
Peek-a-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail

Kevin P. Dyer∗, Scott E. Coull†, Thomas Ristenpart‡, and Thomas Shrimpton∗

∗Department of Computer Science, Portland State University, Portland, USA. Email: {kdyer, teshrim}@cs.pdx.edu
† RedJack, LLC., Silver Spring, MD, USA Email: scott.coull@redjack.com

‡Department of Computer Sciences, University of Wisconsin-Madison, USA. Email: rist@cs.wisc.edu

Abstract—
We consider the setting of HTTP traffic over encrypted

tunnels, as used to conceal the identity of websites visited
by a user. It is well known that traffic analysis (TA) attacks
can accurately identify the website a user visits despite the
use of encryption, and previous work has looked at specific
attack/countermeasure pairings. We provide the first com-
prehensive analysis of general-purpose TA countermeasures.
We show that nine known countermeasures are vulnerable to
simple attacks that exploit coarse features of traffic (e.g., to-
tal time and bandwidth). The considered countermeasures
include ones like those standardized by TLS, SSH, and
IPsec, and even more complex ones like the traffic morphing
scheme of Wright et al. As just one of our results, we show
that despite the use of traffic morphing, one can use only
total upstream and downstream bandwidth to identify —
with 98% accuracy— which of two websites was visited. One
implication of what we find is that, in the context of website
identification, it is unlikely that bandwidth-efficient, general-
purpose TA countermeasures can ever provide the type of
security targeted in prior work.

Keywords-traffic analysis countermeasures; privacy; ma-
chine learning; padding; encrypted traffic

I. INTRODUCTION

Internet users increasingly rely on encrypted tunnels to

keep their web browsing activities safe from eavesdrop-

pers. A typical scenario involves a user establishing an

encrypted tunnel to a proxy that then relays all subsequent

HTTP traffic (in both directions) through the tunnel. An-

other is when one browses the web on a wireless network

that uses WPA to encrypt all traffic. In both cases, the

use of encryption should hide the contents of the traffic

and, intuitively, the identity of the destination website(s).

Yet modern encryption does not obfuscate the length of

underlying plaintexts, nor the number of plaintexts that

are encrypted. This information may seem harmless, but

in fact it enables traffic analysis (TA) attacks. Among other

things, TA attacks can reveal the identity of the websites

viewed by the user [1, 9, 10, 15, 19].

One commonly suggested TA countermeasure is to hide

the plaintext length by adding padding prior to encryption.

Padding countermeasures are standardized in TLS, explic-

itly to “frustrate attacks on a protocol that are based on

analysis of the lengths of exchanged messages” [5]. Simi-

lar allowances for padding appear in SSH and IPSec. More

advanced countermeasures, such as traffic morphing [19],

manipulate whole streams of packets in order to precisely

mimic the distribution of another website’s packet lengths.

The seemingly widespread intuition behind these coun-

termeasures is that they patch up the most dangerous side

channel (packet lengths) and so provide good protection

against TA attacks, including website identification. Exist-

ing literature might appear to support this intuition. For

example, Liberatore and Levine [10] show that padding

packets to the network MTU (e.g., 1500 bytes) reduces

the accuracy of one of their attacks from 98% to 7%.

Our results strongly challenge this intuition. We perform

the first comprehensive analysis of low-level countermea-

sures (e.g., per-packet padding) for the kind of website

identification attacks considered by prior work (c.f., [8, 10,

14, 22]): a closed-world setting for privacy sets, in which

the a priori set of possible websites a user might visit is

known to the attacker, coupled with the ability for the

attacker to train and test on traffic traces that are free

of real-world artifacts (e.g., caching effects, interleaved

flows, and user-specific content). We consider nine distinct

countermeasures, apply them to two large, independent

datasets of website downloads, and pit the resulting ob-

fuscated traffic against a total of seven different attacks.

The results are summarized in Figure 1. What we uncover

is surprisingly bleak:

None of the countermeasures are effective. We show

that two classifiers —a new naı̈ve Bayes classifier called

VNG++ and a support vector machine classifier due to

Panchenko et al. [14]— achieve better than 80% accuracy

in identifying which of k = 128 websites was visited

in a closed-world experiment. (Random guessing achieves

0.7% accuracy.) When k = 2 these classifiers achieve over

98% accuracy. This holds for all nine countermeasures

considered, including ones inspired by the SSH, TLS

and IPSec RFCs, and state-of-the-art ones such as traffic

morphing [21].

Hiding packet lengths is not sufficient. We initiate a study

of classifiers that do not directly use fine-grained features

such as individual packet lengths. The VNG++ classifier

just mentioned uses only “coarse” information, including

overall time, total bandwidth, and size of bursts. In fact,

we provide a naı̈ve Bayes classifier that uses only the total

bandwidth for training and testing, yet still achieves greater

2012 IEEE Symposium on Security and Privacy

© 2012, Kevin P. Dyer. Under license to IEEE.
DOI 10.1109/SP.2012.28

332

Attack Classifier Features Considered k = 2 k = 128 k = 775

Liberatore and Levine [10] (LL) naı̈ve Bayes (NB) Packet lengths 85% 25% 8%

Herrmann et al. [8] (H) multinomial naı̈ve Bayes (MNB) Packet lengths 71% 3% 0%

Panchenko et al. [14] (P) support vector machine (SVM) Packet lengths, Order, Total bytes 99% 82% 63%

Time (TIME) naı̈ve Bayes Total trace time 82% 9% 3%

Bandwidth (BW) naı̈ve Bayes Upstream/Downstream total bytes 98% 41% 18%

Variable n-gram (VNG) naı̈ve Bayes Bytes in traffic bursts 99% 69% 54%

VNG++ naı̈ve Bayes Total trace time, 99% 80% 61%

Upstream/Downstream total bytes,

Bytes in traffic bursts

Figure 1. Summary of attacks evaluated in our work. The k = 2, k = 128 and k = 775 columns indicate the classifier accuracy for a privacy set
of size k when using the most effective countermeasure for the Herrmann dataset (see Section II).

than 98% accuracy at k = 2 and 41% accuracy at k =
128. This implies that any effective countermeasure must

produce outputs that consume indistinguishable amounts

of bandwidth.

Coarse information is unlikely to be hidden efficiently.
Our coarse-feature attacks, in particular the bandwidth-

only attack, strongly suggest that resource-efficient coun-

termeasures will not (on their own) effectively hide website

identity within a small privacy set. So, we investigate

an inefficient strawman countermeasure, Buffered Fixed-

Length Obfuscation (BuFLO, pronounced “buffalo”), that

combines and makes concrete several previous sugges-

tions: it sends packets of a fixed size at fixed intervals,

using dummy packets to both fill in and (potentially)

extend the transmission. We subject it to the same analysis

as the other countermeasures. This analysis shows that

should BuFLO fail to obfuscate total time duration and

total bandwidth, then attacks still achieve 27% accuracy

at k = 128. With a bandwidth overhead of over 400%, we

can, in theory, finally reduce k = 128 accuracy to 5%.

Relevance to other settings. While the adversarial model

that we consider is consistent with previous work, we

admit that there are several factors (e.g., caching, open-

world identification) that are not captured. Indeed, these

may reduce the effectiveness of the attacks, and improve

countermeasure efficacy, in practice. There may also be

some other settings, such as Voice over IP (VoIP) traf-

fic [18–21], where the nature of the application-layer

protocol enables some countermeasures to work very well.

That said, the model considered in this paper (and its

predecessors) is one that a general-purpose countermeasure

ought to cover.

Finally, our analysis does not cover application-

layer countermeasures such as Camouflage [8] and

HTTPOS [12], which both make intimate use of spurious

HTTP requests to help obfuscate traffic patterns. We

suspect, however, that the lessons learned here might help

direct future analysis of application-layer countermeasures,

as well.

II. EXPERIMENTAL METHODOLOGY

Like previous works [8, 10, 14, 22], our experiments

simulate a closed-world setting in which an adversary has

access to the timing, lengths, and directionality of packets

sent over an encrypted HTTP tunnel (e.g., to or from a

proxy server). We assume secure encryption algorithms are

used and no information can be learned from the encrypted

contents itself.

We base our simulation on two datasets that have been

widely used by previous works on web page identification.

The Liberatore and Levine dataset [10] contains times-

tamped traces from 2,000 web pages. The Herrmann et

al. [8] dataset contains timestamped traces from 775 web

pages. A trace is defined as a record of the lengths and

timings of ciphertexts generated by accessing a web page

using an OpenSSH single-hop SOCKS proxy. Please refer

to the previous works [8, 10] for further details about data

collection methodology.

Each of our experiments is performed with respect to

a particular classifier, a particular countermeasure, and a

specified set of n web pages. An experiment consists of

a number of trials; we will say in a moment how the

particular number of trials is determined. At the start of

each experimental trial, we uniformly select a subset of

k ≤ n web pages to define the privacy set for that trial.1

Next we establish k sets of 20 traces, one for each web

page, as follows. For every web page in the data set, there

are m > 20 chronologically sorted sample traces. We

select a random trace index i ∈ {0, 1, . . . ,m − 19}, and

take traces i, i + 1, . . . , i + 19 for each of the k web

pages. The first t = 16 of the traces from each of the k
sets are used as the training data for the classifier, and

the remaining T = 4 traces form the testing data set.2

The countermeasure is applied to both the training and

testing data, and the classifier is trained and then tested to

determine its accuracy. Classifier accuracy is calculated as

1We do not believe the uniform distribution represents typical user
web-browsing behavior. In practice, we expect that biased sampling from
the privacy set would further aid an attacker.

2We considered values of t ∈ {4, 8, 12, 16} and observed effects con-
sistent with those reported by Liberatore and Levine [10]: as t increases
there was a consistent, modest increase in classification accuracy.

333

(c/Tk), where c is the number of correctly classified test

traces and k is our privacy set size.

In each experiment, we perform 2(15−log2(k)) tri-

als, so that there are a total of T · 215 test data

points per experiment. We consider values of k ∈
{2, 4, 8, 16, 32, 64, 128, 256, 512, 775} in order to capture

countermeasure performance across a number of scenarios.

Intuitively, smaller values of k present easier classification

(attack) settings, and larger values of k present more

difficult classifier settings.

We note that the engineering effort required to produce

our results was substantial. To aid future research efforts,

the Python framework used for our experiments is publicly

available3.

III. TRAFFIC CLASSIFIERS

A sequence of works detail a variety of TA attacks, in

the form of classifiers that attempt to identify the web

page visited over an encrypted channel. These classifiers

use supervised machine learning algorithms, meaning they

are able to train on traces that are labeled with the

destination website. Each algorithm has a training and

a testing phase. During training, the algorithm is given

a set {(X1, �1), (X2, �2), . . . , (Xn, �n)}, where each Xi

is an vector of features and �i is a label. During testing

the classification algorithm is given a vector Y and must

return a label. In our case, a vector Xi contains information

about the lengths, timings, and direction of packets in the

encrypted connection containing a web page �i, and the

format of a vector Xi is dependent upon the classifier.

In the remainder of this section, we present a high-level

overview of the operation of the three published classifiers

that we use in our evaluation, and we refer interested

readers to more detailed descriptions elsewhere [8, 10, 13,

14].

A. Liberatore and Levine Classifier

Liberatore and Levine [10] (LL) proposed the use of a

naı̈ve Bayes classifier (NB) to identify web pages using

the direction and length of the packets. The naı̈ve Bayes

classifier determines the conditional probability Pr (�i|Y)
for a given vector of features Y using Bayes’ rule:

Pr (�i|Y) = Pr(Y |�i) Pr(�i)
Pr(Y) . The probability is computed

for all labels �i with i = {1, 2, . . . , k} and k representing

the size of the privacy set (or number of labels being

considered), and the label with the highest probability is

selected as the classifier’s guess. The probability Pr (Y |�i)
is estimated using kernel density estimation over the ex-

ample feature vector provided during training, and Pr(�i)
is assumed to be 1/k. The feature vectors used by the LL

classifier are derived from the count of the lengths of the

packets sent in each direction of the encrypted connection.

Specifically, the feature vector contains 2 · 1449 = 2898
integers that represent the number of packets seen in the

3http://www.kpdyer.com/

given vector with each of the potential direction and packet

length combinations (i.e., {↑, ↓} × {52, . . . , 1500}). For

example, if we observe a packet of length 1500 in the ↓
direction (e.g., server to client) we would increment the

counter for (↓,1500).

B. Herrmann et al. Classifier

Herrmann, Wendolsky and Fedarrath [8] (H) take a

similar approach to Liberatore and Levine, however they

make use of a multinomial naı̈ve Bayes (MNB) classifier.

Like the naı̈ve Bayes classifier with density estimation,

the multinomial naı̈ve Bayes classifier attempts to estimate

the probability Pr (�i|Y) for each of the i = {1, 2, . . . , k}
potential labels and the given feature vector Y . The key

difference is that the multinomial classifier does not apply

density estimation techniques to determine the probability

Pr (Y |�i), but instead uses the aggregated frequency of the

features (i.e., normalized distribution) across all training

vectors. Thus, the H classifier uses normalized counts

of (direction, length), whereas the LL classifier exam-

ined raw counts. Furthermore, Herrmann et al. suggest a

number of approaches for normalizing these counts. For

our evaluation, we combine term frequency transformation
and cosine normalization, as these were identified by

Herrmann et al. to be the most effective in the SSH setting.

C. Panchenko et al. Classifier

Panchenko et al. [14] (P) take a completely different

approach by applying a support vector machine (SVM)

classifier to the problem of identifying web pages. A

support vector machine is a type of binary linear clas-

sifier that classifies points in a high-dimensional space by

determining their relation to a separating hyperplane. In

particular, the SVM is trained by providing labeled points

and discovering a hyperplane that maximally separates the

two classes of points. Classification occurs by determining

where the point in question lies in relation to the splitting

hyperplane. Due to the complexity of SVM classifiers, we

forego a detailed discussion of their various parameters

and options.

We configure our SVM as follows. We use the same

radial basis function (RBF) kernel as Panchenko et al. with

parameters of C = 217 and γ = 2−19. The P classifier

uses a wide variety of coarse and detailed features of

the network data mostly derived from packet lengths and

ordering. Some of these features include the total number

of bytes transmitted, total number of packets transmitted,

proportion of packets in each direction, and raw counts

of packet lengths. There are also several features known

as “markers” that delineate when information flow over

the encrypted connection has changed direction. These

markers aggregate bandwidth and number of packets into

discrete chunks. Each of the features considered by the P

classifier are rounded and all 52 byte TCP acknowledge-

ment packets are removed to minimize noise and variance

in the training and testing vectors.

334

IV. COUNTERMEASURES

For ease of exposition and analysis, we organize the

considered countermeasures into three categories: those

that are inspired by the padding allowed within the SSH,

TLS and IPSec standards (Type-1); other padding-based

countermeasures (Type-2); and countermeasures that make

explicit use of source and target packet-length distributions

(Type-3). In what follows, we describe the operation of

the countermeasures we evaluate and discuss the overhead

they generate. Lengths are always measured in bytes.

A. Type-1: SSH/TLS/IPSec-Motivated Countermeasures
A common suggestion, already used in some implemen-

tations, like GnuTLS4, is to obfuscate plaintext lengths

by choosing random amounts of extra padding to append

to the plaintext prior to encryption. SSH, TLS and IPSec

allow up to 255 bytes of padding in order to align the to-

be-encrypted plaintext with the underlying block cipher

boundary, and also to provide some obfuscation of the

original plaintext length. We consider two ways in which

this might be implemented within SSH/TLS/IPSec: (1)

choose a single random amount of padding to be applied

across all plaintexts in the session, or (2) choose a random

amount of padding for each plaintext.

Session Random 255 padding: A uniform value r ∈
{0, 8, 16 . . . , 248} is sampled and stored for the session.5

Each packet in the trace has its length field increased by r,

up to a maximum of the MTU.

Packet Random 255 padding: Same as Session Random

255 padding, except that a new random padding length r
is sampled for each input packet.

We note that our simulation of Session Random and

Packet Random padding in this setting are not exactly

what would be implemented in reality because we do not

have access to the size of the plaintext data from the

datasets available to us. Instead, our assumption is that the

plaintext data is sufficiently short to fit into a single TCP

packet and therefore is closely approximated by simply

adding the padding to the length of the ciphertext. What we

simulate, therefore, is likely to overstate the efficacy of the

countermeasure since the (at most) 255 bytes of padding

would be dominated by the true size of the plaintext (e.g.,

up to 214 bytes for TLS), thereby providing relatively

little noise. In contrast, our simulation allows for a much

larger ratio of plaintext to padding, which in turn adds

significantly more noise.

B. Type-2: Other Padding-based Countermeasures
The second class of countermeasure we consider are

those padding mechanisms that are not easily supported in

4http://www.gnu.org/software/gnutls/
5We assume that the underlying encryption block size is 8 bytes. For

the Liberatore and Levine dataset, we know this assumption is true. We
do not expect classification accuracies to be different if, in fact, the block
size was 16 bytes.

existing encrypted network protocol standards due to the

amount of padding added. In this scenario, we assume the

countermeasure will be capable of managing fragmentation

and padding of the data before calling the encryption

scheme. Most of the countermeasures considered by prior

work fall into this category, though we also consider a

randomized scheme that has not been previously explored.

Linear padding: All packet lengths are increased to the

nearest multiple of 128, or the MTU, whichever is smaller.

Exponential padding: All packet lengths are increased

to the nearest power of two, or the MTU, whichever is

smaller.

Mice-Elephants padding: If the packet length is ≤ 128,

then the packet is increased to 128 bytes; otherwise it is

padded to the MTU.

Pad to MTU: All packet lengths are increased to the MTU.

Packet Random MTU padding: Let M be the MTU and �
be the input packet length. For each packet, a value r ∈
{0, 8, 16, . . . , M− �} is sampled uniformly at random and

the packet length is increased by r.

C. Type-3: Distribution-based Countermeasures

Wright et al. [22] presented two novel suggestions as

improvements upon traditional per-packet padding coun-

termeasures: direct target sampling (DTS) and traffic mor-
phing (TM). On the surface, both techniques have the same

objective. That is, they augment a protocol’s packets by

chopping and padding such that the augmented packets

appear to come from a pre-defined target distribution (i.e.,

a different web page). Ideally, DTS and TM have secu-

rity benefits over traditional per-packet padding strategies

because they do not preserve the underlying protocol’s

number of packets transmitted nor packet lengths. Al-

though the full implementations details of DTS and TM

are beyond scope of this paper (see [22]), we give a high-

level overview here.

Direct target sampling: Given a pair of web pages A
and B, where A is the source and B is the target, we

can derive a probability distribution over their respective

packet lengths, DA and DB . When a packet of length i
is produced for web page A, we sample from the packet

length distribution DB to get a new length i′. If i′ > i,
we pad the packet from A to length i′ and send the

padded packet. Otherwise, we send i′ bytes of the original

packet and continue sampling from DB until all bytes

of the original packet have been sent. Wright et al. left

unspecified morphing with respect to packet timings. We

assume a negligible overhead to perform morphing and

specify a 10ms inter-packet delay for dummy packets.

In our experiments, we select the target distribution

uniformly at random from our set of k potential identi-

ties. The selected web page remains unchanged (i.e., no

335

Overhead (%)

Countermeasure LL H

Session Random 255 9.0 7.1

Packet Random 255 9.0 7.1

Linear 4.2 3.4

Exponential 8.7 10.3

Mice-Elephants 41.6 39.3

Pad to MTU 81.2 58.1

Packet Random MTU 40.1 28.8

Direct Target Sampling 86.4 66.5

Traffic Morphing 60.8 49.8

Figure 2. Bandwidth overhead of evaluated countermeasures calculated
on Liberatore and Levine (LL) and Herrmann et al. (H) datasets.

countermeasures applied), while the remaining k− 1 web

pages are altered to look like it. After the source web page

has stopped sending packets, the direct target sampling

countermeasure continues to send packets sampled from

DB until the L1 distance between the distribution of sent

packet lengths and DB is less than 0.3.

Traffic morphing: Traffic morphing operates similarly to

direct target sampling except that instead of sampling from

the target distribution directly, we use convex optimization

methods to produce a morphing matrix that ensures we

make the source distribution look like the target while

simultaneously minimizing overhead. Each column in the

matrix is associated with one of the packet lengths in

the source distribution, and that column defines the target

distribution to sample from when that source packet length

is encountered. As an example, if we receive a source

packet of length i, we find the associated column in the

matrix and sample from its distribution to find an output

length i′. One matrix is made for all ordered pairs of source

and target web pages (A,B). The process of padding

and splitting packets occurs exactly as in the direct target

sampling case. Like the direct target sampling method,

once the source web page stops sending packets, dummy

packets are sampled directly from DB until the L1 distance

between the distribution of sent packet lengths and DB

is less than 0.3. In our simulations we select a target

distribution using the same strategy described for DTS.

D. Overhead

Although the focus of our evaluation lies in understand-

ing the security provided by these countermeasures, we

realize that their cost in terms of bandwidth overhead and

latency is an important factor that determines whether they

are applicable in practice or not. To this end, we present

the bandwidth overhead induced by the countermeasures

for both the Liberatore and Levine and Herrmann et al.

datasets in Figure 2. Overhead is calculated as (bytes sent
with countermeasure)/(bytes sent without countermeasure)

times 100. We note that these overhead measurements

differ from those of earlier work because we do not ap-

LL H P

k = 2

Type-1 85% 71% 99%

Type-2 97% 80% 99%

Type-3 98% 76% 99%

k = 128

Type-1 41% 13% 91%

Type-2 46% 5% 90%

Type-3 25% 3% 82%

Figure 3. The lowest average accuracy for each countermeasure class
against LL, H, and P classifiers using the Hermann dataset. Random
guessing yields 50% (k = 2) or 0.7% (k = 128) accuracy.

ply countermeasures to TCP acknowledgement (52-byte)

packets. For example, Liberatore and Levine [10] report

a Pad to MTU overhead of 145% and Wright et al. [22]

report 156%. We argue that acknowledgement packets

are present regardless of the content being downloaded

and there is no standard mechanism for application-layer

countermeasures to apply padding to TCP acknowledge-

ment (52-byte) packets. Nevertheless, as we will see in the

following section, there is almost no correlation between

overhead and the level of confidentiality provided by the

countermeasure

V. EXISTING COUNTERMEASURES VERSUS

EXISTING CLASSIFIERS

We pit the LL, H, and P classifiers from Section III

against traffic simulated as per the nine countermeasures

of the previous section. The testing methodology used was

described in Section II. We also look at classifiability of

the raw traffic, meaning when no countermeasure (beyond

the normal SSH encryption) is applied.

We note that despite the appearance of the LL, H, and

P classifiers in the literature, all the results we report

are new. In particular, the H and P classifiers were never

tested against any of these countermeasures, while the LL

classifier did look at efficacy against Linear , Exponential,

Mice-Elephants, and Pad to MTU but only at k = 1000.

Figure 3 contains a high-level summary for k = 2 and

k = 128. We refer the interested reader to Appendix A for

comprehensive results.

In the rest of this section we analyze the results from

various points of view, including the role of the dataset,

the relative performance of the classifiers, and the relative

performance of the different countermeasures.

A. Comparing the Datasets

Before beginning digging into the results in earnest, we

first evaluate the consistency and quality of the two avail-

able datasets. We do so to determine the extent to which

results gathered using them represent the identifiability

of the web pages rather than artifacts of the collection

process, such as connection timeouts and general collec-

tion failures. In Figure 4, we show the silhouette of the

accuracy achieved by the three classifiers across a number

of universe sizes and countermeasures using each of the

336

Figure 4. Comparison of accuracy silhouettes for the Liberatore and Levine and Herrmann datasets across all countermeasures for the LL, H, and P
classifiers, respectively.

datasets. That is, the lower boundary of each silhouette

is the best-performing countermeasure while the upper

boundary represents the worst-performing (which turned

out to always be no countermeasure, as one would expect).

Ideally, the classifier accuracies should be roughly sim-

ilar, or at least show similar trends. Instead, what we

notice is a trend toward strong drops in performance as

the web page universe size increases in the Liberatore

dataset, whereas in the Herrmann dataset we see a much

smoother drop across multiple universe sizes and across

all classifiers. This is most notable under the P classifier

(far right of Figure 4).

To take a closer look at the differences between the

datasets, we report some basic statistics in Figure 5. The

fraction of traces that have short duration, particularly ones

that are clearly degenerate (≤ 10 packets), is much higher

in the Liberatore dataset. Such degenerate traces act as

noise that leads to classification errors. We suspect that

they arise in the dataset due to collection errors (e.g.,

incomplete website visits), and may imply that some pre-

vious works [10, 22] may underestimate the privacy threat

posed by web page traffic analysis attacks. Despite the

extra noise, the classifiers performed well, just consistently

lower at high values of k as compared to the Herrmann

dataset. In addition, the Herrmann dataset was collected

in 2009, as opposed to the Liberatore dataset, which

was collected in 2006. Despite all these differences we

found the high-level trends and conclusions are the same

across both datasets. For these reasons, we will focus our

analysis only on the Herrmann dataset for the remainder

of this paper. Appendix A contains details for classifier

performance using the Liberatore dataset at k = 128.

B. Comparison of Classifiers

Figure 6 gives a three-by-three grid of graphs: one

column per classifier and one row for countermeasure type.

We start by quickly comparing the relative performance of

the three classifiers, which is observable by comparing the

performance across the three columns.

The first thing to notice is that at k = 2, essentially all of

the classifiers do well against all of the countermeasures.

LL H

Traces with 0 packets in one direction 3.1% 0.1%

Traces with ≤ 5 bidirectional packets 5.2% 0.2%

Traces with ≤ 10 bidirectional packets 13.8% 0.4%

Traces with ≤ 1s duration 29.4% 6.4%

Median trace duration 2.4 sec. 3.6 sec.

Median bidirectional packet count 106 256

Median bandwidth utilization (bytes) 78,382 235,687

Figure 5. Statistics illustrating the presence of degenerate or erroneous
traces in the Liberatore and Levine and Hermann datasets.

The LL and P classifiers are particularly strong, even

against the DTS and TM countermeasures. The overall best

classifier is clearly the P classifier. It is robust to all the

countermeasures. The H classifier edges out both the P and

LL classifiers for raw traffic, but is very fragile in the face

of all but the simplest countermeasure (Linear padding).

The LL classifier proves more robust than the H classifier,

but has more severe accuracy degradation compared to P

as k increases.

C. Comparison of Countermeasures

Consider the first row of Figure 6, where we see a com-

parison of the two Type-1 randomized padding schemes.

Curiously, it is better to pick a single random padding

amount to apply to each packet within a trace than to

pick fresh random amounts per packet. Applying a single

random amount across all packets shifts the distribution

of packet lengths in a way that is unlikely to have been

seen during training. On the other hand, randomizing per

packet “averages out” during training and testing.

Common intuition about the Pad to MTU countermea-

sure is that it ought to work well against TA attacks since

it ensures that no individual packet length information is

leaked. However, as we seen in the second row of Figure 6,

we see this intuition is wrong in large part because the

number of packets is still leaked. The LL classifier, for

example, exploits this fact, since it trains on the number

of packets of each (direction, length). When the packets are

padded to the MTU, there are only two numbers, namely

for (↑,1500) and (↓,1500). The LL classifier does well

337

Figure 6. Average accuracy as k varies for the LL (left column), H (middle column), and P (right column) classifiers with respect to the Type-1 (top
row), Type-2 (middle row), and Type-3 (bottom row) countermeasures. The dotted gray line in each graph represents a random-guess adversary.

because the number of packets transmitted is relatively

consistent across traces for a particular web page. (We

will investigate this more in the next section.) This also is

our first evidence that exact packet-length information is

not necessary for high-accuracy classification.

Next, we turn to the Type-3 countermeasures. Recall

that these countermeasures focus on altering a specific

feature of the web page traffic, namely the distribution

of normalized counts, so that one web page looks like

another with respect to that feature. In theory then, the

distribution of packets produced by the DTS and TM

countermeasures should match that of the target web

page and, unlike Type-1 and Type-2 countermeasures, the

number of packets from the source web page should be

concealed, in part. This is not true in all cases, however,

as Type-3 countermeasures do not substantially change the

total bandwidth of data transmitted in each direction, nor

the duration of the trace with regards to time. In fact, no

countermeasure considered here substantially changes the

total bandwidth. Moreover, these countermeasures do not

hide “burstiness” of the data, which may be correlated

to higher level structure of the underlying HTTP traffic

(e.g., a downstream burst represents a web page object).

Therefore, DTS and TM perform best against the H clas-

sifier, which examines the same normalized packet count

distribution, while the P classifier performs particularly

well with its use of packet burst information.

We compare the best countermeasure from each type

in Figure 7: Session Random 255 (Type-1), Pad to MTU

(Type-2), and DTS (Type-3). A few surprises arise in this

comparison. First, Session Random 255 performs better

or about the same as Pad to MTU. This is surprising,

as Session Random 255 is a significantly lighter-weight

countermeasure. It has only 7% overhead compared to

Pad to MTU’s 58%, and can potentially be dropped into

existing deployments of SSH and TLS. That said, even at

k = 128, it is unlikely to be satisfying to drop accuracy

only down to 90%. DTS does better than the others across

all values of k against the best classifier (P), but we note

that simpler countermeasures actually can do a better job

338

Figure 7. Comparison of the overall best performing countermeasure of each type against the LL, H, and P classifiers.

against the LL and H classifiers for lower k values.

VI. EXPLORING COARSE FEATURES

Our study of existing classifiers reveals that some fine-

grained features, such as individual packet lengths, are not
required for high-accuracy classification. Indeed, the fact

that the P classifier performs so well against the Pad to

MTU countermeasure means that it is using features other

than individual packet lengths to determine classification.

This leads us to the following question: Are coarse traffic

features sufficient for high-accuracy classification?

To answer this question, we explore three coarse fea-

tures: total transmission time, total per-direction band-

width, and traffic “burstiness”.6 From these features we

build the time (TIME), bandwidth (BW), and the variable

n-gram (VNG) classifier using naı̈ve Bayes as our underly-

ing machine learning algorithm. See Figure 9 for a visual

summary of their performance. Later, we put these three

coarse features together, and build the VNG++ naı̈ve Bayes

classifier. We will see that VNG++ is just as accurate as

the (more complex) P classifier.

A. Total Time

We begin with the most coarse and intuitively least

useful feature, the total timespan of a trace. How much

do traces differ based on total time? The left-most plot in

Figure 8 depicts the time of the first 50 traces from five

websites in the Herrmann dataset. There is clear regularity

within traces from each website, suggesting relatively low

variance for this feature.

To test the usefulness of total time in classification, we

implemented a naı̈ve Bayes classifier that uses time as

its only feature. This simple time-only classifier is quite

successful for small k, as shown in Figure 9. At k = 2, it

is able to achieve better than an 80% average accuracy

against the three best countermeasures from each class

as determined by performance on the P classifier. As the

privacy set increases, the likelihood of multiple websites

having similar timing increases, and so the accuracy of

6We note that these features are more coarse than individual packet
lengths, in the sense that knowing the latter likely implies knowing the
former, but not the other way around.

the time classifier goes down. At k = 775, it achieves

only about 3% accuracy, although this is still substantially

better than random guessing (0.1%) and may provide value

as a supplementary feature in order to increase a classifier’s

accuracy.

Figure 9 also shows that the time classifier performs

roughly the same against raw traffic (i.e., the “None” coun-

termeasure) and with traffic countermeasures applied. As

one might expect padding-based countermeasures (Type-1

and Type-2), do not directly modify the total time taken

by traces. On the other hand, distribution-based counter-

measures (Type-3) potentially inject dummy packets into

a trace, but this is most often no more than 10-12 packets

sent in quick succession. Thus, these also do not change

the total time significantly.

B. Total Per-Direction Bandwidth

Next, we turn to total bandwidth consumed per di-

rection. We see the consistency of total bandwidth in

the center plot in Figure 8, which displays the upstream

and downstream bandwidths of the first 50 traces of five

websites from the Herrmann dataset. This plot shows a

clear clustering of the websites with both very low variance

within website clusters and high degrees of separability

(i.e., spacing) between clusters.

Therefore, we expect bandwidth-based classification

will work well as long as websites within the privacy

set do not have too much overlap in terms of total

per-direction bandwidth. Figure 9 shows that, indeed, the

bandwidth classifier performs well. In fact, the real surprise

is just how well the bandwidth-only classifier works for all

privacy set sizes despite the coarse nature of the feature. At

k = 2, the classifier provides close to perfect accuracy of

over 99% against all countermeasures. Moreover, compare

the behavior of the bandwidth-only classifier to that of the

LL and H classifiers (c.f., Figure 7), which do not use

bandwidth as a feature, as k increases. The bandwidth clas-

sifier is clearly more robust to changes in privacy set size.

This might seem surprising, since countermeasures such as

Pad to MTU and Session Random 255 should, intuitively,

obfuscate bandwidth usage. They do, but these per-packet

paddings only add noise to the low order bits of total

339

Figure 8. Each scatterplot is a visual representation of the first fifty traces, from the first five websites in the Herrmann dataset. Each symbol of the
same shape and color represents the same web page. (left) Distribution of traces with respect to duration in seconds. (middle) Distribution of traces
with respect to bandwidth utilization, where we distinguish the upstream and downstream directions. (right) Distribution of traces with respect to the
number of bursts per trace.

bandwidth. Specifically, the change to bandwidth usage is

too small relative to what would be needed to make two

websites’ bandwidths likely to overlap significantly. This is

true for all of the padding-based countermeasures (Type-1

and Type-2). Distribution-based countermeasures DTS and

TM, however, offer the best resistance to the bandwidth

classifier for higher k values. Here, they outpace other

countermeasures by several percentage points. This seems

to be due to the insertion of dummy packets, which can add

more noise than per-packet padding for total bandwidth

use.

C. Variable n-gram

The time and bandwidth features already provide im-

pressive classification ability despite their coarse nature,

but do not yet give the accuracy that the Panchenko

classifier achieves. We therefore look at a third feature,

that of burst bandwidth. A burst is a sequence of non-

acknowledgement packets sent in one direction that lie

between two packets sent in the opposite direction. The

bandwidth of a burst is the total size of all packets

contained in the burst, in bytes. For instance, if we have

a trace of the form

(↑, 100), (↓, 1500), (↓, 100), (↑, 200), (↑, 300)
then there are three bursts with bandwidth 100, 1600, and

500. The intuition underlying this is that bursts correlate

with higher-level properties of the traffic, such as indi-

vidual web requests. This observation was first made by

Panchenko et al. [14].

The right-most plot in Figure 8 shows the number of

bursts for each of the first 50 traces for five websites in

the Herrmann dataset. Even the number of bursts correlates

strongly with the web page visited. Although this relatively

limited information is capable of providing some classifi-

cation ability, it turns out that burst bandwidths prove even

more powerful.

Recalling that an n-gram model would coalesce n
packets together into one feature, we can view bandwidth

bursts as a variable n-gram model in which n varies across

the trace. Then, our VNG (Variable n-Gram) classifier par-

titions a trace into bursts, coalesces packets into variable

n-grams described by (direction, size) pairs, rounds the

resulting sizes up to the nearest multiple of 600 bytes7,

and then applies a naı̈ve Bayes classifier. Figure 9 shows

how well the VNG classifier performs, already achieving

better than 80% accuracy for all padding-based coun-

termeasures, and achieving significantly higher accuracy

levels for distribution-based approaches than any other

classifier except the P classifier.

D. Combining Coarse Features: the VNG++ Classifier

To extract all potential identifying information from

these coarse features, we combine the time, bandwidth,

and variable n-gram classifiers to give a simple, yet

impressively effective, classifier that dispenses with use

of individual packet lengths for classification. Specifically,

we use total time, bandwidth in each direction of the con-

nection, and variable n-grams as features of a naı̈ve Bayes

classifier. A graph of the VNG++ classifier’s accuracy as

k varies is given in Figure 11.

In comparing VNG++ to the P classifier, we note that the

latter uses a large assortment of features (as discussed in

Section III), including fine-grained ones such as frequency

of individual packet lengths. It also applies a more compli-

cated machine learning algorithm in the form of an SVM.

Figure 11 depicts the performance of the P and VNG++

classifiers against the best performing countermeasures of

each type, as well as data with no countermeasure applied.

Note that for clarity the y-axis starts at 50%, unlike

other graphs. From this figure, two clear trends arise.

First, VNG++’s performance against no countermeasure

degrades slightly faster with k than the P classifier. This

highlights that fine-grained features can provide some

small benefit in classifying unprotected traces. Second,

7Panchenko et al. experimentally determine this rounding value as a
way to maximize classification accuracy via dimensionality reduction.

340

Figure 9. The average accuracy against the raw encrypted traffic (None), and the best countermeasures from each type, as established in Section V.
(left) the time-only classifier. (middle) the bandwidth only classifier. (right) the VNG (“burstiness”) classifier.

Classifier

Countermeasure P P-NB VNG++

None 97.2± 0.2 98.2± 0.9 93.9± 0.3

Session Random 255 90.6± 0.3 59.1± 2.3 91.6± 0.3

Packet Random 255 94.9± 0.3 93.7± 1.6 93.5± 0.3

Linear 96.8± 0.2 96.9± 1.1 94.3± 0.3

Exponential 96.6± 0.3 97.4± 0.9 94.8± 0.3

Mice-Elephants 94.5± 0.6 95.1± 0.8 91.7± 0.4

Pad to MTU 89.8± 0.4 91.7± 1.5 88.2± 0.4

Packet Random MTU 92.1± 0.3 84.1± 1.7 87.6± 0.3

Direct Target Sampling 81.8± 0.5 76.8± 2.5 80.2± 0.5

Traffic Morphing 88.7± 0.4 82.6± 5.6 85.6± 0.7

Figure 10. Accuracies (%) of P, P-NB, and VNG++ classifiers at k =
128.

when we consider countermeasures, VNG++ matches P in

performance. This holds despite the use of fewer features

and the simpler machine learning algorithm used by the

former. As it turns out, in the face of countermeasures,

the coarse features are the damaging ones and fine-grained

features are not particularly helpful.

A final question lingers: does using an SVM provide any

advantage over a naı̈ve Bayes classifier? We implemented a

naı̈ve Bayes version of the P classifier. This P-NB classifier

uses a 1-1 mapping of the features used by P to analogues

suitable for use with a naı̈ve Bayes classifier. A comparison

of performance at k = 128 for P, P-NB, and VNG++ are

given in Figure 10. Overall, we see that the results are

consistent across all three classifiers. A single exception

is the accuracy of P-NB for Session Random 255, which

results in a surprisingly low classifier accuracy.

E. Discussion

The nine countermeasures considered so far attempt to

obfuscate leaked features of the traffic via padding and

insertion of dummy packets. As we’ve seen, however,

these fail to protect significant amounts of identifying

information from being leaked from coarse features of

the encrypted traffic, rather than the fine-grained, per-

packet features typically targeted by TA countermeasures.

Unfortunately, these kinds of features are precisely the

ones that are most difficult to efficiently hide.

Obfuscating total bandwidth is an obvious case in point.

To prevent this feature from leaking information, a coun-

termeasure must ensure a similar amount of bandwidth

use across all websites in any given privacy set. Since we

do not want to forego functionality (e.g., shutting down

connections prematurely), this translates into a counter-

measure that inserts dummy traffic until we achieve a total

bandwidth close to that of the maximum bandwidth usage

of any website in the privacy set.

Hiding burst bandwidth is also problematic. As seen

in Figure 8, different websites can have quite different

patterns of bursts. A countermeasure must smooth out

these patterns. In theory, a traffic morphing-like coun-

termeasure can attempt to imitate a target trace’s burst

patterns, however this will require buffering packets for

potentially long periods of time. Thus, countermeasures

for preventing website traffic analysis must incur both

bandwidth and latency overheads.

In all, our analyses leaves little wiggle room for coun-

termeasures to operate within. Providing robust protection

against fingerprinting attacks for arbitrary websites in a

closed-world setting, such as the one presented here, is

going to have to be inefficient.

VII. BuFLO: BUFFERED FIXED-LENGTH OBFUSCATOR

Our analysis thus far leaves us with the conclusion that,

despite the long line of work on TA attacks and counter-

measures, we have no packet-oriented countermeasure that

prevents website fingerprinting attacks. We therefore want

to know whether any measure can work, even prohibitively

inefficient ones.

Following the analysis of the last section, we know

that any effective countermeasure must hide the total time,

bandwidth use, and burst patterns. To that end, we consider

a new countermeasure Buffered Fixed-Length Obfuscator,

or BuFLO. It is a realization of the “fool-proof” folk-

lore countermeasure that, intuitively, should defeat any

TA classifier by removing all side-channel information.

BuFLO operate by sending fixed-length packets at a fixed

341

Figure 11. Accuracy of P (left) and VNG++ (right) classifiers against the best-performing countermeasures from Section III.

interval for at least a fixed amount of time. If a flow goes

longer than the fixed time out, BuFLO lets it conclude

while still using fixed-length packets at a fixed interval.

In an ideal implementation, BuFLO will not leak packet

lengths or packet timings, and so BuFLO should do a good

job at closing side-channels that enable TA classifiers.

This type of countermeasure has been investigated in the

context of other TA attacks, such as those on anonymity

networks [17, 23]

Our simulation-based analysis of BuFLO provides some

positive evidence for packet-level countermeasures, but in

fact our results here are mostly negative, thereby reinforc-

ing the lessons learned in prior sections. BuFLO is, as one

might expect, incredibly inefficient. Moreover, we will see

that even mild attempts to claw back some efficiency can

fail: setting the minimum session too aggressively short

opens up vulnerability to our coarse-feature classifiers.

A. BuFLO Description

A BuFLO implementation is governed by three integer

parameters d, ρ and τ :

• Parameter d determines the size of our fixed-length

packets.

• Parameter ρ determines the rate or frequency (in

milliseconds) at which we send packets.

• Parameter τ determines the minimum amount of time

(in milliseconds) for which we must send packets.

A BuFLO implementation at the start of communications

will send a packet of length d every ρ milliseconds until

communications cease and at least τ milliseconds of time

have elapsed. Specifically, data is buffered into discrete

chunks, and these chunks are sent as quickly as possible

via the steady flow of the fixed-length packets. When

no data is in the buffer, dummy data is sent instead.

This assumes that the application-layer signals the start

and end of communication. Alternatively, we could have

chosen τ as an upper bound on the duration of our

communications session and forcibly close the connection

even if communications are still in progress. This would

disable any websites that take longer to load, making it

unlikely to be a pragmatic choice.

B. Experiments

In this section, we examine BuFLO for various pa-

rameters using the Hermann dataset and provide detailed

results in Figure 12. Since we are using a simulation-based

experiment, these results reflect an ideal implementation

that assumes the feasibility of implementing fixed packet

timing intervals. This is at the very least difficult in

practice [7] and clearly impossible for some values of

ρ. Simulation also ignores the complexities of cross-layer

communication in the network stack, and the ability for

the BuFLO implementation to recognize the beginning

and end of a data flow. If BuFLO cannot work in this

setting, then it is unlikely to work elsewhere, aiding us in

our exploration of the goal of understanding the limits of

packet-level countermeasures.

We evaluated BuFLO empirically with parameters in

the ranges of τ ∈ {0, 10000}, ρ ∈ {20, 40} and d ∈
{1000, 1500}. The least bandwidth-intensive configura-

tion, at τ = 0, ρ = 40 and d = 1000 would require at

least 0.2 Mbps of continuous synchronous client-server

bandwidth to operate8. Surprisingly, with this BuFLO

configuration and a privacy set size of k = 128, the P

classifier still identifies sites with an average accuracy of

27.3%. This is compared to 97.5% average accuracy with

no countermeasure applied. At the other extreme of our

experiments with τ = 10000, ρ = 20 and d = 1500 it

would require at least 0.6 Mbps of synchronous client-

server bandwidth to operate. Here, the P classifier can still
identify sites with a privacy set size of k = 128 with an

average 5.1% accuracy.

C. Observations about BuFLO

BuFLO cannot leak packet lengths, nor can it leak

packet timings. Yet, our experiments indicate that an ag-

gressively configured BuFLO implementation can still leak

information about transmitted contents. This is possible

because BuFLO can leak total bytes transmitted and the

time required to transmit a trace in two circumstances:

8Calculated by
(

1000
ρ

)
·
(

8d
106

)
.

342

Overhead Classifier Accuracy (%)

Parameters Bandwidth (%) Latency (s) LL H P VNG++ P-NB

BuFLO (τ=0, ρ=40, d=1000) 93.5 6.0 18.4± 2.9 0.8± 0.0 27.3± 1.8 22.0± 2.1 21.4± 1.0

BuFLO (τ=0, ρ=40, d=1500) 120.0 3.6 16.2± 1.6 0.8± 0.0 23.3± 3.3 18.3± 1.0 18.8± 1.4

BuFLO (τ=0, ρ=20, d=1000) 140.5 2.4 16.3± 1.2 0.8± 0.0 20.9± 1.6 15.6± 1.2 17.9± 1.7

BuFLO (τ=0, ρ=20, d=1500) 201.3 1.2 13.0± 0.8 0.8± 0.0 24.1± 1.8 18.4± 0.9 18.7± 1.0

BuFLO (τ=10000, ρ=40, d=1000) 129.2 6.0 12.7± 0.9 0.8± 0.0 14.1± 0.9 12.5± 0.8 13.2± 0.7

BuFLO (τ=10000, ρ=40, d=1500) 197.5 3.6 8.9± 1.0 0.8± 0.0 9.4± 1.3 8.2± 0.8 9.3± 1.3

BuFLO (τ=10000, ρ=20, d=1000) 364.5 2.4 5.4± 0.8 0.8± 0.0 7.3± 1.0 5.9± 1.0 6.8± 0.9

BuFLO (τ=10000, ρ=20, d=1500) 418.8 1.2 4.4± 0.2 0.8± 0.0 5.1± 0.7 4.1± 0.8 5.3± 0.5

Figure 12. Overhead and accuracy results for the BuFLO countermeasure at k = 128.

• The data source continued to produce data beyond the

threshold τ .

• The data source ceases to produce data by the thresh-

old τ , but there is still data in the buffer at time τ .

The first situation can occur if our our threshold τ is not

sufficiently large to accommodate for all web pages that we

may visit. The latter situation occurs when values ρ and d
are not sufficiently configured to handle our application’s

data throughput, such that we transmit all data by time τ .

What is more, in some circumstances an inappropriately

configured BuFLO implementation can can actually benefit

an adversary. At k = 128 with τ = 0, ρ = 40
and d = 1000 (see Figure 12) the BuFLO countermeasure

can increase the accuracy of the Time classifier from 9.9%

to 27.3%! In retrospect this is not surprising. If we throttle

the bandwidth of the web page transfer, we will amplify

its timing fingerprint.

These results reinforce the observations of prior sec-

tions. Namely, that TA countermeasures must, in the con-

text of website identification, prevent coarse features from

being leaked. As soon as these features leak, adversaries

will gain some advantage in picking out web pages.

VIII. RELATED WORK

Traffic analysis of encrypted data has been studied ex-

tensively. Our focus is on identification (or fingerprinting)

of web pages within encrypted tunnels, and we do not

discuss other contexts, such as analysis of encrypted VoIP

traffic [18–21] or revelation of web page contents [2, 3].

Even so, there is a significant amount of literature focused

on website identification, including a wide diversity of

evaluation methodologies, attacks, and countermeasures.

To the best of our knowledge, the first academic dis-

cussion of TA attacks in this context was by Wagner and

Schneier [16]. They relayed an observation of Yee that

SSL might leak the URL of an HTTP get request because

ciphertexts leak plaintext length. Wagner and Schneier

suggested that per-ciphertext random padding should be

included for all cipher modes of SSL.

Cheng and Avnur [4] provided some of the first ex-

perimental evidence of web page fingerprinting attacks

by analyzing pages hosted within one of three websites.

Their attack assumes perfect knowledge of HTML and web

page object sizes, which is not always precisely inferred

from ciphertexts. They also suggested countermeasures

including padding of HTML documents, Pad to MTU, and

introduction of spurious HTTP requests. They evaluated

the first two in the context of their attack, and claim some

efficacy for the considered websites.
Sun et al. [15] investigated a similar setting, in which

the adversary can precisely uncover the size of individual

HTTP objects in a non-pipelined, encrypted HTTP connec-

tion. They provided a thorough evaluation utilizing a cor-

pus of 100,000 websites. They described a classifier based

on the Jaccard coefficient similarity metric and a simple

thresholding scheme. It was successful against raw traffic,

and while we did not implement their attack, several of the

classifiers we consider are likely to outperform it. They

also explored numerous countermeasures, including per-

packet padding, byte-range requests, client-based prefetch-

ing, server-based pushing of content, content negotiation,

web ad blockers, pipelining, and using multiple browsers

in parallel. Their evaluation of the countermeasures only

considered their attack, and the results indicate that the

countermeasures provide improved TA resistance to it.
Hintz [9] discussed a simple attack for identifying which

of five popular web pages was visited over a single-hop

proxy service called SafeWeb. The proposed attack does

not require exact knowledge of web request sizes, but there

is little evaluation and it remains unclear how the attack

would fair with larger privacy sets.
Bissias et al. [1] demonstrated a weaker adversary than

that of Sun et al. [15], which could observe an SSH tunnel

and view only the length, direction, and timing of each

ciphertext transmitted, rather than web page objects. They

used cross-correlation to determine webpage similarity,

which is a metric commonly used for evaluating the simi-

larity of two time series. They achieved worse performance

than the classifiers we consider, and they did not explore

any countermeasures.
Liberatore and Levine [10] showed that it is possible

to infer the contents of an HTTP transaction encapsulated

in an SSH connection by observing only encrypted packet

lengths and the directions of unordered packets. We pro-

vided a detailed description of their classifier in section III,

and we use their publicly-available dataset in our analy-

343

ses. They quantify the ability of several countermeasures,

including Linear, Exponential, Mice-Elephants, and Pad to

MTU padding schemes, to protect against their attack, but

only report on a privacy set size of k = 1000. These results

cast a positive light on some padding approaches, like Pad

to MTU, which reduces the accuracy of their proposed

classifier from 68% to around 7%. We did not consider

k = 1000 in order to ensure consistency with other datasets

in our evaluation, but projecting out from the observed

trends we expect that, for example, the VNG++ classifier

will do significantly better than 7% at k = 1000 (c.f.,

Figure 9).

Herrmann et al. [8] collected encrypted traces from four

different types of single-hop encryption technologies, and

two multi-hop anonymity networks. We use a portion of

their dataset for our analyses. They were the first to suggest

the use of a multinomial naı̈ve Bayes classifier for traffic

classification that examines normalized packet counts. A

discussion of their classifier was given in Section III.

Their evaluation of countermeasures was restricted to

application-layer countermeasures.

Panchenko et al. [14] presented a support vector ma-

chine classifier as an improvement upon the work of

Herrmann et al. [8]. We discussed details of the Panchenko

classifier in Section III. They apply it to Tor [6] traffic

they generated in both a closed-word and open-world

setting, showing good accuracy, though worse than those

that the classifiers we consider achieve. Tor’s encryption

mechanisms already obfuscate some information about

plaintext lengths, making it harder, in general, to classify.

They did not report on their classifier’s efficacy against the

countermeasures we consider.

In an effort to minimize overhead incurred by previously

suggested padding schemes, Wright et al. proposed the

notion of traffic morphing [22]. Their countermeasures

can minimize overhead while still making one web page

“look” like another with respect to specific features. As

Wright et al. suggested [22, Section 4.1], and Lu et al. later

confirmed with their experimental evaluation [11], traffic

morphing is only effective when the attacker restricts

attention to the same feature(s) targeted by the morphing

routine. Our results likewise indicate that attackers can still

succeed even when traffic morphing is used to ensure the

normalized distribution of packet sizes is similar to some

target web page.

Both Panchenko et al. [14] and Luo et al. [12] suggest

concrete application-layer countermeasures. Panchenko et

al. propose the Camouflage countermeasure, which makes

spurious HTTP requests in parallel with legitimate ones,

and show that it renders their classifier significantly less

effective. The Luo et al. system is called HTTPOS and uses

a number of client-side mechanisms that take advantage of

existing HTTP functionality to add noise to encrypted web

traffic. For example, HTTPOS randomizes HTTP GET re-

quests by adding superfluous data to headers and utilizing

HTTP byte range functionality to request subsets of data

non-sequentially. They evaluate their countermeasure in

the presence of four existing classifiers [1, 3, 10, 15] and

show that HTTPOS is effective against all of them. We do

not consider these kinds of application-layer mechanisms,

and indeed our results suggest that such countermeasures

may be better positioned to defend against web page

identification attacks.

IX. CONCLUDING DISCUSSION

Although a significant amount of previous work has

investigated the topic of TA countermeasures, and specifi-

cally the case of preventing website identification attacks,

the results were largely incomparable due to differing

experimental methodology and datasets. Our work syn-

thesizes and expands upon previous ones, and it provides

sharper answers to some of the area’s central questions:

Do TA countermeasures prevent website fingerprinting?
None of the nine countermeasures considered here pre-

vents the kind of website fingerprinting attack addressed

by prior works [8, 10, 14, 22]. From a security perspective

this setting is conservative, and makes several simplifying

assumptions. (The attacker knows the privacy set; it trains

and tests on traffic generated in the same way; the collected

traffic does not account for (potentially) confounding ef-

fects, such as browser caching, interleaved web requests,

etc.) Nevertheless, our negative results suggest that one

should not rely solely upon these countermeasures to

prevent website fingerprinting attacks.

Do TA attacks require individual packet lengths? No. We

implemented three coarse-feature classifiers: one using

only total time as a feature, one using only total per-

direction bandwidth, and one tracking only data bursts

(the VNG classifier). These did not make direct use of

individual packet lengths or packet counts as features, yet

attained high accuracy against the countermeasures. This

highlights the point that masking fine-grained information

is insufficient, unless such masking also hides telling large-

scale features (e.g., individual object requests, size of web

objects, etc.).

Does classification engine matter? Our experiments sug-

gest it is the features, and not the underlying classification

engine, that matters. We implemented a naı̈ve Bayes-based

classifier that used the same features as those exploited by

the SVM-based Panchenko et al. classifier, and our exper-

iments show that these two perform almost identically.

Does the privacy-set size (k) matter? For the considered

setting, it seems not to matter much. When no countermea-

sure is used, attacks can achieve roughly the same accuracy

for k = 2 through k = 775. When countermeasures are

applied, the best classifier’s accuracy does drop slowly

as k increases. This suggests that the countermeasures do

obfuscate some features that can improve accuracy. That

said, at the largest k, the best classifiers offer better than

60% accuracy against all of the countermeasures.

344

Our work paints a pretty negative picture of the use-

fulness of efficient, low-level TA countermeasures against

website-fingerprinting attacks. But pessimism need not

prevail. Future work could investigate more detailed mod-

elings of real-world traffic, and investigate applications of

TA countermeasures beyond website fingerprinting. This

may uncover settings in which some countermeasures are

more successful than they were in our experiments. In

addition, the coarse features (e.g. bandwidth) that appear

near impossible to obfuscate efficiently at the level of

individual packets might be better handled at the applica-

tion layer. Previous works [8, 12] suggest application-layer

countermeasures with promising initial evaluations. Future

work could provide more extensive investigation of such

countermeasures.

REFERENCES

[1] George Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy Vulnerabilities in Encrypted
HTTP Streams. In Proceedings of the Privacy Enhancing
Technologies Workshop, pages 1–11, May 2005.

[2] Peter Chapman and David Evans. Automated Black-Box
Detection of Side-Channel Vulnerabilities in Web Applica-
tions. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 263–274, November
2011.

[3] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-Channel Leaks in Web Applications: a Reality
Today, a Challenge Tomorrow. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 191–206, May
2010.

[4] Heyning Cheng and Ron Avnur. Traffic Analysis
of SSL Encrypted Web Browsing, December 1998.
Available at: http://www.cs.berkeley.edu/∼daw/teaching/
cs261-f98/projects/final-reports/ronathan-heyning.ps.

[5] Tim Dierks and Eric Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, August
2008. Updated by RFCs 5746, 5878, 6176. Available at:
http://www.ietf.org/rfc/rfc5246.txt.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings of
the 13th conference on USENIX Security Symposium, pages
303–320, 2004.

[7] Xinwen Fu, Bryan Graham, Riccardo Bettati, Wei Zhao,
and Dong Xuan. Analytical and Empirical Analysis of
Countermeasures to Traffic Analysis Attacks. In Proceed-
ings of the International Conference on Parallel Processing,
pages 483–492, October 2003.

[8] Dominik Herrmann, Rolf Wendolsky, and Hannes Feder-
rath. Website Fingerprinting: Attacking Popular Privacy
Enhancing Technologies with the Multinomial Naive-Bayes
Classifier. In Proceedings of the ACM Workshop on Cloud
Computing Security, pages 31–42, November 2009.

[9] Andrew Hintz. Fingerprinting Websites Using Traffic Anal-
ysis. In Proceedings of the Privacy Enhancing Technologies
Workshop, pages 171–178, April 2002.

[10] Marc Liberatore and Brian Neil Levine. Inferring the
Source of Encrypted HTTP Connections. In Proceedings
of the ACM Conference on Computer and Communications
Security, pages 255–263, November 2006.

[11] Liming Lu, Ee-Chien Chang, and Mun Chan. Website
Fingerprinting and Identification Using Ordered Feature
Sequences. In Proceedings of the European Symposium on
Research in Computer Security, volume 6345 of Lecture
Notes in Computer Science, pages 199–214, September
2010.

[12] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee,
Rocky K. C. Chang, and Roberto Perdisci. HTTPOS:
Sealing Information Leaks with Browser-side Obfuscation
of Encrypted Flows. In Proceedings of the Network and
Distributed Security Symposium, February 2011.

[13] Tom M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[14] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website Fingerprinting in Onion Routing-
based Anonymization Networks. In Proceedings of the
Workshop on Privacy in the Electronic Society, pages 103–
114, October 2011.

[15] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical Identifi-
cation of Encrypted Web Browsing Traffic. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 19–
30, May 2002.

[16] David Wagner and Bruce Schneier. Analysis of the SSL
3.0 Protocol. In Proceedings of the USENIX Workshop on
Electronic Commerce, pages 29–40, November 1996.

[17] Wei Wang, Mehul Motani, and Vikram Srinivasan. Depen-
dent Link Padding Algorithms for Low Latency Anonymity
Systems. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 323–332,
November 2008.

[18] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and
Fabian Monrose. Phonotactic Reconstruction of Encrypted
VoIP Conversations: Hookt on fon-iks. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 3–18,
May 2011.

[19] Charles V Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M Masson. Spot Me if You Can:
Uncovering Spoken Phrases in Encrypted VoIP Conversa-
tions. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 35–49, May 2008.

[20] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M. Masson. Uncovering Spoken
Phrases in Encrypted Voice over IP Conversations. ACM
Transactions on Information and Systems Security, 13:1–30,
December 2010.

[21] Charles V. Wright, Lucas Ballard, Fabian Monrose, and
Gerald M. Masson. Language identification of encrypted
VoIP traffic: Alejandra y Roberto or Alice and Bob? In
Proceedings of the USENIX Security Symposium, pages 1–
12, August 2007.

[22] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Proceedings of the Network and
Distributed Security Symposium, pages 237–250, February
2009.

[23] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and
Wei Zhao. On Flow Correlation Attacks and Countermea-
sures in Mix Networks. In Proceedings of the Privacy
Enhancing Technologies Workshop, volume 3424 of Lecture
Notes in Computer Science, pages 207–225, May 2004.

345

APPENDIX

Classifier

Countermeasure LL H P BW TIME VNG VNG++

None 98.1± 0.1 98.9± 0.1 97.2± 0.2 80.1± 0.6 9.7± 0.1 93.7± 0.2 93.9± 0.3

Session Random 255 40.7± 0.3 13.1± 0.2 90.6± 0.3 54.9± 0.4 9.5± 0.1 87.8± 0.3 91.6± 0.3

Packet Random 255 80.6± 0.4 40.1± 0.3 94.9± 0.3 77.4± 0.6 9.4± 0.1 91.6± 0.2 93.5± 0.3

Pad to MTU 63.1± 0.5 4.7± 0.1 89.8± 0.4 62.7± 0.6 9.6± 0.2 82.6± 0.4 88.2± 0.4

Packet Random MTU 45.8± 0.4 11.2± 0.2 92.1± 0.3 64.6± 0.5 9.5± 0.1 77.8± 0.3 87.6± 0.3

Exponential 95.4± 0.2 72.0± 0.4 96.6± 0.3 77.1± 0.6 9.6± 0.1 95.1± 0.2 94.8± 0.3

Linear 96.6± 0.2 89.4± 0.2 96.8± 0.2 79.5± 0.6 9.6± 0.2 93.5± 0.2 94.3± 0.3

Mice-Elephants 84.8± 0.4 20.9± 0.3 94.5± 0.3 72.3± 0.6 9.6± 0.1 89.4± 0.3 91.7± 0.4

Direct Target Sampling 25.1± 0.6 2.7± 0.1 81.8± 0.5 41.2± 0.9 9.7± 0.2 69.4± 0.6 80.2± 0.5

Traffic Morphing 31.0± 0.7 6.3± 0.3 88.7± 0.4 43.0± 0.9 9.8± 0.2 81.0± 0.5 86.0± 0.4

Figure 13. Classifier performance for k = 128, using the Herrmann dataset.

Classifier

Countermeasure LL H P BW TIME VNG VNG++

None 87.1± 0.6 87.4± 0.3 87.5± 0.6 55.7± 0.7 11.6± 0.7 72.0± 1.1 76.3± 1.0

Session Random 255 25.3± 0.4 9.5± 0.1 66.1± 0.6 38.6± 0.5 12.1± 0.6 60.5± 1.1 68.7± 1.2

Packet Random 255 43.6± 0.7 13.1± 0.3 74.0± 0.7 51.5± 0.7 11.8± 0.6 65.6± 1.3 71.8± 1.0

Pad to MTU 41.3± 0.6 5.0± 0.1 69.2± 0.7 41.8± 0.6 11.6± 0.7 56.8± 1.2 65.7± 1.1

Packet Random MTU 21.8± 0.5 7.5± 0.1 69.1± 0.7 40.2± 0.6 11.4± 0.8 47.1± 1.0 60.3± 1.0

Exponential 72.9± 0.6 61.2± 0.4 82.1± 0.8 54.8± 0.8 10.5± 0.7 74.1± 0.8 78.0± 0.9

Linear 79.2± 0.7 73.9± 0.3 84.2± 0.6 54.4± 0.9 12.0± 0.7 70.3± 0.9 74.3± 1.4

Mice-Elephants 55.9± 0.9 25.6± 0.3 75.6± 0.7 49.3± 0.6 11.7± 0.5 65.9± 1.1 71.2± 1.0

Direct Target Sampling 19.4± 1.0 2.5± 0.3 47.4± 1.4 26.8± 1.1 11.1± 0.7 35.7± 3.0 49.7± 1.9

Traffic Morphing 20.1± 1.2 4.1± 0.5 55.3± 1.3 25.6± 1.1 12.3± 0.7 45.4± 2.1 56.7± 2.0

Figure 14. Classifier performance for k = 128, using the Liberatore dataset.

Privacy Set Size

Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 96.9± 0.1 95.9± 0.2 95.1± 0.2 93.9± 0.3 93.3± 0.4 91.6± 0.6 90.6± 0.9

Session Random 255 96.0± 0.1 94.7± 0.2 93.4± 0.2 91.6± 0.3 89.4± 0.4 85.6± 0.6 84.1± 0.5

Packet Random 255 96.6± 0.1 95.7± 0.2 94.5± 0.2 93.5± 0.3 92.2± 0.5 89.8± 0.7 88.5± 0.8

Pad to MTU 95.2± 0.1 93.2± 0.2 91.4± 0.2 88.2± 0.4 84.2± 0.5 79.5± 0.8 77.3± 0.7

Packet Random MTU 95.0± 0.1 93.1± 0.2 90.8± 0.2 87.6± 0.3 83.3± 0.5 78.6± 0.6 74.8± 0.8

Exponential 97.1± 0.1 96.5± 0.1 95.6± 0.2 94.8± 0.3 93.7± 0.4 92.5± 0.6 90.8± 1.2

Linear 96.9± 0.1 96.0± 0.2 95.1± 0.2 94.3± 0.3 92.8± 0.5 91.8± 0.6 89.5± 1.1

Mice-Elephants 96.2± 0.1 95.1± 0.2 93.6± 0.2 91.7± 0.4 90.0± 0.5 86.5± 0.8 84.0± 0.8

Direct Target Sampling 93.1± 0.2 89.8± 0.2 85.3± 0.3 80.2± 0.5 74.3± 0.8 65.8± 1.8 61.0± 4.1

Traffic Morphing 94.8± 0.2 92.8± 0.2 90.2± 0.3 85.6± 0.7 83.3± 0.7 77.7± 2.3 75.1± 3.1

Figure 15. Performance of the VNG++ classifier, for varying values of k, using the Herrmann dataset.

Privacy Set Size

Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 98.4± 0.1 98.0± 0.1 97.7± 0.2 97.2± 0.2 97.2± 0.3 96.4± 0.5 96.4± 0.4

Session Random 255 96.8± 0.1 95.5± 0.2 93.6± 0.2 90.6± 0.3 87.2± 0.5 83.2± 0.5 78.7± 0.9

Packet Random 255 97.6± 0.1 96.9± 0.2 96.2± 0.2 94.9± 0.3 93.9± 0.3 91.2± 0.8 90.3± 0.7

Pad to MTU 96.4± 0.1 94.8± 0.2 92.7± 0.3 89.8± 0.4 86.6± 0.5 82.4± 0.8 79.2± 0.9

Packet Random MTU 97.0± 0.1 95.8± 0.2 94.4± 0.2 92.1± 0.3 89.3± 0.5 85.6± 0.7 83.2± 0.6

Exponential 98.1± 0.1 97.9± 0.1 97.2± 0.2 96.6± 0.3 95.6± 0.4 95.2± 0.3 94.6± 0.4

Linear 98.1± 0.1 97.7± 0.1 97.6± 0.2 96.8± 0.2 95.8± 0.5 95.0± 0.6 94.2± 0.7

Mice-Elephants 97.5± 0.1 97.0± 0.1 95.6± 0.2 94.5± 0.3 93.2± 0.4 89.9± 0.9 88.7± 1.0

Direct Target Sampling 94.7± 0.2 91.7± 0.2 87.2± 0.3 81.8± 0.5 75.9± 0.7 68.7± 0.9 62.5± 1.3

Traffic Morphing 95.9± 0.1 94.2± 0.2 91.6± 0.3 88.7± 0.4 85.6± 0.6 81.0± 0.9 77.8± 1.3

Figure 16. Performance of the Panchenko classifier, for varying values of k, using the Herrmann dataset.

346

