this run, for

some C ∈Φ.
An agent J is computationally fair in P, if, for all instances

π of P, J states false verdicts only with negligible probability,

where a verdict ψ is false in a run r of π if π �|= ψ .

Definition 1 (Computational accountability [10]). Let P be

a protocol with the set of agents Σ, J ∈ Σ, an accountability

property Φ of P, and δ ∈ [0,1]. We say that J ensures (Φ,δ )-
accountability for protocol P (or P is (Φ,δ )-accountable
w.r.t. J) if

(i) (fairness) J is computationally fair in P and

(ii) (completeness) for every instance π of P, the probability

Pr
[
π(1�) 
→ ¬(J : Φ)

]
is δ -bounded as a function of �.

In the completeness condition, it is of course desirable that

δ = 0, i.e., the probability that J fails to ensure a constraint

is negligible. However, this is typically too demanding, as

illustrated in [10] and by our formal analysis of Helios

presented in the subsequent sections.
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C. Verifiability

Let P be a protocol and γ be a property of P, called the

goal of P. An agent J accepts a run r, if in this run J sends

the message accept on channel decisionJ . Intuitively, J accepts

a run if she believes that the goal has been achieved in this

run. The agent J may be a regular protocol participant, e.g., a

voter, or an external judge, who is provided with information

by (possibly untrusted) protocol participants.

The definition of verifiability, besides the goal, has an addi-

tional parameter: a positive boolean formula over propositions

of the form hon(a), for an agent a. Such a formula describes

a group or groups of participants that can guarantee, when

running their honest programs, that the goal of the protocol is

achieved. We will denote the set of such formulas by Fhon.

For example, for a voting protocol with a voting machine M
and auditors A1, . . . ,Ar, one might expect that to achieve the

goal of the protocol it is sufficient that M is honest and at least

one of the auditors A1, . . . ,Ar is honest. This can be expressed

by the formula ϕex = hon(M)∧ (hon(A1)∨·· ·∨hon(Ar)).
For an instance π of P and ψ ∈ Fhon, we write π |= ψ

if ψ evaluates to true with the proposition hon(a) set to

true, if a is honest in π , and set to false otherwise. By

Pr[π(1�) 
→ (J : accept)] we denote the probability that π , with

security parameter 1�, produces a run which is accepted by J.

Analogously, by Pr[π(1�) 
→ ¬γ, (J : accept)] we denote the

probability that π , with security parameter 1�, produces a run

which is not in γ , i.e., the goal γ is not achieved in that run,

but the run is nevertheless accepted by J.

Definition 2 (Computational verifiability [10]). Let P be a

protocol with the set of agents Σ. Let δ ∈ [0,1], J ∈ Σ, ψ ∈
Fhon, and γ be a property of P. Then, we say that the goal
γ is guaranteed in P by ψ and δ -verifiable by J if for every

instance π of P the following conditions are satisfied:

(i) If π |= ψ , then Pr[π(1�) 
→ (J : accept)] is overwhelming

as a function of �.

(ii) Pr[π(1�) 
→ ¬γ, (J : accept)] is δ -bounded as a function

of �.

Just as in the case of accountability, requiring the probability

in (ii) to be negligible, i.e., δ = 0, is too strong for many

reasonable protocols. It is shown in [10] that verifiability is a

special case of accountability (see also our analysis of Helios

below).

VI. ANALYSIS OF THE ORIGINAL VARIANT OF HELIOS

In this section, we formally analyze accountability and

verifiability of the original version of the Helios voting system

with homomorphic aggregation of ballots, as described in

Section III; the variant with mixnets can be analyzed similarly

and such an analysis should yield similar results.

A. The Protocol Model

Following Section III-A, the system can be described in a

straightforward way as a protocol in the sense of Section V-A.

However, we fix some more details.

The participants in this system are the following:

– The election administrator A, who is assumed to be honest,

i.e., in the terminology of Section V-A, ΠA is required to

contain only the honest program of A.

– The election server S with a bulletin board BB, which can

be honest or dishonest, i.e., ΠS contains, besides the honest

programs of S and BB, all probabilistic polynomial-time

programs (with the appropriate interface to the rest of the

system); we assume, however, that once the content of the

bulletin board is published, the bulletin board presents the

same content to every party and, moreover, every party is

able to obtain this content. In what follows, we do not

distinguish the election server S and the bulletin board BB
and use these terms interchangeably.

– The (human) voters v1, . . . ,vn, which, similarly to S, can be

honest or dishonest.

– Browsers (client programs) of voters b1, . . . ,bn, which can

be honest or dishonest.

– External verifying programs of voters vp1, . . . ,vpn, which

are assumed to be honest (this is a reasonable assumption,

as they may be provided by independent parties).

– The authentication authority AA, which can be honest or

dishonest.

– Decryption trustees D1, . . . ,Dm, which can be honest or

dishonest.

The election administrator first creates an election by post-

ing certain parameters, such as a list of candidates (choices or

questions) and the list of eligible voters. Then, the decryption

trustees create in a distributed manner a public/private key

pair for a homomorphic encryption scheme, such that every

decryption trustee holds a share of the private key. The public

key is sent to the administrator, who publishes a signed fin-

gerprint of the election, i.e., a signed hash over all parameters,

including the public key.
The authentication authority is supposed to send to every

voter a credential (password), which she needs to submit when

casting a ballot.
In the voting phase, a voter can abstain from voting or

decide to vote (for some candidate). We model this choice

by a probability distribution p = p0, . . . , pl , where l is the

number of candidates, such that a voter abstains from voting

with probability p0 and votes for candidate i, for i∈ {1, . . . , l},
with probability pi.

A voter who has decided to vote, prepares her ballots using

her browser. A ballot consists of the encrypted choice of

the voter and a zero-knowledge proof that the ballot is well-

formed.
As already described in Section III-A, voters can choose to

either cast a ballot or audit it. We parameterize the system

by a sequence of probabilities �q = q1,q2, . . . , where qi is

the probability that an honest voter, when she gets to decide

whether to audit her i-th ballot or not, chooses audit. The level

of accountability/verifiability Helios provides will depend in

such a sequence.
If a voter eventually decides to cast a ballot, this ballot is

submitted to the authentication authority who authenticates the

voter (requiring the password) and then is supposed to forward

403



this ballot to the election server. A voter who wants to vote

but did not get a credential from the authentication authority

would complain.

We note that the voter behavior we model here is slightly

simplified to a real voter. For instance, a voter who decides not

to vote (this decision is taken with probability p0) also does

not prepare or audit any ballots. However, a real voter could

prepare and audit some ballots, but then decide not to actually

cast a ballot. Also, as already mentioned, we do not allow

voters to revote. We emphasize that while these simplifications

ease the presentation of the model and the analysis, they do

not change our negative or positive results.

After the voting phase is finished, the content of the bulletin

board (containing voter name/ballot pairs) is published and

signed by the election server. Voters can now check this

content. We model this step by parameterizing the system with

a probability qcheck that an honest voter checks the bulletin

board: A voter who has voted checks that her ballot appears

on the bulletin. A voter who has not voted makes sure that no

ballot with her name appears on the bulletin board, but that

she obtained a credential from the authentication authority that

would have enabled her to vote (and complains otherwise).

Note that due to that procedure, ballot stuffing is not possible

(more precisely, highly risky): As the list of eligible voters

is correctly published, the adversary cannot add a vote for a

non-eligible voter. Further, if the adversary votes using a name

of an abstaining voter, this is detected with probability qcheck.

Finally, the published ballots are then multiplied and the

resulting ciphertext is decrypted by the decryption trustees.

We denote the protocol modeled as described above by

PHelios(n,�q,qcheck, p) where n is the number of voters, �q, qcheck
and p are as described above. So far we have not specified a

verification or judging procedure, i.e. the steps that a protocol

participant or an observer can take to determine whether a run

should be accepted or rather some verdict should be stated.

Such a procedure will be specified below.

We take the standard cryptographic assumptions for the

used cryptographic primitives, in particular, digital signatures,

zero-knowledge proofs, and homomorphic encryption. How-

ever, our proofs for accountability/verifiability do not require

encryption to ensure confidentiality of the plaintext. (Clearly,

this would be needed for vote privacy.)

B. Properties of the Protocol

Goal. Ideally, one might expect the system to provide in-

dividual accountability (see Section V-B) whenever the goal

γopt is violated, where γopt contains all runs in which the result

returned in the tallying phase exactly corresponds to the input

of all the voters. However, as already noted in [10], this goal

is too strong for almost all real voting systems, and it is in fact

too strong for Helios, as it is impossible to give any guarantees

concerning dishonest voters: a dishonest voter might indicate

to the (dishonest) bulletin board that she is not going to check

her receipt and that the bulletin board is free to change her

ballot.

Therefore, the best goal γ we can hope for is that the result

is correct up to the votes of dishonest voters. More formally,

γ is satisfied in a run if the published result exactly reflects

the actual votes of the honest voters in this run and votes of

dishonest voters are distributed in some way on the candidates,

possibly in a different way than how the dishonest voters

actually voted. We analyze Helios with respect to this goal. If

this goal is achieved, one can be sure that all votes of honest

voters are counted correctly and that votes of dishonest voters

are counted at most once.
For the analysis of voting systems it is instructive to also

consider a family of goals γk, where γk coincides with γ except

that up to k of the votes of honest voters (rather than only

dishonest voters) may be altered as well; obviously γ = γ0.

Note that since honest voters check their receipts only with

a certain probability, undetected altering of votes by voting

authorities/machines may occur. (We will exactly measure the

probability for such things to happen in our analysis.)

Problems. In some situations, it is impossible to determine

who misbehaved. This problem will be reflected in the rela-

tively weak accountability property we can state for Helios,

which is far from corresponding to individual accountability.

This also influences the level of verifiability one can state for

Helios. Intuitively, the main problems are as follows:
Problem 1. If a voter vi complains that the bulletin board

does not show her ballot (correctly) or that a ballot is shown

even though the voter did not vote, it is unclear who cheated: it

may be the voter (who possibly has falsely claimed that some-

thing went wrong), the browser of the voter (which possibly

has not submitted any ballot or has submitted a wrong ballot),

the bulletin board (which has possibly changed/discarded the

ballot), or the authentication authority (which might have used

the voters password to vote). Hence, a judge can in this

case only state dis(vi)∨ dis(bi)∨ dis(BB)∨ dis(AA). Such a

(necessarily) coarse verdict has serious negative consequences:

It is impossible to punish a particular party. Hence, the

involved parties are not deterred from misbehaving. Moreover,

it is not clear what to do after such a verdict is stated. If we

abort the election process in such a case, then any dishonest

voter can easily obstruct the whole election. If we ignore

voters’ complaints and just continue the process, then we lose

verifiability.
Problem 2. If a voter complains that the auditing of a ballot

failed, it is not clear whether the browser actually manipulated

the ballot or whether the voter complained for no reason.

Therefore, the judge can only state dis(vi)∨dis(bi). However,

this problem is less severe than the previous one, since a voter

could switch to another browser (client program) and/or to

another machine and try again.
Problem 3. If a voter complains that she did not get a

credential from the authentication authority, it is not clear

whether the authority in fact did not send a credential or

whether the voter complained for no reason. Therefore, the

judge can only state dis(vi)∨dis(AA). However, this problem

is, again, less severe than the first one, since a voter could try

to somehow obtain a credential before the voting phase ends.
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Judging Procedure. In order to be able to formally state and

prove the level of accountability Helios provides, we need to

define a judging procedure which decides whether to accept a

run or whether to blame (groups of) parties. Such a procedure

should, in fact, be part of the protocol specification.

The judging procedure is based solely on publicly available

information, and hence, can be carried out both by an exter-

nal judge and a regular protocol participant. The procedure

consists of the following steps, where we assume that the

procedure is run honestly by some party a.

J1. If a participant b deviates from the protocol in an obvious

way, e.g., a decryption trustee refuses to contribute to the

decryption or a zero-knowledge proof is not correct, then

a states dis(b).
J2. If a voter vi complains that her ballot does not appear

(correctly) on the bulletin board or a ballot appears even

though vi did not vote, a states the verdict dis(vi) ∨
dis(bi)∨dis(BB)∨dis(AA), as explained above. We denote

the set of runs in which some voter complains in that way

by αcompl.

J3. If a voter vi complains that the auditing of a ballot failed,

a states dis(vi)∨ dis(bi), as explained above. We denote

this event by αv−compl.

J4. If a voter vi complains that she did not get a creden-

tial from the authentication authority, a states dis(vi)∨
dis(AA), as explained above. We denote this event by αcred.

J5. If none of the above happens, a accepts the run.

Let a be a regular protocol participant or an observer. By

Pa
Helios(n,�q,qrec, p) we denote the protocol PHelios(n,�q,qrec, p),

where the agent a carries out the judging procedure described

above, possibly in addition to the program a runs anyway.

We assume a to be honest, in particular, to run the judging

procedure as described.

Accountability. Due to the problems described above, with

the first problem being the most severe one, we can only

prove accountability of the considered variant of Helios for

a relatively weak accountability property Φk (that reflects

these problems). More precisely, Φk consists of the following

accountability constraints:

αcompl ⇒ dis(v1)∨dis(b1)∨dis(BB)∨dis(AA) | . . .
· · · | dis(vn)∨dis(bn)∨dis(BB)∨dis(AA)

αv−compl ⇒ dis(v1)∨dis(b1) | . . .
· · · | dis(vn)∨dis(bn)

αcred ⇒ dis(v1)∨dis(AA) | . . .
· · · | dis(vn)∨dis(AA)

¬γk ∩¬αcompl∩
¬αv-compl∩¬αcred

⇒ dis(BB) | dis(AA)
| dis(D1) | · · · | dis(Dm).

We now define the parameter δ k for the system

Pa
Helios(n,�q,qrec,�p) and the goal γk, which captures the prob-

ability that something went wrong (γk was not achieved), but

nobody was blamed. (Recall that k is the tolerated number

of incorrectly counted votes of honest voters.) We will later

consider a special case of the formula for δ k, which is easier

to grasp. However, let us note already that δ k decreases

exponentially in k.

δ k = sup
j1,..., jn∈N

((
n

∑
m=1

q∗jm
n

∏
i=m+1

q̃∗ji

)
+(1−qcheck)

n

∏
i=1

q̃∗ji

)k+1

where q∗i = q1 · · ·qi−1 ·(1−qi) is the probability that an honest

voter casts her i-th ballot, and hence, audits the previous i−1

ballots, and q̃∗i = ∑ j<i q∗j is the probability that an honest voter

casts the j-th ballot, for some j < i. For the case i = 0, we set

q∗i = 0 and q̃∗i = 1.
Now we are ready to formally state the level of accountabil-

ity for the considered variant of Helios, where a proof sketch

of the theorem is given in the appendix.

Theorem 1. Let a be an external judge or a voter, and
let k ≤ n. The agent a ensures (Φk,δ k)-accountability for
Pa
Helios(n,�q,qrec,�p).

This theorem implies that, in Pa
Helios, the probability that

the goal γk is not achieved but a nevertheless does not blame

anybody is at most δ k, up to some negligible value. Moreover,

if the goal is not achieved (¬γk), then a single agent can be

held accountable (and because of fairness rightly so) if no

voter complained that her ballot does not appear on the bulletin

board (¬αcompl), no voter complained that auditing of a ballot

failed (αv-compl), and no voter complained that she did not get

a credential (¬αcred); as explained, in the other cases, blaming

individual parties is not possible.

As mentioned, since the expression δk, as defined above,

may be difficult to grasp, we consider a special case for which

this expression becomes easy to understand. In this special

case, we assume that a voter, in each round, audits a ballot

with the same probability q∈ [0,1], i.e., we assume that qi = q
for all i. With this, we can show:

Corollary 1. Let q ∈ [0,1] and let �q = q1,q2, . . . with qi =
q for all i. Let a be an external judge or a voter, and
let k ≤ n. The agent a ensures (Φk,δ k

q )-accountability for
Pa
Helios(n,�q,qcheck,�p), where

δ k
q = max(1−qcheck,1−q)k+1.

Note that this formula, which decreases exponentially in

k, reflects the following intuition: If, in each round, the voter

audits her ballot with the same probability, and if the adversary

tries to change a vote, he either changes/adds a ballot on the

bulletin board (which goes undetected with probability 1−
qcheck) or he lets the browser encrypt a different vote. In the

latter case, as the probability for getting detected is the same

in each round, the adversary can simply change the first ballot

(which goes undetected with probability 1− q); waiting for

other later ballots does not increase the adversaries chances of

not being caught.

Verifiability. Let us first observe that since a ensures

(Φk,δ k)-accountability, a also ensures ({¬γk ⇒ ψ},δ k)-
accountability, where ψ =

∨
b∈Σ dis(b) and Σ is the set of all
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participants in Pa
Helios(n,�q,qrec,�p), because whenever a states

some verdict ψ ′, then ψ ′ implies ψ . Let us also observe that

the judging procedure (that a runs) is constructed in such a way

that a accepts a run if and only if a does not blame anybody.

Altogether, this means that if the goal γk is not achieved, a will

blame someone (i.e., not accept the run), except with proba-

bility at most δ k (plus some negligible function). Conversely,

if all parties are honest, a will accept the run (because of the

fairness condition). But this means, we obtain the following

level of verifiability of Pa
Helios(n,�q,qrec,�p).5

Corollary 2. Let a be an external judge or a voter. In
Pa
Helios(n,�q,qcheck,�p), the goal γk is guaranteed by

∧
a∈Σ hon(a)

and δ k-verifiable by a.

This corollary reflects the weakness of the system

Pa
Helios(n,�q,qrec,�p) already discussed for accountability: by

wrongly complaining, every single dishonest voter can spoil

the election process, i.e., a cannot accept the run. Conversely,

only if all parties are honest, including all voters, it is guar-

anteed that a can accept the run. So, the level of verifiability

provided by the original variant of Helios is very good in

terms of the probability that cheating is detected, but quite

weak in terms of the guarantees that an election observer, a,

will accept a run. (Ideally, in a voting system, it should suffice

if only the voting authorities are honest, in order to ensure that

the election is successful, i.e., is accepted by observers.).

VII. ACCOUNTABILITY AND VERIFIABILITY OF HELIOS

WITH DETACHED NAMES

In this section, we analyze accountability of the variant of

Helios with detached names, with and without the countermea-

sure described in Section III. However, we consider only the

variant where the names of the voters who voted are published

on the bulletin board (although detached from the ballots). In

the variant where these names are not published at all, ballot

stuffing cannot be prevented, and hence, this version would

not provide a reasonable label accountability and verifiability.

We start with a description of the protocol model.

A. The Protocol Model

The protocol model is very similar to the original variant,

as described in Section VI-A, except for the following differ-

ences:

(a) The names of voters are not published on the bulletin

board linked to their ballots, they are rather published

independently.

(b) In the version with the additional voter-provided random-

ness, the voters provide their randomness in the voting

phase, as described in Section III-C.

We denote the variant of the protocol without voter provided

randomness by Pa
Helios−DN(n,�q,qcheck, p) and the one with

voter provided randomness by Pa
Helios−DNVR(n,�q,qcheck, p,r),

where �q, qcheck, and �p are defined as in Section VI and r is a

5A general theorem showing that accountability implies verifiability was
proved in [10], Proposition 1.

probability distribution on the set of valid inputs (e.g. alpha-

numeric strings), determining the way honest voters choose

their random input.

B. Negative Result

While it was already argued in Section III-B that the variant

without voter-provided randomness does not ensure a sufficient

level of verifiability, we now make this statement precise.

We show that even the very weak accountability property Φ∗k
consisting of the constraint

¬γk ⇒
∨
b∈Σ

dis(b),

where Σ contains every participant of the protocol is not

ensured. This accountability constraint only requires that

somebody is blamed if γk is not fulfilled, and thus, it exactly

corresponds to what verifiability requires (as discussed at the

end of Section VI-B). More precisely, we show that this

constraint can be violated with probability close to 1.

Recall the clash attack for the variant of Helios with

detached names from Section III-B. The result of this attack

was that all the voters who vote for the same candidate and

have audited their ballots the same number of times cast

identical ballots and obtain identical receipts. If c0 denotes a

fixed candidate, the bulletin board can therefore safely replace,

for each group of duplicates for candidates different than c0,

all members of this group, except for one member, and turn

these members into ballots for c0. We let safe(k) denote the

event that when the adversary follows this strategy he manages

to change at least k votes of honest voters.

Let P[safe(k)] denote the probability that safe(k) holds true.

Now we immediately obtain:

Theorem 2. Let a be an external judge or a voter.
The agent a does not ensure (Φ∗k ,δ )-accountability for
Pa
Helios−DN(n,�q,qcheck,�p) for any δ < P[safe(k+1)].

For typical cases, the probability P[safe(k)] is close to

1, if only k is not too close to the number of honest

voters. Hence, the variant of Helios with detached names

(and without the countermeasure applied) provides virtually

no accountability/verifiability. For instance, in an election

with three candidates, 100 voters, with a uniform distribution

on the candidates (including the choice of abstaining from

voting), and the probability 1
2 that a voter audits a ballot

(i.e., 1
2 = q1 = q2 = · · · ), the probability P[safe(20)] that the

adversary can change as much as 20 votes without a blaming

anybody is about 0.96.

C. Positive Result

We now show that Pa
Helios−DNVR(n,�q,qcheck, p,r) provides a

similar level of accountability as the original variant of Helios

(see Section VI). More precisely, the accountability property is

exactly the same, namely Φk, and, for realistic distributions r
of voter-provided input, the δ -value is only slightly worse than
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δ k; but clearly δ now heavily depends on r. We denote the δ -

value for Helios with detached names and the countermeasure

applied by δ k
DNUR (see below for the definition).

To define δ k
DNUR, let j denote some fixed candidate (in-

tuitively, the favorite candidate of the adversary). We now

consider the following scenario. We assume that all n voters,

the authentication authority, and the trustees are honest, and

that all browsers and the bulletin board are dishonest. The

browsers, controlled by the adversary, always use the same

randomness for computing all ballots. The intuition is that

by this the adversary produces the maximum number of

duplicate ballots. (However, he always takes the voter-provided

randomness into account as prescribed.) Now, the bulletin

board, which is also controlled by the adversary, replaces,

for each group of duplicates for candidates different than j,
all members of this group, except for one member, and turns

these members into ballots for j. In other words, we consider

a scenario where the adversary tries to generate as many

duplicates as possible and turns as many of these duplicates

as possible into ballots for j without being detected.

Now, by R j
l we denote the probability that in the above

scenario, the adversary can turn exactly l ballots for candidates

different from j into ballots for j. It is easy to see that R j
l only

depends on the probability distributions r and p.

Now, we define (see below for an explanation):

δ k
DNV R = max

j

n

∑
l=0

R j
l ·δ k−l ,

where j ranges over all candidates, δ i for i≥ 0 is defined as

in Section VI, and δ i = 1 for i < 0.

With Φk being the accountability property defined in Sec-

tion VI, we can show:

Theorem 3. Let a be an external judge or a voter.
The agent a ensures (Φk,δ k

DNV R)-accountability for
Pa
Helios−DNVR(n,�q,qcheck,�p,r).

The intuition behind the definition of δ k
DNV R is as follows:

The best strategy of an adversary to change k+ 1 votes into

votes for j is to first change as many votes as possible in a safe

way by turning duplicates into votes for j, as described above.

If he can change l votes in this way, then still k+1− l more

votes have to be changed in order to altogether change at least

k+1 votes, and hence, violate the goal γk. For these remaining

k+1− l votes the chances of being able to change these votes

without being detected is δ k−l as in the original variant of

Helios. For the first l votes the probability is R j
l . Note that

since the list of voters that actually voted is published, ballot

stuffing is prevented for similar reasons as in the case of the

original variant of Helios.

Clearly, δ k
DNV R highly depends on the entropy of the ran-

domness provided by the voters: if they always choose the

same “random” value, Pa
Helios−DNVR(n,�q,qcheck,�p,r) is essen-

tially the same as Pa
Helios−DN(n,�q,qcheck,�p) (and hence does not

provide any reasonable level of accountability/verifiability).

However, for a realistic entropy of the voters input, the level

of accountability provided by the considered system, as given

by Theorem 3, is quite close to the level of accountability

provided by the original variant of Helios. For instance, let

us consider an election with two candidates, 500 voters, a

uniform distribution on the candidates (including abstention

of voting), and qcheck = q1 = q2 = · · ·= 1
2 . Then, if the voters

uniformly draw their random input from a dictionary of size

100000 (or using some other distribution providing with the

same entropy, which seems to be a realistic setting), then

δ k
DNV R is 0.565, 0.286, 0.036, and 0.0011 for k equal to 1, 2,

5, and 10, respectively. The level of accountability provided

by the original variant, as given by Corollary 1, is, for the

same parameters, 0.5, 0.25, 0.03125, and 0.00097; hence, quite

similar. In both cases, the probability that more than 10 votes

can be changed is very close to zero.

Verifiability. Analogously to Section VI-B, we obtain the

following corollary for the verifiability of the system.

Corollary 3. Let a be an external judge or a voter. In
Pa
Helios−DNVR(n,�q,qcheck, p,r), the goal γk is guaranteed by∧
a∈Σ hon(a) and δ k

DNV R-verifiable by a.

VIII. ACCOUNTABILITY AND VERIFIABILITY OF HELIOS

WITH ALIASES

In this section, we analyze the variant of Helios with aliases,

as described in Section III, with respect to accountability and

verifiability. We show that the clash attack is indeed reflected

in a very low level of accountability/verifiability formally

expressed by a very high δ , which is almost 1. We also show

that the fix proposed in Section III provides a very effective

countermeasure. We start with a description of the protocol

model.

A. The Protocol Model

The protocol model is very similar to the original variant,

as described in Section VI-A, with the following differences:

– After the list of eligible voters is published, but before the

registration phase begins, AA publishes the list of aliases

(the number of aliases should be the same as the number

of eligible voters).

– In the registration phase, the voters do not only get a

password, but also an alias from the authentication authority,

which needs to be provided along with the password for

authentication when a ballot is cast.

– If a voter who wants to vote has not received any alias,

she complains. Similarly, a voter who decides not to vote,

checks, with probability qcheck, whether she has obtained her

alias and whether this alias appears on the bulletin board.

Note that this procedure prevents ballot stuffing: The list

of aliases the adversary publishes cannot be longer than

the list of eligible voters. Also, the adversary cannot add

votes for aliases he did not publish before, and it would

be risky to vote for aliases that abstained from voting, as

these abstaining voters also check the bulletin board (with

probability qcheck).

Besides the problems concerning accountability already men-

tioned in Section VI-B, an additional problem occurs in the
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alias variant: if the same alias appears twice on the bulletin

board, then it is not clear whether the bulletin board misbe-

haved or whether the authentication authority has assigned this

alias to two different voters. However, this problem is not very

severe, since both parties are part of the election authority.

We take care of this problem by the following changes in

the judging procedure:

J5. If the same alias appears twice on the bulletin board, then

a states dis(BB)∨ dis(AA). We denote the event that the

same alias appears twice on the bulletin board by αtwice.

J6. If none of the above happens, a accepts the run.

We denote this variant of Helios by Pa
Helios−AL(n,�q,qcheck, p)

and Pa
Helios−ALF(n,�q,qcheck, p), respectively, depending on

whether the unfixed or fixed version is considered, where in

the fixed version, as described in Section III-C, voters check

the freshness of ballots.

As discussed in Section III-B, we assume that the adversary

knows, for some honest voters, how those voters are going to

vote. We will represent this knowledge as sets G1, . . . ,Gl of

voters, where l is the number of candidates and Gi contains

those voters that are going to vote for candidate i.

B. Negative Result

We now show that for any δ < 1 the version of Helios

with aliases does not ensure even the very weak accountability

constraint Φ∗k introduced in Section VII-B, which only requires

that somebody is blamed if the goal is violated.

In our clash attack on Helios with aliases (Section III-B)

the adversary issues the same alias to all the members of

the same group Gi (as defined above). Let K denotes the

maximal number of votes that can be safely changed using the

knowledge represented by the sets G1, . . . ,Gl . For instance, if

G1 = {}, G2 = {a,b,c} and G3 = {d,e}, then K = 3, since,

e.g., the adversary could change the votes of b, c, and e.

Now, the following theorem is easy to see. It also immediately

carries over to the verifiability of the system.

Theorem 4. Let a be an external judge or a voter. Let k+
1≤K. The agent a does not ensure (Φ∗k ,δ )-accountability for
Pa
Helios−AL(n,�q,qcheck, p) for any δ < 1.

C. Positive Result

We now show that the level of accountability of

Pa
Helios−ALF(n,�q,qcheck, p) is comparable to the one for the

other two (fixed) variants of Helios: the accountability property

is almost the same and the δ -value is also very good, although

the concrete values differ.

As the general formula for δ for the considered variant of

Helios is even more complex than the formula for δ k for the

original variant, for brevity of presentation, in this section,

we focus only on the special case where qi = q for all i, i.e.,

honest voters always audit ballots with probability q; see our

technical report [11] for the general case. Let G1, . . . ,Gl and

K be defined as above. Further, let the accountability property

Φ′k consist of the constraints for αcompl, αv−compl, and αcred as

defined in Section VI-B and in addition the constraints:

αtwice ⇒ dis(BB)∨dis(AA)

¬γk ∩¬αcompl∩¬αtwice∩
∩¬αv-compl∩¬αcred

⇒ dis(BB) | dis(AA) |
dis(D1) | · · · | dis(Dm).

Theorem 5. Let a be an external judge or a voter.
The agent a ensures (Φ′k,δ

k
ALF)-accountability for

Pa
Helios−ALF(n,�q,qcheck, p), where

δ k
ALF = (1−q ·qcheck)

k+1 .

Note that δ k
ALF decreases exponentially in k. The proof of this

theorem can be found in our technical report [11].

Similarly to the previous sections, we obtain, as a corollary,

that in Pa
Helios−ALF(n,�q,qcheck, p), the goal γk is δ k

ALF -verifiable

and guaranteed by the set of all protocol participants.

IX. CONCLUSION

In this paper, we showed that a simple attack, which we call

a clash attack, can successfully be mounted on four different

e-voting systems (and variants thereof), some of which have

been deployed in real elections. This illustrates that the clash

attack is a potentially dangerous attack for a large class of

e-voting systems which try to provide verifiability by letting

voters check receipts on a bulletin board. It is interesting future

work to see to which other systems the clash attack could be

applied. We hope that our findings raise the awareness of this

attack and that future e-voting systems provide mechanisms

to prevent this attack, or if trust assumptions are made which

prevent the attack (e.g., aliases are distributed honestly), that

the scope of these assumptions is made clear.

For the four systems we studied, we proposed countermea-

sures for the clash attack, where some of these countermea-

sures only require changing the audit procedure clerks and/or

voters have to carry out, others change the voting procedure

itself.

For the different variants of Helios (with the countermea-

sures applied, if necessary)—the original variant, the variant

with aliases, and the variant with detached names—we pro-

vided fine-grained analysis results, which highlighted some

further problems with the accountability of Helios orthogonal

to the clash attack and which precisely captured the different

levels of accountability and verifiability the different variants

of Helios and the proposed countermeasures provide.

This formal analysis is of independent interest since such

an analysis has rarely been carried out for concrete e-voting

systems, even more so in a cryptographic model which allows

precise measurement of the level of accountability/verifiability

a system provides. Also, while verifiability is a very prominent

property of e-voting systems, accountability has obtained

much less attention, both in informal and formal treatments.
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APPENDIX A

PROOF SKETCH OF THEOREM 1

Due to the space limitations, we will only provide a sketch

of the proof for k = 0 to give some intuition about how δ k is

obtained.

Let S = Pa
Helios(n,�q,qrec,�p). Since it is quite easy to show

that a is computationally fair in S, we only focus on the

completeness condition of Definition 1, which requires that

for all of the accountability constraints in Φ0 the probability

that a does not ensure this constraint is at most δ 0 plus some

negligible function.

Clearly, by the definition of the judging procedure, a always

ensures the first, the second and the third accountability

constraint. Therefore, we focus on the probability that the

fourth constraint is not ensured, which is the case if (i) the goal

γ0 is violated, i.e. the adversary changed at least one (honest)

vote, (ii) no voter complains that her ballot does not appear on

the bulletin board (¬αcompl), that the auditing of a ballot failed

(αv-compl), or that she did not get a credential (¬αcred), and (iii)

no individual party is blamed. We show that this happens only

with probability at most δ 0 (plus some negligible value).

First, let us notice that, if the adversary wants to change a

vote, then every time an honest voter, say the i-th voter, ini-

tiates her voting procedure, the adversary faces the following

choice: He can either (A) carry on the correct voting procedure

without changing the voters choice or he can (B) decide to try
to change the ji-th ballot of the voter. Therefore, without loss

of generality, we can represent a strategy of the adversary as a

sequence of integers �j = j1, j2, . . . representing the choice of

the adversary: ji = 0 meaning that the adversary carries out the

correct voting procedure for the i-th voter and ji > 0 meaning

that the adversary will try to change her ji-th ballot.

Now, if the adversary runs (B) for the i-th voter, then one

of the following may happen:

(a) The voter submits her j-th ballot, by which the adversary

changes the vote and achieves his goal (he does not need

to change further votes); this happens with probability q∗j .
(b) The voter submits one of the first ji− 1 ballots and the

adversary does not get the chance to change the j-th ballot.

This case happens with probability q̃∗j .
(c) The voter audits her j-th ballot and the attack is detected

(the goal is not achieved).

If, after all the voters have voted, the goal is still not achieved,

the adversary has to replace a ballot on the bulletin board

(otherwise he could be used to forge zero-knowledge proofs),

which is detected with probability 1−qrec.

We obtain the following probability that the adversary

succeeds using strategy �j:

n

∑
m=1

(
q∗jm ·

m−1

∏
i=1

q̃∗ji

)
+(1−qcheck) ·

n

∏
i=1

q̃∗ji .

For a given m, the subformula q∗jm ·∏m−1
i=1 q̃∗ji expresses the

probability that this strategy succeeded, because case (a)

happened for the m-th voter, and case (b) happened for all pre-

vious voters. The subformula (1− qcheck) ·∏n
i=1 q̃∗ji expresses

the probability that the strategy succeeded because (b) has

happened for all voters and then the adversary successfully

replaced one ballot on the bulletin board.

From the above formula, we obtain δ 0 by taking the

supremum over all possible strategies �j, as described above.
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